K. Whisnant - Daya Bay Collaboration

K. Whisnant
Are you K. Whisnant?

Claim your profile, edit publications, add additional information:

Contact Details

Name
K. Whisnant
Affiliation
Daya Bay Collaboration
Location

Pubs By Year

Pub Categories

 
High Energy Physics - Phenomenology (35)
 
High Energy Physics - Experiment (35)
 
Nuclear Experiment (15)
 
Physics - Instrumentation and Detectors (9)
 
Astrophysics (6)
 
Nuclear Theory (5)
 
Physics - Accelerator Physics (1)
 
Solar and Stellar Astrophysics (1)

Publications Authored By K. Whisnant

Measurements of the solar neutrino mass-squared difference from KamLAND and solar neutrino data are somewhat discrepant, perhaps due to nonstandard neutrino interactions in matter. We show that the zenith angle distribution of solar neutrinos at Hyper-Kamiokande and the energy spectrum of reactor antineutrinos at JUNO can conclusively confirm the discrepancy and detect new neutrino interactions. Read More

2017Apr
Authors: F. P. An, A. B. Balantekin, H. R. Band, M. Bishai, S. Blyth, D. Cao, G. F. Cao, J. Cao, Y. L. Chan, J. F. Chang, Y. Chang, H. S. Chen, Q. Y. Chen, S. M. Chen, Y. X. Chen, Y. Chen, J. Cheng, Z. K. Cheng, J. J. Cherwinka, M. C. Chu, A. Chukanov, J. P. Cummings, Y. Y. Ding, M. V. Diwan, M. Dolgareva, J. Dove, D. A. Dwyer, W. R. Edwards, R. Gill, M. Gonchar, G. H. Gong, H. Gong, M. Grassi, W. Q. Gu, L. Guo, X. H. Guo, Y. H. Guo, Z. Guo, R. W. Hackenburg, S. Hans, M. He, K. M. Heeger, Y. K. Heng, A. Higuera, Y. B. Hsiung, B. Z. Hu, T. Hu, E. C. Huang, H. X. Huang, X. T. Huang, Y. B. Huang, P. Huber, W. Huo, G. Hussain, D. E. Jaffe, K. L. Jen, X. P. Ji, X. L. Ji, J. B. Jiao, R. A. Johnson, D. Jones, L. Kang, S. H. Kettell, A. Khan, S. Kohn, M. Kramer, K. K. Kwan, M. W. Kwok, T. J. Langford, K. Lau, L. Lebanowski, J. Lee, J. H. C. Lee, R. T. Lei, R. Leitner, J. K. C. Leung, C. Li, D. J. Li, F. Li, G. S. Li, Q. J. Li, S. Li, S. C. Li, W. D. Li, X. N. Li, X. Q. Li, Y. F. Li, Z. B. Li, H. Liang, C. J. Lin, G. L. Lin, S. Lin, S. K. Lin, Y. -C. Lin, J. J. Ling, J. M. Link, L. Littenberg, B. R. Littlejohn, J. L. Liu, J. C. Liu, C. W. Loh, C. Lu, H. Q. Lu, J. S. Lu, K. B. Luk, X. Y. Ma, X. B. Ma, Y. Q. Ma, Y. Malyshkin, D. A. Martinez Caicedo, K. T. McDonald, R. D. McKeown, I. Mitchell, Y. Nakajima, J. Napolitano, D. Naumov, E. Naumova, H. Y. Ngai, J. P. Ochoa-Ricoux, A. Olshevskiy, H. -R. Pan, J. Park, S. Patton, V. Pec, J. C. Peng, L. Pinsky, C. S. J. Pun, F. Z. Qi, M. Qi, X. Qian, R. M. Qiu, N. Raper, J. Ren, R. Rosero, B. Roskovec, X. C. Ruan, H. Steiner, P. Stoler, J. L. Sun, W. Tang, D. Taychenachev, K. Treskov, K. V. Tsang, C. E. Tull, N. Viaux, B. Viren, V. Vorobel, C. H. Wang, M. Wang, N. Y. Wang, R. G. Wang, W. Wang, X. Wang, Y. F. Wang, Z. Wang, Z. Wang, Z. M. Wang, H. Y. Wei, L. J. Wen, K. Whisnant, C. G. White, L. Whitehead, T. Wise, H. L. H. Wong, S. C. F. Wong, E. Worcester, C. -H. Wu, Q. Wu, W. J. Wu, D. M. Xia, J. K. Xia, Z. Z. Xing, J. L. Xu, Y. Xu, T. Xue, C. G. Yang, H. Yang, L. Yang, M. S. Yang, M. T. Yang, Y. Z. Yang, M. Ye, Z. Ye, M. Yeh, B. L. Young, Z. Y. Yu, S. Zeng, L. Zhan, C. Zhang, C. C. Zhang, H. H. Zhang, J. W. Zhang, Q. M. Zhang, R. Zhang, X. T. Zhang, Y. M. Zhang, Y. X. Zhang, Y. M. Zhang, Z. J. Zhang, Z. Y. Zhang, Z. P. Zhang, J. Zhao, L. Zhou, H. L. Zhuang, J. H. Zou

