Kazunari Iwasaki - Nagoya

Kazunari Iwasaki
Are you Kazunari Iwasaki?

Claim your profile, edit publications, add additional information:

Contact Details

Name
Kazunari Iwasaki
Affiliation
Nagoya
City
Nagoya
Country
Japan

Pubs By Year

External Links

Pub Categories

 
Astrophysics of Galaxies (10)
 
Solar and Stellar Astrophysics (6)
 
Instrumentation and Methods for Astrophysics (3)
 
Astrophysics (2)
 
Earth and Planetary Astrophysics (2)
 
Physics - Fluid Dynamics (1)
 
Nonlinear Sciences - Pattern Formation and Solitons (1)
 
High Energy Astrophysical Phenomena (1)

Publications Authored By Kazunari Iwasaki

2017Apr
Authors: Derek Ward-Thompson, Kate Pattle, Pierre Bastien, Ray S. Furuya, Woojin Kwon, Shih-Ping Lai, Keping Qiu, David Berry, Minho Choi, Simon Coudé, James Di Francesco, Thiem Hoang, Erica Franzmann, Per Friberg, Sarah F. Graves, Jane S. Greaves, Martin Houde, Doug Johnstone, Jason M. Kirk, Patrick M. Koch, Jungmi Kwon, Chang Won Lee, Di Li, Brenda C. Matthews, Joseph C. Mottram, Harriet Parsons, Andy Pon, Ramprasad Rao, Mark Rawlings, Hiroko Shinnaga, Sarah Sadavoy, Sven van Loo, Yusuke Aso, Do-Young Byun, Eswariah Chakali, Huei-Ru Chen, Mike C. -Y. Chen, Wen Ping Chen, Tao-Chung Ching, Jungyeon Cho, Antonio Chrysostomou, Eun Jung Chung, Yasuo Doi, Emily Drabek-Maunder, Stewart P. S. Eyres, Jason Fiege, Rachel K. Friesen, Gary Fuller, Tim Gledhill, Matt J. Griffin, Qilao Gu, Tetsuo Hasegawa, Jennifer Hatchell, Saeko S. Hayashi, Wayne Holland, Tsuyoshi Inoue, Shu-ichiro Inutsuka, Kazunari Iwasaki, Il-Gyo Jeong, Ji-hyun Kang, Miju Kang, Sung-ju Kang, Koji S. Kawabata, Francisca Kemper, Gwanjeong Kim, Jongsoo Kim, Kee-Tae Kim, Kyoung Hee Kim, Mi-Ryang Kim, Shinyoung Kim, Kevin M. Lacaille, Jeong-Eun Lee, Sang-Sung Lee, Dalei Li, Hua-bai Li, Hong-Li Liu, Junhao Liu, Sheng-Yuan Liu, Tie Liu, A-Ran Lyo, Steve Mairs, Masafumi Matsumura, Gerald H. Moriarty-Schieven, Fumitaka Nakamura, Hiroyuki Nakanishi, Nagayoshi Ohashi, Takashi Onaka, Nicolas Peretto, Tae-Soo Pyo, Lei Qian, Brendan Retter, John Richer, Andrew Rigby, Jean-François Robitaille, Giorgio Savini, Anna M. M. Scaife, Archana Soam, Motohide Tamura, Ya-Wen Tang, Kohji Tomisaka, Hongchi Wang, Jia-Wei Wang, Anthony P. Whitworth, Hsi-Wei Yen, Hyunju Yoo, Jinghua Yuan, Chuan-Peng Zhang, Guoyin Zhang, Jianjun Zhou, Lei Zhu, Philippe André, C. Darren Dowell, Sam Falle, Yusuke Tsukamoto

We present the first results from the B-fields In STar-forming Region Observations (BISTRO) survey, using the Sub-millimetre Common-User Bolometer Array 2 (SCUBA-2) camera, with its associated polarimeter (POL-2), on the James Clerk Maxwell Telescope (JCMT) in Hawaii. We discuss the survey's aims and objectives. We describe the rationale behind the survey, and the questions which the survey will aim to answer. Read More

We have detected [C I] 3P1-3P0 emissions in the gaseous debris disks of 49 Ceti and Beta Pictoris with the 10 m telescope of the Atacama Submillimeter Telescope Experiment, which is the first detection of such emissions. The line profiles of [C I] are found to resemble those of CO(J=3-2) observed with the same telescope and the Atacama Large Millimeter/submillimeter Array. This result suggests that atomic carbon (C) coexists with CO in the debris disks, and is likely formed by the photodissociation of CO. Read More

