Kyunghyun Cho

Kyunghyun Cho
Are you Kyunghyun Cho?

Claim your profile, edit publications, add additional information:

Contact Details

Name
Kyunghyun Cho
Affiliation
Location

Pubs By Year

Pub Categories

 
Computer Science - Computation and Language (29)
 
Computer Science - Learning (26)
 
Statistics - Machine Learning (14)
 
Computer Science - Computer Vision and Pattern Recognition (11)
 
Computer Science - Neural and Evolutionary Computing (8)
 
Computer Science - Artificial Intelligence (5)
 
Computer Science - Multimedia (3)
 
Computer Science - Sound (2)
 
Computer Science - Symbolic Computation (1)
 
Computer Science - Mathematical Software (1)
 
Computer Science - Robotics (1)
 
Computer Science - Information Retrieval (1)
 
High Energy Physics - Phenomenology (1)
 
Physics - Data Analysis; Statistics and Probability (1)

Publications Authored By Kyunghyun Cho

Osteoporosis is a public health problem characterized by increased fracture risk secondary to low bone mass and microarchitectural deterioration of bone tissue. Almost all fractures of the hip require hospitalization and major surgery. Early diagnosis of osteoporosis plays an important role in preventing osteoporotic fracture. Read More

We propose a neural machine translation architecture that models the surrounding text in addition to the source sentence. These models lead to better performance, both in terms of general translation quality and pronoun prediction, when trained on small corpora, although this improvement largely disappears when trained with a larger corpus. We also discover that attention-based neural machine translation is well suited for pronoun prediction and compares favorably with other approaches that were specifically designed for this task. Read More

We publicly release a new large-scale dataset, called SearchQA, for machine comprehension, or question-answering. Unlike recently released datasets, such as DeepMind CNN/DailyMail and SQuAD, the proposed SearchQA was constructed to reflect a full pipeline of general question-answering. That is, we start not from an existing article and generate a question-answer pair, but start from an existing question-answer pair, crawled from J! Archive, and augment it with text snippets retrieved by Google. Read More

Search engines play an important role in our everyday lives by assisting us in finding the information we need. When we input a complex query, however, results are often far from satisfactory. In this work, we introduce a query reformulation system based on a neural network that rewrites a query to maximize the number of relevant documents returned. Read More

In this paper, we present a transfer learning approach for music classification and regression tasks. We propose to use a pretrained convnet feature, a concatenated feature vector using activations of feature maps of multiple layers in a trained convolutional network. We show that how this convnet feature can serve as a general-purpose music representation. Read More

Recent advances in deep learning for object recognition in natural images has prompted a surge of interest in applying a similar set of techniques to medical images. Most of the initial attempts largely focused on replacing the input to such a deep convolutional neural network from a natural image to a medical image. This, however, does not take into consideration the fundamental differences between these two types of data. Read More

We present Nematus, a toolkit for Neural Machine Translation. The toolkit prioritizes high translation accuracy, usability, and extensibility. Nematus has been used to build top-performing submissions to shared translation tasks at WMT and IWSLT, and has been used to train systems for production environments. Read More

We introduce a novel approach to training generative adversarial networks, where we train a generator to match a target distribution that converges to the data distribution at the limit of a perfect discriminator. This objective can be interpreted as training a generator to produce samples that lie on the decision boundary of a current discriminator in training at each update, and we call a GAN trained using this algorithm a boundary-seeking GAN (BS-GAN). This approach can be used to train a generator with discrete output when the generator outputs a parametric conditional distribution. Read More

There has been relatively little attention to incorporating linguistic prior to neural machine translation. Much of the previous work was further constrained to considering linguistic prior on the source side. In this paper, we propose a hybrid model, called NMT+RNNG, that learns to parse and translate by combining the recurrent neural network grammar into the attention-based neural machine translation. Read More

Recent research in neural machine translation has largely focused on two aspects; neural network architectures and end-to-end learning algorithms. The problem of decoding, however, has received relatively little attention from the research community. In this paper, we solely focus on the problem of decoding given a trained neural machine translation model. Read More

Recent progress in applying machine learning for jet physics has been built upon an analogy between calorimeters and images. In this work, we present a novel class of recursive neural networks built instead upon an analogy between QCD and natural languages. In the analogy, four-momenta are like words and the clustering history of sequential recombination jet algorithms is like the parsing of a sentence. Read More

Latent representation learned from multi-layered neural networks via hierarchical feature abstraction enables recent success of deep learning. Under the deep learning framework, generalization performance highly depends on the learned latent representation which is obtained from an appropriate training scenario with a task-specific objective on a designed network model. In this work, we propose a novel latent space modeling method to learn better latent representation. Read More

Most existing machine translation systems operate at the level of words, relying on explicit segmentation to extract tokens. We introduce a neural machine translation (NMT) model that maps a source character sequence to a target character sequence without any segmentation. We employ a character-level convolutional network with max-pooling at the encoder to reduce the length of source representation, allowing the model to be trained at a speed comparable to subword-level models while capturing local regularities. Read More

We introduce a convolutional recurrent neural network (CRNN) for music tagging. CRNNs take advantage of convolutional neural networks (CNNs) for local feature extraction and recurrent neural networks for temporal summarisation of the extracted features. We compare CRNN with three CNN structures that have been used for music tagging while controlling the number of parameters with respect to their performance and training time per sample. Read More

We first observe a potential weakness of continuous vector representations of symbols in neural machine translation. That is, the continuous vector representation, or a word embedding vector, of a symbol encodes multiple dimensions of similarity, equivalent to encoding more than one meaning of the word. This has the consequence that the encoder and decoder recurrent networks in neural machine translation need to spend substantial amount of their capacity in disambiguating source and target words based on the context which is defined by a source sentence. Read More

We extend neural Turing machine (NTM) model into a dynamic neural Turing machine (D-NTM) by introducing a trainable memory addressing scheme. This addressing scheme maintains for each memory cell two separate vectors, content and address vectors. This allows the D-NTM to learn a wide variety of location-based addressing strategies including both linear and nonlinear ones. Read More

Interlingua based Machine Translation (MT) aims to encode multiple languages into a common linguistic representation and then decode sentences in multiple target languages from this representation. In this work we explore this idea in the context of neural encoder decoder architectures, albeit on a smaller scale and without MT as the end goal. Specifically, we consider the case of three languages or modalities X, Z and Y wherein we are interested in generating sequences in Y starting from information available in X. Read More

In this paper, we propose a novel finetuning algorithm for the recently introduced multi-way, mulitlingual neural machine translate that enables zero-resource machine translation. When used together with novel many-to-one translation strategies, we empirically show that this finetuning algorithm allows the multi-way, multilingual model to translate a zero-resource language pair (1) as well as a single-pair neural translation model trained with up to 1M direct parallel sentences of the same language pair and (2) better than pivot-based translation strategy, while keeping only one additional copy of attention-related parameters. Read More

We introduce a recurrent neural network language model (RNN-LM) with long short-term memory (LSTM) units that utilizes both character-level and word-level inputs. Our model has a gate that adaptively finds the optimal mixture of the character-level and word-level inputs. The gate creates the final vector representation of a word by combining two distinct representations of the word. Read More

Neural machine translation has become a major alternative to widely used phrase-based statistical machine translation. We notice however that much of research on neural machine translation has focused on European languages despite its language agnostic nature. In this paper, we apply neural machine translation to the task of Arabic translation (Ar<->En) and compare it against a standard phrase-based translation system. Read More

Multivariate time series data in practical applications, such as health care, geoscience, and biology, are characterized by a variety of missing values. In time series prediction and other related tasks, it has been noted that missing values and their missing patterns are often correlated with the target labels, a.k. Read More

We investigate the potential of attention-based neural machine translation in simultaneous translation. We introduce a novel decoding algorithm, called simultaneous greedy decoding, that allows an existing neural machine translation model to begin translating before a full source sentence is received. This approach is unique from previous works on simultaneous translation in that segmentation and translation are done jointly to maximize the translation quality and that translating each segment is strongly conditioned on all the previous segments. Read More

One way to approach end-to-end autonomous driving is to learn a policy function that maps from a sensory input, such as an image frame from a front-facing camera, to a driving action, by imitating an expert driver, or a reference policy. This can be done by supervised learning, where a policy function is tuned to minimize the difference between the predicted and ground-truth actions. A policy function trained in this way however is known to suffer from unexpected behaviours due to the mismatch between the states reachable by the reference policy and trained policy functions. Read More

Recent advances in conditional recurrent language modelling have mainly focused on network architectures (e.g., attention mechanism), learning algorithms (e. Read More

2016May
Authors: The Theano Development Team, Rami Al-Rfou, Guillaume Alain, Amjad Almahairi, Christof Angermueller, Dzmitry Bahdanau, Nicolas Ballas, Frédéric Bastien, Justin Bayer, Anatoly Belikov, Alexander Belopolsky, Yoshua Bengio, Arnaud Bergeron, James Bergstra, Valentin Bisson, Josh Bleecher Snyder, Nicolas Bouchard, Nicolas Boulanger-Lewandowski, Xavier Bouthillier, Alexandre de Brébisson, Olivier Breuleux, Pierre-Luc Carrier, Kyunghyun Cho, Jan Chorowski, Paul Christiano, Tim Cooijmans, Marc-Alexandre Côté, Myriam Côté, Aaron Courville, Yann N. Dauphin, Olivier Delalleau, Julien Demouth, Guillaume Desjardins, Sander Dieleman, Laurent Dinh, Mélanie Ducoffe, Vincent Dumoulin, Samira Ebrahimi Kahou, Dumitru Erhan, Ziye Fan, Orhan Firat, Mathieu Germain, Xavier Glorot, Ian Goodfellow, Matt Graham, Caglar Gulcehre, Philippe Hamel, Iban Harlouchet, Jean-Philippe Heng, Balázs Hidasi, Sina Honari, Arjun Jain, Sébastien Jean, Kai Jia, Mikhail Korobov, Vivek Kulkarni, Alex Lamb, Pascal Lamblin, Eric Larsen, César Laurent, Sean Lee, Simon Lefrancois, Simon Lemieux, Nicholas Léonard, Zhouhan Lin, Jesse A. Livezey, Cory Lorenz, Jeremiah Lowin, Qianli Ma, Pierre-Antoine Manzagol, Olivier Mastropietro, Robert T. McGibbon, Roland Memisevic, Bart van Merriënboer, Vincent Michalski, Mehdi Mirza, Alberto Orlandi, Christopher Pal, Razvan Pascanu, Mohammad Pezeshki, Colin Raffel, Daniel Renshaw, Matthew Rocklin, Adriana Romero, Markus Roth, Peter Sadowski, John Salvatier, François Savard, Jan Schlüter, John Schulman, Gabriel Schwartz, Iulian Vlad Serban, Dmitriy Serdyuk, Samira Shabanian, Étienne Simon, Sigurd Spieckermann, S. Ramana Subramanyam, Jakub Sygnowski, Jérémie Tanguay, Gijs van Tulder, Joseph Turian, Sebastian Urban, Pascal Vincent, Francesco Visin, Harm de Vries, David Warde-Farley, Dustin J. Webb, Matthew Willson, Kelvin Xu, Lijun Xue, Li Yao, Saizheng Zhang, Ying Zhang

Theano is a Python library that allows to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. Since its introduction, it has been one of the most used CPU and GPU mathematical compilers - especially in the machine learning community - and has shown steady performance improvements. Theano is being actively and continuously developed since 2008, multiple frameworks have been built on top of it and it has been used to produce many state-of-the-art machine learning models. Read More