The Daya Bay experiment has observed correlations between reactor core fuel evolution and changes in the reactor antineutrino flux and energy spectrum. Four antineutrino detectors in two experimental halls were used to identify 2.2 million inverse beta decays (IBDs) over 1230 days spanning multiple fuel cycles for each of six 2. Read More

We study the matter effect caused by nonstandard neutrino interactions (NSI) in the next generation long-baseline neutrino experiments, DUNE, T2HK and T2HKK. If multiple NSI parameters are nonzero, the potential of these experiments to detect CP violation, determine the mass hierarchy and constrain NSI is severely impaired by degeneracies between the NSI parameters and by the generalized mass hierarchy degeneracy. In particular, a cancellation between leading order terms in the appearance channels when $\epsilon_{e\tau} = \cot\theta_{23} \epsilon_{e\mu}$, strongly affects the sensitivities to these two NSI parameters at T2HK and T2HKK. Read More

2016Oct
Authors: Daya Bay Collaboration, F. P. An, A. B. Balantekin, H. R. Band, M. Bishai, S. Blyth, D. Cao, G. F. Cao, J. Cao, W. R. Cen, Y. L. Chan, J. F. Chang, L. C. Chang, Y. Chang, H. S. Chen, Q. Y. Chen, S. M. Chen, Y. X. Chen, Y. Chen, J. -H. Cheng, J. Cheng, Y. P. Cheng, Z. K. Cheng, J. J. Cherwinka, M. C. Chu, A. Chukanov, J. P. Cummings, J. de Arcos, Z. Y. Deng, X. F. Ding, Y. Y. Ding, M. V. Diwan, M. Dolgareva, J. Dove, D. A. Dwyer, W. R. Edwards, R. Gill, M. Gonchar, G. H. Gong, H. Gong, M. Grassi, W. Q. Gu, M. Y. Guan, L. Guo, X. H. Guo, Z. Guo, R. W. Hackenburg, R. Han, S. Hans, M. He, K. M. Heeger, Y. K. Heng, A. Higuera, Y. K. Hor, Y. B. Hsiung, B. Z. Hu, T. Hu, W. Hu, E. C. Huang, H. X. Huang, X. T. Huang, P. Huber, W. Huo, G. Hussain, D. E. Jaffe, P. Jaffke, K. L. Jen, S. Jetter, X. P. Ji, X. L. Ji, J. B. Jiao, R. A. Johnson, D. Jones, J. Joshi, L. Kang, S. H. Kettell, S. Kohn, M. Kramer, K. K. Kwan, M. W. Kwok, T. Kwok, T. J. Langford, K. Lau, L. Lebanowski, J. Lee, J. H. C. Lee, R. T. Lei, R. Leitner, J. K. C. Leung, C. Li, D. J. Li, F. Li, G. S. Li, Q. J. Li, S. Li, S. C. Li, W. D. Li, X. N. Li, Y. F. Li, Z. B. Li, H. Liang, C. J. Lin, G. L. Lin, S. Lin, S. K. Lin, Y. -C. Lin, J. J. Ling, J. M. Link, L. Littenberg, B. R. Littlejohn, D. W. Liu, J. L. Liu, J. C. Liu, C. W. Loh, C. Lu, H. Q. Lu, J. S. Lu, K. B. Luk, Z. Lv, Q. M. Ma, X. Y. Ma, X. B. Ma, Y. Q. Ma, Y. Malyshkin, D. A. Martinez