Kevin Fischer

Kevin Fischer
Are you Kevin Fischer?

Claim your profile, edit publications, add additional information:

Contact Details

Name
Kevin Fischer
Affiliation
Location

Pubs By Year

Pub Categories

 
Physics - Mesoscopic Systems and Quantum Hall Effect (15)
 
Quantum Physics (13)
 
Physics - Optics (9)

Publications Authored By Kevin Fischer

Arrays of identical and individually addressable qubits lay the foundation for the creation of scalable quantum hardware such as quantum processors and repeaters. Silicon vacancy centers in diamond (SiV) offer excellent physical properties such as low inhomogeneous broadening, fast photon emission, and a large Debye-Waller factor, while the possibility for all-optical ultrafast manipulation and techniques to extend the spin coherence times make them very promising candidates for qubits. Here, we have developed arrays of nanopillars containing single SiV centers with high yield, and we demonstrate ultrafast all-optical complete coherent control of the state of a single SiV center. Read More

In this chapter, we present the state-of-the-art in the generation of nonclassical states of light using semiconductor cavity quantum electrodynamics (QED) platforms. Our focus is on the photon blockade effects that enable the generation of indistinguishable photon streams with high purity and efficiency. Starting with the leading platform of InGaAs quantum dots in optical nanocavities, we review the physics of a single quantum emitter strongly coupled to a cavity. Read More

We study n-photon generation in multi-emitter cavity systems with small inhomogeneous broadening, characteristic of color center systems. We focus on the case of N = 2 nonidentical quasi-atoms strongly coupled to a nanoresonator in the bad cavity regime. Using the quantum master equation in an extended Tavis-Cummings model, we discover a new interference effect resulting in high quality single-photon generation that is robust to emitter property variations. Read More

In the last decade, there has been remarkable progress on the practical integration of on-chip quantum photonic devices yet quantum state generators remain an outstanding challenge. Simultaneously, the quantum-dot photonic-crystal-resonator platform has demonstrated a versatility for creating nonclassical light with tunable quantum statistics, thanks to a newly discovered self-homodyning interferometric effect that preferentially selects the quantum light over the classical light when using an optimally tuned Fano resonance. In this work, we propose a general structure for the cavity quantum electrodynamical generation of quantum states from a waveguide-integrated version of the quantum-dot photonic-crystal-resonator platform, which is specifically tailored for preferential quantum state transmission. Read More

We investigate the dynamics of single- and multi-photon emission from detuned strongly coupled systems based on the quantum-dot-photonic-crystal resonator platform. Transmitting light through such systems can generate a range of non-classical states of light with tunable photon counting statistics due to the nonlinear ladder of hybridized light-matter states. By controlling the detuning between emitter and resonator, the transmission can be tuned to strongly enhance either single- or two-photon emission processes. Read More

Single-photon sources are at the heart of quantum-optical networks, with their uniquely quantum emission and phenomenon of two-photon interference allowing for the generation and transfer of nonclassical states. Although a few analytical methods have been briefly investigated for describing pulsed single-photon sources, these methods apply only to either perfectly ideal or at least extremely idealized sources. Here, we present the first complete picture of pulsed single-photon sources by elaborating how to numerically and fully characterize non-ideal single-photon sources operating in a pulsed regime. Read More

Strongly coupled quantum dot-cavity systems provide a non-linear configuration of hybridized light-matter states with promising quantum-optical applications. Here, we investigate the coherent interaction between strong laser pulses and quantum dot-cavity polaritons. Resonant excitation of polaritonic states and their interaction with phonons allow us to observe coherent Rabi oscillations and Ramsey fringes. Read More

The rapid generation of non-classical light serves as the foundation for exploring quantum optics and developing applications such as secure communication or generation of NOON-states. While strongly coupled quantum dot-photonic crystal resonator systems have great potential as non-classical light sources due to their promise of tailored output statistics, the generation of indistinguishable photons has been obscured due to the strongly dissipative nature of such systems. Here, we demonstrate that the recently discovered self-homodyne suppression technique can be used to overcome this limitation and tune the quantum statistics of transmitted light, achieving indistinguishable photon emission competitive with state-of-the-art metrics. Read More

The study of light-matter interaction at the quantum scale has been enabled by the cavity quantum electrodynamics (CQED) architecture, in which a quantum two-level system strongly couples to a single cavity mode. Originally implemented with atoms in optical cavities, CQED effects are now also observed with artificial atoms in solid-state environments. Such realizations of these systems exhibit fast dynamics, which makes them attractive candidates for devices including modulators and sources in high-throughput communications. Read More

We investigate the influence of exciton-phonon coupling on the dynamics of a strongly coupled quantum dot-photonic crystal cavity system and explore the effects of this interaction on different schemes for non-classical light generation. By performing time-resolved measurements, we map out the detuning-dependent polariton lifetime and extract the spectrum of the polariton-to-phonon coupling with unprecedented precision. Photon-blockade experiments for different pulse-length and detuning conditions (supported by quantum optical simulations) reveal that achieving high-fidelity photon blockade requires an intricate understanding of the phonons' influence on the system dynamics. Read More

Pulsed resonant fluorescence is used to probe ultrafast phonon-assisted exciton and biexciton preparation in individual self-assembled InGaAs quantum dots. By driving the system using large area ($\geq10\pi$) near resonant optical pulses, we experimentally demonstrate how phonon mediated dissipation within the manifold of dressed excitonic states can be used to prepare the neutral exciton with a fidelity $\geq 70\%$. By comparing the phonon-assisted preparation with resonant Rabi oscillations we show that the phonon-mediated process provides the higher fidelity preparation for large pulse areas and is less sensitive to pulse area variations. Read More

A fault-tolerant quantum repeater or quantum computer using solid-state spin-based quantum bits will likely require a physical implementation with many spins arranged in a grid. Self-assembled quantum dots (QDs) have been established as attractive candidates for building spin-based quantum information processing devices, but such QDs are randomly positioned, which makes them unsuitable for constructing large-scale processors. Recent efforts have shown that quantum dots embedded in nanowires can be deterministically positioned in regular arrays, can store single charges, and have excellent optical properties, but so far there have been no demonstrations of spin qubit operations using nanowire quantum dots. Read More

The on-chip generation of non-classical states of light is a key-requirement for future optical quantum hardware. In solid-state cavity quantum electrodynamics, such non-classical light can be generated from self-assembled quantum dots strongly coupled to photonic crystal cavities. Their anharmonic strong light-matter interaction results in large optical nonlinearities at the single photon level, where the admission of a single photon into the cavity may enhance (photon-tunnelling) or diminish (photon-blockade) the probability for a second photon to enter the cavity. Read More

We have grown high quality p-type {\delta}-doped InAs quantum dots and have demonstrated coherent spin pumping and repumping of a hole spin in a positively charged quantum dot by means of a single-laser driving scheme under a high magnetic field in the Voigt configuration. Modeling of our system shows excellent qualitative agreement with the experimental findings and further explores the performance of the single-laser scheme for spin pumping and re-pumping. Read More

Despite tremendous advances in the fundamentals and applications of cavity quantum electrodynamics (CQED), investigations in this field have primarily been limited to optical cavities composed of purely dielectric materials. Here, we demonstrate a hybrid metal-dielectric nanocavity design and realize it in the InAs/GaAs quantum photonics platform utilizing angled rotational metal evaporation. Key features of our nanometallic light-matter interface include: (i) order of magnitude reduction in mode volume compared to that of leading photonic crystal CQED systems; (ii) surface-emitting nanoscale cylindrical geometry and therefore good collection efficiency; and finally (iii) strong and broadband spontaneous emission rate enhancement (Purcell factor ~ 8) of single photons. Read More

We demonstrate a novel method for deterministic charging of InAs quantum dots embedded in photonic crystal nanoresonators using a unique vertical p-n-i-n junction within the photonic crystal membrane. Charging is confirmed by the observation of Zeeman splitting for magnetic fields applied in the Voigt configuration. Spectrally resolved photoluminescence measurements are complemented by polarization resolved studies that show the precise structure of the Zeeman quadruplet. Read More

We use the third- and fourth-order autocorrelation functions $g^{(3)}(\tau_1,\tau_2)$ and $g^{(4)}(\tau_1,\tau_2, \tau_3)$ to detect the non-classical character of the light transmitted through a photonic-crystal nanocavity containing a strongly-coupled quantum dot probed with a train of coherent light pulses. We contrast the value of $g^{(3)}(0, 0)$ with the conventionally used $g^{(2)}(0)$ and demonstrate that in addition to being necessary for detecting two-photon states emitted by a low-intensity source, $g^{(3)}$ provides a more clear indication of the non-classical character of a light source. We also present preliminary data that demonstrates bunching in the fourth-order autocorrelation function $g^{(4)}(\tau_1,\tau_2, \tau_3)$ as the first step toward detecting three-photon states. Read More