In this study, we investigate the dispersive properties of smoothed particle magnetohydrodynamics (SPM) in a strongly magnetized medium by using linear analysis. In modern SPM, a correction term proportional to the divergence of the magnetic fields is subtracted from the equation of motion to avoid a numerical instability arising in a strongly magnetized medium. From the linear analysis, it is found that SPM with the correction term suffer from significant dispersive errors, especially for slow waves propagating along magnetic fields. Read More

We describe an overall picture of galactic-scale star formation. Recent high-resolution magneto-hydrodynamical simulations of two-fluid dynamics with cooling/heating and thermal conduction have shown that the formation of molecular clouds requires multiple episodes of supersonic compression. This finding enables us to create a scenario in which molecular clouds form in interacting shells or bubbles on a galactic scale. Read More

We investigate the formation and evolution of a first core, protostar, and circumstellar disc with a three-dimensional non-ideal (including both Ohmic and ambipolar diffusion) radiation magnetohydrodynamics simulation. We found that the magnetic flux is largely removed by magnetic diffusion in the first core phase and that the plasma $\beta$ of the centre of the first core becomes large, $\beta>10^4$. Thus, proper treatment of first core phase is crucial in investigating the formation of protostar and disc. Read More

In this paper, the nonlinear evolution of a bistable interstellar medium is investigated using two-dimensional simulations with a realistic cooling rate, thermal conduction, and physical viscosity. The calculations are performed using periodic boundary conditions without any external dynamical forcing. As the initial condition, a spatially uniform unstable gas under thermal equilibrium is considered. Read More

In this paper, we present an explicit scheme for Ohmic dissipation with smoothed particle magneto-hydrodynamics (SPMHD). We propose a SPH discretization of Ohmic dissipation and solve Ohmic dissipation part of induction equation with the supertime-stepping method (STS) which allows us to take a longer time-step than Courant-Friedrich-Levy stability condition. Our scheme is second-order accurate in space and first-order accurate in time. Read More

In this paper, we investigate the structure of condensation fronts from warm diffuse gas to cold neutral medium (CNM) under the plane parallel geometry. The solutions have two parameters, the pressure of the CNM and the mass flux across the transition front, and their ranges are much wider than previously thought. First, we consider the pressure range where the three phases, the CNM, the unstable phase, and the warm neutral medium, can coexist in the pressure equilibrium. Read More

In this paper, we develop a new method for magnetohydrodynamics (MHD) using smoothed particle hydrodynamics (SPH). To describe MHD shocks accurately, the Godunov method is applied to SPH instead of artificial dissipation terms. In the interaction between particles, we solve a nonlinear Riemann problem with magnetic pressure for compressive waves and apply the method of characteristics for Alfv{\'e}n waves. Read More

We study the escape of cosmic-ray (CR) protons accelerated at a supernova remnant (SNR) by numerically solving a diffusion-convection equation from the vicinity of the shock front to the region far away from the front. We consider the amplifications of Alfven waves generated by the escaping CR particles and their effects on CR escape into interstellar medium (ISM). We find that the amplification of the waves significantly delays the escape of the particles even far away from the shock front (on a scale of the SNR). Read More

We perform a linear perturbation analysis of expanding shells driven by expansions of HII regions. The ambient gas is assumed to be uniform. As an unperturbed state, we develop a semi-analytic method for deriving the time evolution of the density profile across the thickness. Read More

We investigate the gravitational fragmentation of expanding shells driven by HII regions using the three-dimensional Lagrangian simulation codes based on the Riemann solver, called Godunov smoothed particle hydrodynamics. The ambient gas is assumed to be uniform. In order to attain high resolution to resolve the geometrically thin dense shell, we calculate not the whole but a part of the shell. Read More

In this paper, the stability of a dynamically condensing radiative gas layer is investigated by linear analysis. Our own time-dependent, self-similar solutions describing a dynamical condensing radiative gas layer are used as an unperturbed state. We consider perturbations that are both perpendicular and parallel to the direction of condensation. Read More

A new self-similar solution describing the dynamical condensation of a radiative gas is investigated under a plane-parallel geometry. The dynamical condensation is caused by thermal instability. The solution is applicable to generic flow with a net cooling rate per unit volume and time $\propto \rho^2 T^\alpha$, where $\rho$, $T$ and $\alpha$ are density, temperature and a free parameter, respectively. Read More

In this paper we investigate gravitational instability of shocked gas layers using linear analysis. An unperturbed state is a self-gravitating isothermal layer which grows with time by the accretion of gas through shock fronts due to a cloud-cloud collision. Since the unperturbed state is not static, and cannot be described by a self-similar solution, we numerically solved the perturbation equations and directly integrated them over time. Read More