L. Bugel - LAr1-ND Collaboration

L. Bugel
Are you L. Bugel?

Claim your profile, edit publications, add additional information:

Contact Details

Name
L. Bugel
Affiliation
LAr1-ND Collaboration
Location

Pubs By Year

Pub Categories

 
High Energy Physics - Experiment (49)
 
Physics - Instrumentation and Detectors (15)
 
Nuclear Experiment (6)
 
High Energy Physics - Phenomenology (5)
 
Nuclear Theory (2)

Publications Authored By L. Bugel

2017Apr
Authors: MicroBooNE collaboration, R. Acciarri, C. Adams, R. An, J. Anthony, J. Asaadi, M. Auger, L. Bagby, S. Balasubramanian, B. Baller, C. Barnes, G. Barr, M. Bass, F. Bay, M. Bishai, A. Blake, T. Bolton, L. Bugel, L. Camilleri, D. Caratelli, B. Carls, R. Castillo Fernandez, F. Cavanna, H. Chen, E. Church, D. Cianci, E. Cohen, G. H. Collin, J. M. Conrad, M. Convery, J. I. Crespo-Anadon, M. Del Tutto, D. Devitt, S. Dytman, B. Eberly, A. Ereditato, L. Escudero Sanchez, J. Esquivel, B. T. Fleming, W. Foreman, A. P. Furmanski, D. Garcia-Gamez, G. T. Garvey, V. Genty, D. Goeldi, S. Gollapinni, N. Graf, E. Gramellini, H. Greenlee, R. Grosso, R. Guenette, A. Hackenburg, P. Hamilton, O. Hen, J. Hewes, C. Hill, J. Ho, G. Horton-Smith, E. -C. Huang, C. James, J. Jan de Vries, C. -M. Jen, L. Jiang, R. A. Johnson, J. Joshi, H. Jostlein, D. Kaleko, G. Karagiorgi, W. Ketchum, B. Kirby, M. Kirby, T. Kobilarcik, I. Kreslo, A. Laube, Y. Li, A. Lister, B. R. Littlejohn, S. Lockwitz, D. Lorca, W. C. Louis, M. Luethi, B. Lundberg, X. Luo, A. Marchionni, C. Mariani, J. Marshall, D. A. Martinez Caicedo, V. Meddage, T. Miceli, G. B. Mills, J. Moon, M. Mooney, C. D. Moore, J. Mousseau, R. Murrells, D. Naples, P. Nienaber, J. Nowak, O. Palamara, V. Paolone, V. Papavassiliou, S. F. Pate, Z. Pavlovic, E. Piasetzky, D. Porzio, G. Pulliam, X. Qian, J. L. Raaf, A. Rafique, L. Rochester, C. Rudolf von Rohr, B. Russell, D. W. Schmitz, A. Schukraft, W. Seligman, M. H. Shaevitz, J. Sinclair, E. L. Snider, M. Soderberg, S. Soldner-Rembold, S. R. Soleti, P. Spentzouris, J. Spitz, J. St. John, T. Strauss, K. A. Sutton, A. M. Szelc, N. Tagg, K. Terao, M. Thomson, M. Toups, Y. -T. Tsai, S. Tufanli, T. Usher, R. G. Van de Water, B. Viren, M. Weber, D. A. Wickremasinghe, S. Wolbers, T. Wongjirad, K. Woodruff, T. Yang, L. Yates, G. P. Zeller, J. Zennamo, C. Zhang

The MicroBooNE liquid argon time projection chamber (LArTPC) has been taking data at Fermilab since 2015 collecting, in addition to neutrino beam, cosmic-ray muons. Results are presented on the reconstruction of Michel electrons produced by the decay at rest of cosmic-ray muons. Michel electrons are abundantly produced in the TPC, and given their well known energy spectrum can be used to study MicroBooNE's detector response to low-energy electrons (electrons with energies up to ~50 MeV). Read More

2017Mar
Authors: MicroBooNE collaboration, P. Abratenko, R. Acciarri, C. Adams, R. An, J. Asaadi, M. Auger, L. Bagby, S. Balasubramanian, B. Baller, C. Barnes, G. Barr, M. Bass, F. Bay, M. Bishai, A. Blake, T. Bolton, L. Bugel, L. Camilleri, D. Caratelli, B. Carls, R. Castillo Fernandez, F. Cavanna, H. Chen, E. Church, D. Cianci, E. Cohen, G. H. Collin, J. M. Conrad, M. Convery, J. I. Crespo-Anadon, M. Del Tutto, D. Devitt, S. Dytman, B. Eberly, A. Ereditato, L. Escudero Sanchez, J. Esquivel, B. T. Fleming, W. Foreman, A. P. Furmanski, D. Garcia-Gamez, G. T. Garvey, V. Genty, D. Goeldi, S. Gollapinni, N. Graf, E. Gramellini, H. Greenlee, R. Grosso, R. Guenette, A. Hackenburg, P. Hamilton, O. Hen, J. Hewes, C. Hill, J. Ho, G. Horton-Smith, E. -C. Huang, C. James, J. Jan de Vries, C. -M. Jen, L. Jiang, R. A. Johnson, B. J. P. Jones, J. Joshi, H. Jostlein, D. Kaleko, L. N. Kalousis, G. Karagiorgi, W. Ketchum, B. Kirby, M. Kirby, T. Kobilarcik, I. Kreslo, A. Laube, Y. Li, A. Lister, B. R. Littlejohn, S. Lockwitz, D. Lorca, W. C. Louis, M. Luethi, B. Lundberg, X. Luo, A. Marchionni, C. Mariani, J. Marshall, D. A. Martinez Caicedo, V. Meddage, T. Miceli, G. B. Mills, J. Moon, M. Mooney, C. D. Moore, J. Mousseau, R. Murrells, D. Naples, P. Nienaber, J. Nowak, O. Palamara, V. Paolone, V. Papavassiliou, S. F. Pate, Z. Pavlovic, E. Piasetzky, D. Porzio, G. Pulliam, X. Qian, J. L. Raaf, A. Rafique, L. Rochester, C. Rudolf von Rohr, B. Russell, D. W. Schmitz, A. Schukraft, W. Seligman, M. H. Shaevitz, J. Sinclair, E. L. Snider, M. Soderberg, S. Soldner-Rembold, S. R. Soleti, P. Spentzouris, J. Spitz, J. St. John, T. Strauss, A. M. Szelc, N. Tagg, K. Terao, M. Thomson, M. Toups, Y. -T. Tsai, S. Tufanli, T. Usher, R. G. Van de Water, B. Viren, M. Weber, J. Weston, D. A. Wickremasinghe, S. Wolbers, T. Wongjirad, K. Woodruff, T. Yang, L. Yates, G. P. Zeller, J. Zennamo, C. Zhang

We discuss a technique for measuring a charged particle's momentum by means of multiple Coulomb scattering (MCS) in the MicroBooNE liquid argon time projection chamber (LArTPC). This method does not require the full particle ionization track to be contained inside of the detector volume as other track momentum reconstruction methods do (range-based momentum reconstruction and calorimetric momentum reconstruction). We motivate use of this technique, describe a tuning of the underlying phenomenological formula, quantify its performance on fully contained beam-neutrino-induced muon tracks both in simulation and in data, and quantify its performance on exiting muon tracks in simulation. Read More

2016Dec
Authors: MicroBooNE Collaboration, R. Acciarri, C. Adams, R. An, A. Aparicio, S. Aponte, J. Asaadi, M. Auger, N. Ayoub, L. Bagby, B. Baller, R. Barger, G. Barr, M. Bass, F. Bay, K. Biery, M. Bishai, A. Blake, V. Bocean, D. Boehnlein, V. D. Bogert, T. Bolton, L. Bugel, C. Callahan, L. Camilleri, D. Caratelli, B. Carls, R. Castillo Fernandez, F. Cavanna, S. Chappa, H. Chen, K. Chen, C. Y. Chi, C. S. Chiu, E. Church, D. Cianci, G. H. Collin, J. M. Conrad, M. Convery, J. Cornele, P. Cowan, J. I. Crespo-Anadon, G. Crutcher, C. Darve, R. Davis, M. Del Tutto, D. Devitt, S. Duffin, S. Dytman, B. Eberly, A. Ereditato, D. Erickson, L. Escudero Sanchez, J. Esquivel, S. Farooq, J. Farrell, D. Featherston, B. T. Fleming, W. Foreman, A. P. Furmanski, V. Genty, M. Geynisman, D. Goeldi, B. Goff, S. Gollapinni, N. Graf, E. Gramellini, J. Green, A. Greene, H. Greenlee, T. Griffin, R. Grosso, R. Guenette, A. Hackenburg, R. Haenni, P. Hamilton, P. Healey, O. Hen, E. Henderson, J. Hewes, C. Hill, K. Hill, L. Himes, J. Ho, G. Horton-Smith, D. Huffman, C. M. Ignarra, C. James, E. James, J. Jan de Vries, W. Jaskierny, C. M. Jen, L. Jiang, B. Johnson, M. Johnson, R. A. Johnson, B. J. P. Jones, J. Joshi, H. Jostlein, D. Kaleko, L. N. Kalousis, G. Karagiorgi, T. Katori, P. Kellogg, W. Ketchum, J. Kilmer, B. King, B. Kirby, M. Kirby, E. Klein, T. Kobilarcik, I. Kreslo, R. Krull, R. Kubinski, G. Lange, F. Lanni, A. Lathrop, A. Laube, W. M. Lee, Y. Li, D. Lissauer, A. Lister, B. R. Littlejohn, S. Lockwitz, D. Lorca, W. C. Louis, G. Lukhanin, M. Luethi, B. Lundberg, X. Luo, G. Mahler, I. Majoros, D. Makowiecki, A. Marchionni, C. Mariani, D. Markley, J. Marshall, D. A. Martinez Caicedo, K. T. McDonald, D. McKee, A. McLean, J. Mead, V. Meddage, T. Miceli, G. B. Mills, W. Miner, J. Moon, M. Mooney, C. D. Moore, Z. Moss, J. Mousseau, R. Murrells, D. Naples, P. Nienaber, B. Norris, N. Norton, J. Nowak, M. OBoyle, T. Olszanowski, O. Palamara, V. Paolone, V. Papavassiliou, S. F. Pate, Z. Pavlovic, R. Pelkey, M. Phipps, S. Pordes, D. Porzio, G. Pulliam, X. Qian, J. L. Raaf, V. Radeka, A. Rafique, R. A Rameika, B. Rebel, R. Rechenmacher, S. Rescia, L. Rochester, C. Rudolf von Rohr, A. Ruga, B. Russell, R. Sanders, W. R. Sands III, M. Sarychev, D. W. Schmitz, A. Schukraft, R. Scott, W. Seligman, M. H. Shaevitz, M. Shoun, J. Sinclair, W. Sippach, T. Smidt, A. Smith, E. L. Snider, M. Soderberg, M. Solano-Gonzalez, S. Soldner-Rembold, S. R. Soleti, J. Sondericker, P. Spentzouris, J. Spitz, J. St. John, T. Strauss, K. Sutton, A. M. Szelc, K. Taheri, N. Tagg, K. Tatum, J. Teng, K. Terao, M. Thomson, C. Thorn, J. Tillman, M. Toups, Y. T. Tsai, S. Tufanli, T. Usher, M. Utes, R. G. Van de Water, C. Vendetta, S. Vergani, E. Voirin, J. Voirin, B. Viren, P. Watkins, M. Weber, T. Wester, J. Weston, D. A. Wickremasinghe, S. Wolbers, T. Wongjirad, K. Woodruff, K. C. Wu, T. Yang, B. Yu, G. P. Zeller, J. Zennamo, C. Zhang, M. Zuckerbrot

This paper describes the design and construction of the MicroBooNE liquid argon time projection chamber and associated systems. MicroBooNE is the first phase of the Short Baseline Neutrino program, located at Fermilab, and will utilize the capabilities of liquid argon detectors to examine a rich assortment of physics topics. In this document details of design specifications, assembly procedures, and acceptance tests are reported. Read More