Caicedo, K. T. McDonald, R. D. McKeown, I. Mitchell, M. Mooney, Y. Nakajima, J. Napolitano, D. Naumov, E. Naumova, H. Y. Ngai, Z. Ning, J. P. Ochoa-Ricoux, A. Olshevskiy, H. -R. Pan, J. Park, S. Patton, V. Pec, J. C. Peng, L. Pinsky, C. S. J. Pun, F. Z. Qi, M. Qi, X. Qian, N. Raper, J. Ren, R. Rosero, B. Roskovec, X. C. Ruan, H. Steiner, G. X. Sun, J. L. Sun, W. Tang, D. Taychenachev, K. Treskov, K. V. Tsang, C. E. Tull, N. Viaux, B. Viren, V. Vorobel, C. H. Wang, M. Wang, N. Y. Wang, R. G. Wang, W. Wang, X. Wang, Y. F. Wang, Z. Wang, Z. Wang, Z. M. Wang, H. Y. Wei, L. J. Wen, K. Whisnant, C. G. White, L. Whitehead, T. Wise, H. L. H. Wong, S. C. F. Wong, E. Worcester, C. -H. Wu, Q. Wu, W. J. Wu, D. M. Xia, J. K. Xia, Z. Z. Xing, J. Y. Xu, J. L. Xu, Y. Xu, T. Xue, C. G. Yang, H. Yang, L. Yang, M. S. Yang, M. T. Yang, M. Ye, Z. Ye, M. Yeh, B. L. Young, Z. Y. Yu, S. Zeng, L. Zhan, C. Zhang, H. H. Zhang, J. W. Zhang, Q. M. Zhang, X. T. Zhang, Y. M. Zhang, Y. X. Zhang, Y. M. Zhang, Z. J. Zhang, Z. Y. Zhang, Z. P. Zhang, J. Zhao, Q. W. Zhao, Y. B. Zhao, W. L. Zhong, L. Zhou, N. Zhou, H. L. Zhuang, J. H. Zou

A measurement of electron antineutrino oscillation by the Daya Bay Reactor Neutrino Experiment is described in detail. Six 2.9-GW$_{\rm th}$ nuclear power reactors of the Daya Bay and Ling Ao nuclear power facilities served as intense sources of $\overline{\nu}_{e}$'s. Read More

Muon neutrino disappearance measurements at NO$\nu$A suggest that maximal $\theta_{23}$ is excluded at the 2.6$\sigma$ CL. This is in mild tension with T2K data which prefer maximal mixing. Read More

2016Aug
Authors: F. P. An, A. B. Balantekin, H. R. Band, M. Bishai, S. Blyth, D. Cao, G. F. Cao, J. Cao, W. R. Cen, Y. L. Chan, J. F. Chang, L. C. Chang, Y. Chang, H. S. Chen, Q. Y. Chen, S. M. Chen, Y. X. Chen, Y. Chen, J. -H. Cheng, J. Cheng, Y. P. Cheng, Z. K. Cheng, J. J. Cherwinka, M. C. Chu, A. Chukanov, J. P. Cummings, J. de Arcos, Z. Y. Deng, X. F. Ding, Y. Y. Ding, M. V. Diwan, M. Dolgareva, J. Dove, D. A. Dwyer, W. R. Edwards, R. Gill, M. Gonchar, G. H. Gong, H. Gong, M. Grassi, W. Q. Gu, M. Y. Guan, L. Guo, X. H. Guo, Z. Guo, R. W. Hackenburg, R. