Kyong Hwan Jin

Kyong Hwan Jin
Are you Kyong Hwan Jin?

Claim your profile, edit publications, add additional information:

Contact Details

Kyong Hwan Jin

Pubs By Year

Pub Categories

Computer Science - Computer Vision and Pattern Recognition (3)
Mathematics - Information Theory (3)
Computer Science - Information Theory (3)
Statistics - Machine Learning (1)
Computer Science - Artificial Intelligence (1)

Publications Authored By Kyong Hwan Jin

For effective treatment of Alzheimer disease (AD), it is important to identify subjects who are most likely to exhibit rapid cognitive decline. Herein, we developed a novel framework based on a deep convolutional neural network which can predict future cognitive decline in mild cognitive impairment (MCI) patients using flurodeoxyglucose and florbetapir positron emission tomography (PET). The architecture of the network only relies on baseline PET studies of AD and normal subjects as the training dataset. Read More

Compressed sensing provided a new sampling paradigm for sparse signals. Remarkably, it has been shown that practical algorithms provide robust recovery from noisy linear measurements acquired at a near optimal sample rate. In real-world applications, a signal of interest is typically sparse not in the canonical basis but in a certain transform domain, such as the wavelet or the finite difference domain. Read More

In this paper, we propose a novel deep convolutional neural network (CNN)-based algorithm for solving ill-posed inverse problems. Regularized iterative algorithms have emerged as the standard approach to ill-posed inverse problems in the past few decades. These methods produce excellent results, but can be challenging to deploy in practice due to factors including the high computational cost of the forward and adjoint operators and the difficulty of hyper parameter selection. Read More

While the recent theory of compressed sensing provides an opportunity to overcome the Nyquist limit in recovering sparse signals, a solution approach usually takes a form of inverse problem of the unknown signal, which is crucially dependent on specific signal representation. In this paper, we propose a drastically different two-step Fourier compressive sampling framework in continuous domain that can be implemented as a measurement domain interpolation, after which a signal reconstruction can be done using classical analytic reconstruction methods. The main idea is originated from the fundamental duality between the sparsity in the primary space and the low-rankness of a structured matrix in the spectral domain, which shows that a low-rank interpolator in the spectral domain can enjoy all the benefit of sparse recovery with performance guarantees. Read More

Recently, so called annihilating filer-based low rank Hankel matrix (ALOHA) approach was proposed as a powerful image inpainting method. Based on the observation that smoothness or textures within an image patch corresponds to sparse spectral components in the frequency domain, ALOHA exploits the existence of annihilating filters and the associated rank-deficient Hankel matrices in the image domain to estimate the missing pixels. By extending this idea, here we propose a novel impulse noise removal algorithm using sparse + low rank decomposition of an annihilating filter-based Hankel matrix. Read More

Parallel MRI (pMRI) and compressed sensing MRI (CS-MRI) have been considered as two distinct reconstruction problems. Inspired by recent k-space interpolation methods, an annihilating filter based low-rank Hankel matrix approach (ALOHA) is proposed as a general framework for sparsity-driven k-space interpolation method which unifies pMRI and CS-MRI. Specifically, our framework is based on the fundamental duality between the transform domain sparsity in the primary space and the low-rankness of weighted Hankel matrix in the reciprocal space, which converts pMRI and CS-MRI to a k-space interpolation problem using structured matrix completion. Read More