2016Nov
Authors: MicroBooNE collaboration, R. Acciarri, C. Adams, R. An, J. Asaadi, M. Auger, L. Bagby, B. Baller, G. Barr, M. Bass, F. Bay, M. Bishai, A. Blake, T. Bolton, L. Bugel, L. Camilleri, D. Caratelli, B. Carls, R. Castillo Fernandez, F. Cavanna, H. Chen, E. Church, D. Cianci, G. H. Collin, J. M. Conrad, M. Convery, J. I. Crespo-Anadón, M. Del Tutto, D. Devitt, S. Dytman, B. Eberly, A. Ereditato, L. Escudero Sanchez, J. Esquivel, B. T. Fleming, W. Foreman, A. P. Furmanski, G. T. Garvey, V. Genty, D. Goeldi, S. Gollapinni, N. Graf, E. Gramellini, H. Greenlee, R. Grosso, R. Guenette, A. Hackenburg, P. Hamilton, O. Hen, J. Hewes, C. Hill, J. Ho, G. Horton-Smith, C. James, J. Jan de Vries, C. -M. Jen, L. Jiang, R. A. Johnson, B. J. P. Jones, J. Joshi, H. Jostlein, D. Kaleko, G. Karagiorgi, W. Ketchum, B. Kirby, M. Kirby, T. Kobilarcik, I. Kreslo, A. Laube, Y. Li, A. Lister, B. R. Littlejohn, S. Lockwitz, D. Lorca, W. C. Louis, M. Luethi, B. Lundberg, X. Luo, A. Marchionni, C. Mariani, J. Marshall, D. A. Martinez Caicedo, V. Meddage, T. Miceli, G. B. Mills, J. Moon, M. Mooney, C. D. Moore, J. Mousseau, R. Murrells, D. Naples, P. Nienaber, J. Nowak, O. Palamara, V. Paolone, V. Papavassiliou, S. F. Pate, Z. Pavlovic, D. Porzio, G. Pulliam, X. Qian, J. L. Raaf, A. Rafique, L. Rochester, C. Rudolf von Rohr, B. Russell, D. W. Schmitz, A. Schukraft, W. Seligman, M. H. Shaevitz, J. Sinclair, E. L. Snider, M. Soderberg, S. Söldner-Rembold, S. R. Soleti, P. Spentzouris, J. Spitz, J. St. John, T. Strauss, A. M. Szelc, N. Tagg, K. Terao, M. Thomson, M. Toups, Y. -T. Tsai, S. Tufanli, T. Usher, R. G. Van de Water, B. Viren, M. Weber, J. Weston, D. A. Wickremasinghe, S. Wolbers, T. Wongjirad, K. Woodruff, T. Yang, G. P. Zeller, J. Zennamo, C. Zhang

We present several studies of convolutional neural networks applied to data coming from the MicroBooNE detector, a liquid argon time projection chamber (LArTPC). The algorithms studied include the classification of single particle images, the localization of single particle and neutrino interactions in an image, and the detection of a simulated neutrino event overlaid with cosmic ray backgrounds taken from real detector data. These studies demonstrate the potential of convolutional neural networks for particle identification or event detection on simulated neutrino interactions. Read More

This paper describes new techniques for producing lightguides for detection of scintillation light in liquid argon time projection chambers. These can be used in future neutrino experiments such as SBND and DUNE. These new results build on a dipped-coating technique that was previously reported and is reviewed here. Read More

This paper will discuss a new method of signal read-out from photon detectors in ultra-large, underground liquid argon time projection chambers. In this design, the signal from the light collection system is coupled via capacitive plates to the TPC wire-planes. This signal is then read out using the same cabling and electronics as the charge information. Read More