The existing machine translation systems, whether phrase-based or neural, have relied almost exclusively on word-level modelling with explicit segmentation. In this paper, we ask a fundamental question: can neural machine translation generate a character sequence without any explicit segmentation? To answer this question, we evaluate an attention-based encoder-decoder with a subword-level encoder and a character-level decoder on four language pairs--En-Cs, En-De, En-Ru and En-Fi-- using the parallel corpora from WMT'15. Our experiments show that the models with a character-level decoder outperform the ones with a subword-level decoder on all of the four language pairs. Read More

Unsupervised methods for learning distributed representations of words are ubiquitous in today's NLP research, but far less is known about the best ways to learn distributed phrase or sentence representations from unlabelled data. This paper is a systematic comparison of models that learn such representations. We find that the optimal approach depends critically on the intended application. Read More

We propose a goal-driven web navigation as a benchmark task for evaluating an agent with abilities to understand natural language and plan on partially observed environments. In this challenging task, an agent navigates through a website, which is represented as a graph consisting of web pages as nodes and hyperlinks as directed edges, to find a web page in which a query appears. The agent is required to have sophisticated high-level reasoning based on natural languages and efficient sequential decision-making capability to succeed. Read More

Document classification tasks were primarily tackled at word level. Recent research that works with character-level inputs shows several benefits over word-level approaches such as natural incorporation of morphemes and better handling of rare words. We propose a neural network architecture that utilizes both convolution and recurrent layers to efficiently encode character inputs. Read More

We propose multi-way, multilingual neural machine translation. The proposed approach enables a single neural translation model to translate between multiple languages, with a number of parameters that grows only linearly with the number of languages. This is made possible by having a single attention mechanism that is shared across all language pairs. Read More

This is a lecture note for the course DS-GA 3001 at the Center for Data Science , New York University in Fall, 2015. As the name of the course suggests, this lecture note introduces readers to a neural network based approach to natural language understanding/processing. In order to make it as self-contained as possible, I spend much time on describing basics of machine learning and neural networks, only after which how they are used for natural languages is introduced. Read More

We propose a structured prediction architecture, which exploits the local generic features extracted by Convolutional Neural Networks and the capacity of Recurrent Neural Networks (RNN) to retrieve distant dependencies. The proposed architecture, called ReSeg, is based on the recently introduced ReNet model for image classification. We modify and extend it to perform the more challenging task of semantic segmentation. Read More

Variational methods that rely on a recognition network to approximate the posterior of directed graphical models offer better inference and learning than previous methods. Recent advances that exploit the capacity and flexibility in this approach have expanded what kinds of models can be trained. However, as a proposal for the posterior, the capacity of the recognition network is limited, which can constrain the representational power of the generative model and increase the variance of Monte Carlo estimates. Read More

In this paper, we propose and study a novel visual object tracking approach based on convolutional networks and recurrent networks. The proposed approach is distinct from the existing approaches to visual object tracking, such as filtering-based ones and tracking-by-detection ones, in the sense that the tracking system is explicitly trained off-line to track anonymous objects in a noisy environment. The proposed visual tracking model is end-to-end trainable, minimizing any adversarial effect from mismatches in object representation and between the true underlying dynamics and learning dynamics. Read More

Recently there has been growing interest in building active visual object recognizers, as opposed to the usual passive recognizers which classifies a given static image into a predefined set of object categories. In this paper we propose to generalize these recently proposed end-to-end active visual recognizers into a controller-recognizer framework. A model in the controller-recognizer framework consists of a controller, which interfaces with an external manipulator, and a recognizer which classifies the visual input adjusted by the manipulator. Read More

The task of associating images and videos with a natural language description has attracted a great amount of attention recently. Rapid progress has been made in terms of both developing novel algorithms and releasing new datasets. Indeed, the state-of-the-art results on some of the standard datasets have been pushed into the regime where it has become more and more difficult to make significant improvements. Read More

In this work, we propose a novel method to incorporate corpus-level discourse information into language modelling. We call this larger-context language model. We introduce a late fusion approach to a recurrent language model based on long short-term memory units (LSTM), which helps the LSTM unit keep intra-sentence dependencies and inter-sentence dependencies separate from each other. Read More

Whereas deep neural networks were first mostly used for classification tasks, they are rapidly expanding in the realm of structured output problems, where the observed target is composed of multiple random variables that have a rich joint distribution, given the input. We focus in this paper on the case where the input also has a rich structure and the input and output structures are somehow related. We describe systems that learn to attend to different places in the input, for each element of the output, for a variety of tasks: machine translation, image caption generation, video clip description and speech recognition. Read More

Recurrent sequence generators conditioned on input data through an attention mechanism have recently shown very good performance on a range of tasks in- cluding machine translation, handwriting synthesis and image caption gen- eration. We extend the attention-mechanism with features needed for speech recognition. We show that while an adaptation of the model used for machine translation in reaches a competitive 18. Read More

In this paper, we propose a deep neural network architecture for object recognition based on recurrent neural networks. The proposed network, called ReNet, replaces the ubiquitous convolution+pooling layer of the deep convolutional neural network with four recurrent neural networks that sweep horizontally and vertically in both directions across the image. We evaluate the proposed ReNet on three widely-used benchmark datasets; MNIST, CIFAR-10 and SVHN. Read More

Distributional models that learn rich semantic word representations are a success story of recent NLP research. However, developing models that learn useful representations of phrases and sentences has proved far harder. We propose using the definitions found in everyday dictionaries as a means of bridging this gap between lexical and phrasal semantics. Read More

Recent work on end-to-end neural network-based architectures for machine translation has shown promising results for En-Fr and En-De translation. Arguably, one of the major factors behind this success has been the availability of high quality parallel corpora. In this work, we investigate how to leverage abundant monolingual corpora for neural machine translation. Read More

Recent progress in using recurrent neural networks (RNNs) for image description has motivated the exploration of their application for video description. However, while images are static, working with videos requires modeling their dynamic temporal structure and then properly integrating that information into a natural language description. In this context, we propose an approach that successfully takes into account both the local and global temporal structure of videos to produce descriptions. Read More

Inspired by recent work in machine translation and object detection, we introduce an attention based model that automatically learns to describe the content of images. We describe how we can train this model in a deterministic manner using standard backpropagation techniques and stochastically by maximizing a variational lower bound. We also show through visualization how the model is able to automatically learn to fix its gaze on salient objects while generating the corresponding words in the output sequence. Read More

In this work, we propose a novel recurrent neural network (RNN) architecture. The proposed RNN, gated-feedback RNN (GF-RNN), extends the existing approach of stacking multiple recurrent layers by allowing and controlling signals flowing from upper recurrent layers to lower layers using a global gating unit for each pair of layers. The recurrent signals exchanged between layers are gated adaptively based on the previous hidden states and the current input. Read More

Neural language models learn word representations, or embeddings, that capture rich linguistic and conceptual information. Here we investigate the embeddings learned by neural machine translation models, a recently-developed class of neural language model. We show that embeddings from translation models outperform those learned by monolingual models at tasks that require knowledge of both conceptual similarity and lexical-syntactic role. Read More

In this paper we compare different types of recurrent units in recurrent neural networks (RNNs). Especially, we focus on more sophisticated units that implement a gating mechanism, such as a long short-term memory (LSTM) unit and a recently proposed gated recurrent unit (GRU). We evaluate these recurrent units on the tasks of polyphonic music modeling and speech signal modeling. Read More

Neural machine translation, a recently proposed approach to machine translation based purely on neural networks, has shown promising results compared to the existing approaches such as phrase-based statistical machine translation. Despite its recent success, neural machine translation has its limitation in handling a larger vocabulary, as training complexity as well as decoding complexity increase proportionally to the number of target words. In this paper, we propose a method that allows us to use a very large target vocabulary without increasing training complexity, based on importance sampling. Read More