2015Mar
Authors: R. Acciarri1, C. Adams2, R. An3, C. Andreopoulos4, A. M. Ankowski5, M. Antonello6, J. Asaadi7, W. Badgett8, L. Bagby9, B. Baibussinov10, B. Baller11, G. Barr12, N. Barros13, M. Bass14, V. Bellini15, P. Benetti16, S. Bertolucci17, K. Biery18, H. Bilokon19, M. Bishai20, A. Bitadze21, A. Blake22, F. Boffelli23, T. Bolton24, M. Bonesini25, J. Bremer26, S. J. Brice27, C. Bromberg28, L. Bugel29, E. Calligarich30, L. Camilleri31, D. Caratelli32, B. Carls33, F. Cavanna34, S. Centro35, H. Chen36, C. Chi37, E. Church38, D. Cianci39, A. G. Cocco40, G. H. Collin41, J. M. Conrad42, M. Convery43, G. De Geronimo44, A. Dermenev45, R. Dharmapalan46, S. Dixon47, Z. Djurcic48, S. Dytmam49, B. Eberly50, A. Ereditato51, J. Esquivel52, J. Evans53, A. Falcone54, C. Farnese55, A. Fava56, A. Ferrari57, B. T. Fleming58, W. M. Foreman59, J. Freestone60, T. Gamble61, G. Garvey62, V. Genty63, M. Geynisman64, D. Gibin65, S. Gninenko66, D. Göldi67, S. Gollapinni68, N. Golubev69, M. Graham70, E. Gramellini71, H. Greenlee72, R. Grosso73, R. Guenette74, A. Guglielmi75, A. Hackenburg76, R. Hänni77, O. Hen78, J. Hewes79, J. Ho80, G. Horton-Smith81, J. Howell82, A. Ivashkin83, C. James84, C. M. Jen85, R. A. Johnson86, B. J. P. Jones87, J. Joshi88, H. Jostlein89, D. Kaleko90, L. N. Kalousis91, G. Karagiorgi92, W. Ketchum93, B. Kirby94, M. Kirby95, M. Kirsanov96, J. Kisiel97, J. Klein98, J. Klinger99, T. Kobilarcik100, U. Kose101, I. Kreslo102, V. A. Kudryavtsev103, Y. Li104, B. Littlejohn105, D. Lissauer106, P. Livesly107, S. Lockwitz108, W. C. Louis109, M. Lüthi110, B. Lundberg111, F. Mammoliti112, G. Mannocchi113, A. Marchionni114, C. Mariani115, J. Marshall116, K. Mavrokoridis117, N. McCauley118, N. McConkey119, K. McDonald120, V. Meddage121, A. Menegolli122, G. Meng123, I. Mercer124, T. Miao125, T. Miceli126, G. B. Mills127, D. Mladenov128, C. Montanari129, D. Montanari130, J. Moon131, M. Mooney132, C. Moore133, Z. Moss134, M. H. Moulai135, S. Mufson136, R. Murrells137, D. Naples138, M. Nessi139, M. Nicoletto140, P. Nienaber141, B. Norris142, F. Noto143, J. Nowak144, S. Pal145, O. Palamara146, V. Paolone147, V. Papavassiliou148, S. Pate149, J. Pater150, Z. Pavlovic151, J. Perkin152, P. Picchi153, F. Pietropaolo154, P. Płoński155, S. Pordes156, R. Potenza157, G. Pulliam158, X. Qian159, L. Qiuguang160, J. L. Raaf161, V. Radeka162, R. Rameika163, A. Rappoldi164, G. L. Raselli165, P. N. Ratoff166, B. Rebel167, M. Richardson168, L. Rochester169, M. Rossella170, C. Rubbia171, C. Rudolf von Rohr172, B. Russell173, P. Sala174, A. Scaramelli175, D. W. Schmitz176, A. Schukraft177, W. Seligman178, M. H. Shaevitz179, B. Sippach180, E. Snider181, J. Sobczyk182, M. Soderberg183, S. Söldner-Rembold184, M. Spanu185, J. Spitz186, N. Spooner187, D. Stefan188, J. St. John189, T. Strauss190, R. Sulej191, C. M. Sutera192, A. M. Szelc193, N. Tagg194, C. E. Taylor195, K. Terao196, M. Thiesse197, L. Thompson198, M. Thomson199, C. Thorn200, M. Torti201, F. Tortorici202, M. Toups203, C. Touramanis204, Y. Tsai205, T. Usher206, R. Van de Water207, F. Varanini208, S. Ventura209, C. Vignoli210, T. Wachala211, M. Weber212, D. Whittington213, P. Wilson214, S. Wolbers215, T. Wongjirad216, K. Woodruff217, M. Xu218, T. Yang219, B. Yu220, A. Zani221, G. P. Zeller222, J. Zennamo223, C. Zhang224
Affiliations: 1MicroBooNE Collaboration, 2LAr1-ND Collaboration, 3MicroBooNE Collaboration, 4LAr1-ND Collaboration, 5LAr1-ND Collaboration, 6ICARUS-WA104 Collaboration, 7LAr1-ND Collaboration, 8LAr1-ND Collaboration, 9LAr1-ND Collaboration, 10ICARUS-WA104 Collaboration, 11LAr1-ND Collaboration, 12MicroBooNE Collaboration, 13LAr1-ND Collaboration, 14LAr1-ND Collaboration, 15ICARUS-WA104 Collaboration, 16ICARUS-WA104 Collaboration, 17ICARUS-WA104 Collaboration, 18ICARUS-WA104 Collaboration, 19ICARUS-WA104 Collaboration, 20LAr1-ND Collaboration, 21LAr1-ND Collaboration, 22MicroBooNE Collaboration, 23ICARUS-WA104 Collaboration, 24MicroBooNE Collaboration, 25ICARUS-WA104 Collaboration, 26ICARUS-WA104 Collaboration, 27MicroBooNE Collaboration, 28MicroBooNE Collaboration, 29LAr1-ND Collaboration, 30ICARUS-WA104 Collaboration, 31LAr1-ND Collaboration, 32MicroBooNE Collaboration, 33MicroBooNE Collaboration, 34LAr1-ND Collaboration, 35ICARUS-WA104 Collaboration, 36LAr1-ND Collaboration, 37LAr1-ND Collaboration, 38LAr1-ND Collaboration, 39LAr1-ND Collaboration, 40ICARUS-WA104 Collaboration, 41LAr1-ND Collaboration, 42LAr1-ND Collaboration, 43MicroBooNE Collaboration, 44LAr1-ND Collaboration, 45ICARUS-WA104 Collaboration, 46LAr1-ND Collaboration, 47LAr1-ND Collaboration, 48LAr1-ND Collaboration, 49MicroBooNE Collaboration, 50MicroBooNE Collaboration, 51LAr1-ND Collaboration, 52LAr1-ND Collaboration, 53LAr1-ND Collaboration, 54ICARUS-WA104 Collaboration, 55ICARUS-WA104 Collaboration, 56ICARUS-WA104 Collaboration, 57ICARUS-WA104 Collaboration, 58LAr1-ND Collaboration, 59LAr1-ND Collaboration, 60LAr1-ND Collaboration, 61LAr1-ND Collaboration, 62LAr1-ND Collaboration, 63LAr1-ND Collaboration, 64ICARUS-WA104 Collaboration, 65ICARUS-WA104 Collaboration, 66ICARUS-WA104 Collaboration, 67LAr1-ND Collaboration, 68MicroBooNE Collaboration, 69ICARUS-WA104 Collaboration, 70MicroBooNE Collaboration, 71LAr1-ND Collaboration, 72LAr1-ND Collaboration, 73MicroBooNE Collaboration, 74LAr1-ND Collaboration, 75ICARUS-WA104 Collaboration, 76LAr1-ND Collaboration, 77LAr1-ND Collaboration, 78MicroBooNE Collaboration, 79MicroBooNE Collaboration, 80LAr1-ND Collaboration, 81MicroBooNE Collaboration, 82LAr1-ND Collaboration, 83ICARUS-WA104 Collaboration, 84LAr1-ND Collaboration, 85LAr1-ND Collaboration, 86MicroBooNE Collaboration, 87LAr1-ND Collaboration, 88MicroBooNE Collaboration, 89MicroBooNE Collaboration, 90MicroBooNE Collaboration, 91LAr1-ND Collaboration, 92LAr1-ND Collaboration, 93LAr1-ND Collaboration, 94MicroBooNE Collaboration, 95MicroBooNE Collaboration, 96ICARUS-WA104 Collaboration, 97ICARUS-WA104 Collaboration, 98LAr1-ND Collaboration, 99LAr1-ND Collaboration, 100MicroBooNE Collaboration, 101ICARUS-WA104 Collaboration, 102LAr1-ND Collaboration, 103LAr1-ND Collaboration, 104MicroBooNE Collaboration, 105MicroBooNE Collaboration, 106LAr1-ND Collaboration, 107LAr1-ND Collaboration, 108MicroBooNE Collaboration, 109LAr1-ND Collaboration, 110LAr1-ND Collaboration, 111MicroBooNE Collaboration, 112ICARUS-WA104 Collaboration, 113ICARUS-WA104 Collaboration, 114MicroBooNE Collaboration, 115LAr1-ND Collaboration, 116MicroBooNE Collaboration, 117LAr1-ND Collaboration, 118LAr1-ND Collaboration, 119LAr1-ND Collaboration, 120MicroBooNE Collaboration, 121MicroBooNE Collaboration, 122ICARUS-WA104 Collaboration, 123ICARUS-WA104 Collaboration, 124LAr1-ND Collaboration, 125LAr1-ND Collaboration, 126MicroBooNE Collaboration, 127LAr1-ND Collaboration, 128ICARUS-WA104 Collaboration, 129ICARUS-WA104 Collaboration, 130LAr1-ND Collaboration, 131LAr1-ND Collaboration, 132MicroBooNE Collaboration, 133LAr1-ND Collaboration, 134LAr1-ND Collaboration, 135MicroBooNE Collaboration, 136LAr1-ND Collaboration, 137MicroBooNE Collaboration, 138MicroBooNE Collaboration, 139ICARUS-WA104 Collaboration, 140ICARUS-WA104 Collaboration, 141MicroBooNE Collaboration, 142LAr1-ND Collaboration, 143ICARUS-WA104 Collaboration, 144LAr1-ND Collaboration, 145LAr1-ND Collaboration, 146LAr1-ND Collaboration, 147MicroBooNE Collaboration, 148MicroBooNE Collaboration, 149MicroBooNE Collaboration, 150LAr1-ND Collaboration, 151LAr1-ND Collaboration, 152LAr1-ND Collaboration, 153ICARUS-WA104 Collaboration, 154ICARUS-WA104 Collaboration, 155ICARUS-WA104 Collaboration, 156MicroBooNE Collaboration, 157MicroBooNE Collaboration, 158LAr1-ND Collaboration, 159LAr1-ND Collaboration, 160LAr1-ND Collaboration, 161MicroBooNE Collaboration, 162LAr1-ND Collaboration, 163LAr1-ND Collaboration, 164ICARUS-WA104 Collaboration, 165ICARUS-WA104 Collaboration, 166LAr1-ND Collaboration, 167MicroBooNE Collaboration, 168LAr1-ND Collaboration, 169MicroBooNE Collaboration, 170ICARUS-WA104 Collaboration, 171ICARUS-WA104 Collaboration, 172LAr1-ND Collaboration, 173LAr1-ND Collaboration, 174ICARUS-WA104 Collaboration, 175ICARUS-WA104 Collaboration, 176LAr1-ND Collaboration, 177MicroBooNE Collaboration, 178MicroBooNE Collaboration, 179LAr1-ND Collaboration, 180LAr1-ND Collaboration, 181ICARUS-WA104 Collaboration, 182ICARUS-WA104 Collaboration, 183LAr1-ND Collaboration, 184LAr1-ND Collaboration, 185ICARUS-WA104 Collaboration, 186LAr1-ND Collaboration, 187LAr1-ND Collaboration, 188ICARUS-WA104 Collaboration, 189MicroBooNE Collaboration, 190LAr1-ND Collaboration, 191ICARUS-WA104 Collaboration, 192ICARUS-WA104 Collaboration, 193LAr1-ND Collaboration, 194MicroBooNE Collaboration, 195LAr1-ND Collaboration, 196LAr1-ND Collaboration, 197LAr1-ND Collaboration, 198LAr1-ND Collaboration, 199LAr1-ND Collaboration, 200LAr1-ND Collaboration, 201ICARUS-WA104 Collaboration, 202ICARUS-WA104 Collaboration, 203LAr1-ND Collaboration, 204LAr1-ND Collaboration, 205MicroBooNE Collaboration, 206MicroBooNE Collaboration, 207LAr1-ND Collaboration, 208ICARUS-WA104 Collaboration, 209ICARUS-WA104 Collaboration, 210ICARUS-WA104 Collaboration, 211ICARUS-WA104 Collaboration, 212LAr1-ND Collaboration, 213LAr1-ND Collaboration, 214MicroBooNE Collaboration, 215MicroBooNE Collaboration, 216LAr1-ND Collaboration, 217MicroBooNE Collaboration, 218MicroBooNE Collaboration, 219MicroBooNE Collaboration, 220LAr1-ND Collaboration, 221ICARUS-WA104 Collaboration, 222LAr1-ND Collaboration, 223LAr1-ND Collaboration, 224MicroBooNE Collaboration

A Short-Baseline Neutrino (SBN) physics program of three LAr-TPC detectors located along the Booster Neutrino Beam (BNB) at Fermilab is presented. This new SBN Program will deliver a rich and compelling physics opportunity, including the ability to resolve a class of experimental anomalies in neutrino physics and to perform the most sensitive search to date for sterile neutrinos at the eV mass-scale through both appearance and disappearance oscillation channels. Using data sets of 6. Read More

Scintillation light produced in liquid argon (LAr) must be shifted from 128 nm to visible wavelengths in light detection systems used for liquid argon time-projection chambers (LArTPCs). To date, LArTPC light collection systems have employed tetraphenyl butadiene (TPB) coatings on photomultiplier tubes (PMTs) or plates placed in front of the PMTs. Recently, a new approach using TPB-coated light guides was proposed. Read More

2014Jul
Affiliations: 1MiniBooNE Collaboration, 2MiniBooNE Collaboration, 3MiniBooNE Collaboration, 4MiniBooNE Collaboration, 5MiniBooNE Collaboration, 6MiniBooNE Collaboration, 7MiniBooNE Collaboration, 8MiniBooNE Collaboration, 9MiniBooNE Collaboration, 10MiniBooNE Collaboration, 11MiniBooNE Collaboration, 12MiniBooNE Collaboration, 13MiniBooNE Collaboration, 14MiniBooNE Collaboration, 15MiniBooNE Collaboration, 16MiniBooNE Collaboration, 17MiniBooNE Collaboration, 18MiniBooNE Collaboration, 19MiniBooNE Collaboration, 20MiniBooNE Collaboration, 21MiniBooNE Collaboration, 22MiniBooNE Collaboration, 23MiniBooNE Collaboration, 24MiniBooNE Collaboration, 25MiniBooNE Collaboration, 26MiniBooNE Collaboration, 27MiniBooNE Collaboration, 28MiniBooNE Collaboration, 29MiniBooNE Collaboration, 30MiniBooNE Collaboration, 31MiniBooNE Collaboration, 32MiniBooNE Collaboration, 33MiniBooNE Collaboration, 34MiniBooNE Collaboration, 35MiniBooNE Collaboration, 36MiniBooNE Collaboration, 37MiniBooNE Collaboration, 38MiniBooNE Collaboration, 39MiniBooNE Collaboration, 40MiniBooNE Collaboration, 41MiniBooNE Collaboration, 42MiniBooNE Collaboration, 43MiniBooNE Collaboration, 44MiniBooNE Collaboration

This paper explores the use of $L/E$ oscillation probability distributions to compare experimental measurements and to evaluate oscillation models. In this case, $L$ is the distance of neutrino travel and $E$ is a measure of the interacting neutrino's energy. While comparisons using allowed and excluded regions for oscillation model parameters are likely the only rigorous method for these comparisons, the $L/E$ distributions are shown to give qualitative information on the agreement of an experiment's data with a simple two-neutrino oscillation model. Read More

We report the measurement of the flux-averaged antineutrino neutral current elastic scattering cross section ($d\sigma_{\bar \nu N \rightarrow \bar \nu N}/dQ^{2}$) on CH$_{2}$ by the MiniBooNE experiment using the largest sample of antineutrino neutral current elastic candidate events ever collected. The ratio of the antineutrino to neutrino neutral current elastic scattering cross sections and a ratio of antineutrino neutral current elastic to antineutrino charged current quasi elastic cross section is also presented. Read More

The MicroBooNE detector, to be located on axis in the Booster Neutrino Beamline (BNB) at the Fermi National Accelerator Laboratory (Fermilab), consists of two main components: a large liquid argon time projection chamber (LArTPC), and a light collection system. Thirty 8-inch diameter Hamamatsu R5912-02mod cryogenic photomultiplier tubes (PMTs) will detect the scintillation light generated in the liquid argon (LAr). This article first describes the MicroBooNE PMT performance test procedures, including how the light collection system functions in the detector, and the design of the PMT base. Read More

The largest sample ever recorded of $\numub$ charged-current quasi-elastic (CCQE, $\numub + p \to \mup + n$) candidate events is used to produce the minimally model-dependent, flux-integrated double-differential cross section $\frac{d^{2}\sigma}{dT_\mu d\uz}$ for $\numub$ incident on mineral oil. This measurement exploits the unprecedented statistics of the MiniBooNE anti-neutrino mode sample and provides the most complete information of this process to date. Also given to facilitate historical comparisons are the flux-unfolded total cross section $\sigma(E_\nu)$ and single-differential cross section $\frac{d\sigma}{d\qsq}$ on both mineral oil and on carbon by subtracting the $\numub$ CCQE events on hydrogen. Read More

Scintillation light from liquid argon is produced at 128 nm and thus must be shifted to visible wavelengths in light detection systems used for Liquid Argon Time Projection Chambers (LArTPCs). To date, designs have employed tetraphenyl butadiene (TPB) coatings on photomultiplier tubes (PMTs) or plates placed in front of the PMTs. Recently, a new approach using TPB-coated light guides was proposed. Read More

We propose adding 300 mg/l PPO to the existing MiniBooNE detector mineral oil to increase the scintillation response. This will allow the detection of associated neutrons and increase sensitivity to final-state nucleons in neutrino interactions. This increased capability will enable an independent test of whether the current excess seen in the MiniBooNE oscillation search is signal or background. Read More

The MiniBooNE and SciBooNE collaborations report the results of a joint search for short baseline disappearance of \bar{{\nu}_{\mu}} at Fermilab's Booster Neutrino Beamline. The MiniBooNE Cherenkov detector and the SciBooNE tracking detector observe antineutrinos from the same beam, therefore the combined analysis of their datasets serves to partially constrain some of the flux and cross section uncertainties. Uncertainties in the {\nu}_{\mu} background were constrained by neutrino flux and cross section measurements performed in both detectors. Read More

The scintillation detection systems of liquid argon time projection chambers (LArTPCs) require wavelength shifters to detect the 128 nm scintillation light produced in liquid argon. Tetraphenyl butadiene (TPB) is a fluorescent material that can shift this light to a wavelength of 425 nm, lending itself well to use in these detectors. We can coat the glass of photomultiplier tubes (PMTs) with TPB or place TPB-coated plates in front of the PMTs. Read More

The sidereal time dependence of MiniBooNE electron neutrino and anti-electron neutrino appearance data are analyzed to search for evidence of Lorentz and CPT violation. An unbinned Kolmogorov-Smirnov test shows both the electron neutrino and anti-electron neutrino appearance data are compatible with the null sidereal variation hypothesis to more than 5%. Using an unbinned likelihood fit with a Lorentz-violating oscillation model derived from the Standard Model Extension (SME) to describe any excess events over background, we find that the electron neutrino appearance data prefer a sidereal time-independent solution, and the anti-electron neutrino appearance data slightly prefer a sidereal time-dependent solution. Read More

2011Jun
Authors: MiniBooNE, SciBooNE Collaborations, :, K. B. M. Mahn, Y. Nakajima, A. A. Aguilar-Arevalo, J. L. Alcaraz-Aunion, C. E. Anderson, A. O. Bazarko, S. J. Brice, B. C. Brown, L. Bugel, J. Cao, J. Catala-Perez, G. Cheng, L. Coney, J. M. Conrad, D. C. Cox, A. Curioni, R. Dharmapalan, Z. Djurcic, U. Dore, D. A. Finley, B. T. Fleming, R. Ford, A. J. Franke, F. G. Garcia, G. T. Garvey, C. Giganti, J. J. Gomez-Cadenas, J. Grange, C. Green, J. A. Green, P. Guzowski, A. Hanson, T. L. Hart, E. Hawker, Y. Hayato, K. Hiraide, W. Huelsnitz, R. Imlay, R. A. Johnson, B. J. P. Jones, G. Jover-Manas, G. Karagiorgi, P. Kasper, T. Katori, Y. K. Kobayashi, T. Kobilarcik, I. Kourbanis, S. Koutsoliotas, H. Kubo, Y. Kurimoto, E. M. Laird, S. K. Linden, J. M. Link, Y. Liu, Y. Liu, W. C. Louis, P. F. Loverre, L. Ludovici, C. Mariani, W. Marsh, S. Masuike, K. Matsuoka, C. Mauger, V. T. McGary, G. McGregor, W. Metcalf, P. D. Meyers, F. Mills, G. B. Mills, G. Mitsuka, Y. Miyachi, S. Mizugashira, J. Monroe, C. D. Moore, J. Mousseau, T. Nakaya, R. Napora, R. H. Nelson, P. Nienaber, J. A. Nowak, D. Orme, B. Osmanov, M. Otani, S. Ouedraogo, R. B. Patterson, Z. Pavlovic, D. Perevalov, C. C. Polly, E. Prebys, J. L. Raaf, H. Ray, B. P. Roe, A. D. Russell, F. Sanchez, V. Sandberg, R. Schirato, D. Schmitz, M. H. Shaevitz, T. -A. Shibata, F. C. Shoemaker, D. Smith, M. Soderberg, M. Sorel, P. Spentzouris, J. Spitz, I. Stancu, R. J. Stefanski, M. Sung, H. Takei, H. A. Tanaka, H. -K. Tanaka, M. Tanaka, R. Tayloe, I. J. Taylor, R. J. Tesarek, M. Tzanov, Y. Uchida, R. Van de Water, J. J. Walding, M. O. Wascko, D. H. White, H. B. White, M. J. Wilking, M. Yokoyama, H. J. Yang, G. P. Zeller, E. D. Zimmerman

The SciBooNE and MiniBooNE collaborations report the results of a \nu_\mu disappearance search in the \Delta m^2 region of 0.5-40 eV^2. The neutrino rate as measured by the SciBooNE tracking detectors is used to constrain the rate at the MiniBooNE Cherenkov detector in the first joint analysis of data from both collaborations. Read More

The SciBooNE Collaboration reports K+ production cross section and rate measurements using high energy daughter muon neutrino scattering data off the SciBar polystyrene (C8H8) target in the SciBooNE detector. The K+ mesons are produced by 8 GeV protons striking a beryllium target in Fermilab Booster Neutrino Beam line (BNB). Using observed neutrino and antineutrino events in SciBooNE, we measure d2{\sigma}/dpd{\Omega} = (5. Read More

Two independent methods are employed to measure the neutrino flux of the anti-neutrino-mode beam observed by the MiniBooNE detector. The first method compares data to simulated event rates in a high purity $\numu$ induced charged-current single $\pip$ (CC1$\pip$) sample while the second exploits the difference between the angular distributions of muons created in $\numu$ and $\numub$ charged-current quasi-elastic (CCQE) interactions. The results from both analyses indicate the prediction of the neutrino flux component of the pre-dominately anti-neutrino beam is over-estimated - the CC1$\pip$ analysis indicates the predicted $\numu$ flux should be scaled by $0. Read More

We report demonstration of light detection in liquid argon using an acrylic lightguide detector system. This opens the opportunity for development of an inexpensive, large-area light collection system for large liquid argon time projection chambers. The guides are constructed of acrylic, with TPB embedded in a surface coating with a matching index of refraction. Read More

Using a high-statistics, high-purity sample of $\nu_\mu$-induced charged current, charged pion events in mineral oil (CH$_2$), MiniBooNE reports a collection of interaction cross sections for this process. This includes measurements of the CC$\pi^+$ cross section as a function of neutrino energy, as well as flux-averaged single- and double-differential cross sections of the energy and direction of both the final-state muon and pion. In addition, each of the single-differential cross sections are extracted as a function of neutrino energy to decouple the shape of the MiniBooNE energy spectrum from the results. Read More

Using a custom 3 \v{C}erenkov-ring fitter, we report cross sections for $\nu_\mu$-induced charged-current single $\pi^0$ production on mineral oil (\chtwo) from a sample of 5810 candidate events with 57% signal purity over an energy range of $0.5-2.0$GeV. Read More

The detector for the MiniBooNE experiment at the Fermi National Accelerator Laboratory employs 1520 8 inch Hamamatsu models R1408 and R5912 photomultiplier tubes with custom-designed bases. Tests were performed to determine the dark rate, charge and timing resolutions, double-pulsing rate, and desired operating voltage for each tube, so that the tubes could be sorted for optimal placement in the detector. Seven phototubes were tested to find the angular dependence of their response. Read More

A high-statistics sample of charged-current muon neutrino scattering events collected with the MiniBooNE experiment is analyzed to extract the first measurement of the double differential cross section ($\frac{d^2\sigma}{dT_\mu d\cos\theta_\mu}$) for charged-current quasielastic (CCQE) scattering on carbon. This result features minimal model dependence and provides the most complete information on this process to date. With the assumption of CCQE scattering, the absolute cross section as a function of neutrino energy ($\sigma[E_\nu]$) and the single differential cross section ($\frac{d\sigma}{dQ^2}$) are extracted to facilitate comparison with previous measurements. Read More

Tetraphenyl-butadiene (TPB) is a widely used fluorescent wavelength-shifter. A common application is in liquid-argon-based particle detectors, where scintillation light is produced in the UV at 128 nm. In liquid argon experiments, TPB is often employed to shift the scintillation light to the visible range in order to allow detection via standard photomultiplier tubes. Read More

MiniBooNE reports the first absolute cross sections for neutral current single \pi^0 production on CH_2 induced by neutrino and antineutrino interactions measured from the largest sets of NC \pi^0 events collected to date. The principal result consists of differential cross sections measured as functions of \pi^0 momentum and \pi^0 angle averaged over the neutrino flux at MiniBooNE. We find total cross sections of (4. Read More

We extend the physics case for a new high-energy, ultra-high statistics neutrino scattering experiment, NuSOnG (Neutrino Scattering On Glass) to address a variety of issues including precision QCD measurements, extraction of structure functions, and the derived Parton Distribution Functions (PDFs). This experiment uses a Tevatron-based neutrino beam to obtain a sample of Deep Inelastic Scattering (DIS) events which is over two orders of magnitude larger than past samples. We outline an innovative method for fitting the structure functions using a parameterized energy shift which yields reduced systematic uncertainties. Read More

We report the first observation of off-axis neutrino interactions in the MiniBooNE detector from the NuMI beamline at Fermilab. The MiniBooNE detector is located 745 m from the NuMI production target, at 110 mrad angle ($6.3^{\circ}$) with respect to the NuMI beam axis. Read More

The MiniBooNE experiment at Fermilab has amassed the largest sample to date of $\pi^0$s produced in neutral current (NC) neutrino-nucleus interactions at low energy. This paper reports a measurement of the momentum distribution of $\pi^0$s produced in mineral oil (CH$_2$) and the first observation of coherent $\pi^0$ production below 2 GeV. In the forward direction, the yield of events observed above the expectation for resonant production is attributed primarily to coherent production off carbon, but may also include a small contribution from diffractive production on hydrogen. Read More

This article presents the physics case for a new high-energy, ultra-high statistics neutrino scattering experiment, NuSOnG (Neutrino Scattering on Glass). This experiment uses a Tevatron-based neutrino beam to obtain over an order of magnitude higher statistics than presently available for the purely weak processes $\nu_{\mu}+e^- \to \nu_{\mu}+ e^-$ and $\nu_{\mu}+ e^- \to \nu_e + \mu^-$. A sample of Deep Inelastic Scattering events which is over two orders of magnitude larger than past samples will also be obtained. Read More

The NuTeV experiment at Fermilab has obtained a unique high statistics sample of neutrino and anti-neutrino interactions using its high-energy sign-selected beam. We present a measurement of the differential cross section for charged-current neutrino and anti-neutrino scattering from iron. Structure functions, F_2(x,Q^2) and xF_3(x,Q^2), are determined by fitting the inelasticity, y, dependence of the cross sections. Read More

Understanding the quark and gluon substructure of the nucleon has been a prime goal of both nuclear and particle physics for more than thirty years and has led to much of the progress in strong interaction physics. Still the flavor dependence of the nucleon's spin is a significant fundamental question that is not understood. Experiments measuring the spin content of the nucleon have reported conflicting results on the amount of nucleon spin carried by strange quarks. Read More

The NuTeV collaboration has performed precision measurements of the ratio of neutral current to charged current cross-sections in high rate, high energy neutrino and anti-neutrino beams on a dense, primarily steel, target. The separate neutrino and anti-neutrino beams, high statistics, and improved control of other experimental systematics, allow the determination of electroweak parameters with significantly greater precision than past neutrino-nucleon scattering experiments. Our null hypothesis test of the standard model prediction measures sin2thetaW=0. Read More

The NuTeV experiment has performed precision measurements of the ratio of neutral-current to charged-current cross-sections in high rate, high energy neutrino and anti-neutrino beams on a dense, primarily steel, target. The separate neutrino and anti-neutrino beams, high statistics, and improved control of other experimental systematics, allow the determination of electroweak parameters with significantly greater precision than past neutrino-nucleon scattering experiments. Our null hypothesis test of the standard model prediction measures sin2thetaW=0. Read More

We report on the extraction of the structure functions F_2 and Delta xF_3 = xF_3nu-xF_3nub from CCFR neutrino-Fe and antineutrino-Fe differential cross sections. The extraction is performed in a physics model independent (PMI) way. This first measurement for Delta xF_3, which is useful in testing models of heavy charm production, is higher than current theoretical predictions. Read More

A search for long-lived neutral particles (N^0) which decay into at least one muon has been performed using an instrumented decay channel at the E815 (NuTeV) experiment at Fermilab. The decay channel was composed of helium bags interspersed with drift chambers, and was used in conjunction with the NuTeV neutrino detector to search for N^0 decays. The data were examined for particles decaying into the muonic final states mu mu, mu e, and mu pi. Read More

We report on the extraction of the structure functions F_2 and Delta xF_3 = xF_3nu-xF_3nubar from CCFR neutrino-Fe and antineutrino-Fe differential cross sections. The extraction is performed in a physics model independent (PMI) way. This first measurement for Delta xF_3, which is useful in testing models of heavy charm production, is higher than current theoretical predictions. Read More

We report on the extraction of the structure functions F2 and Delta xF3 = xF3nu-xF3nub from CCFR neutrino-Fe and antineutrino-Fe differential cross sections. The extraction is performed in a physics model independent (PMI) way. This first measurement for Delta xF3 which is useful in testing models of heavy charm production, is higher than current theoretical predictions. Read More

NuTeV is a neutrino-nucleon deep inelastic scattering experiment at Fermilab. The NuTeV detector is a traditional heavy target neutrino detector which consists of an iron/liquid scintillator sampling calorimeter followed by a muon spectrometer. The calorimeter response to hadrons, muons and electrons has been measured in an in situ calibration beam over the energy range from 4. Read More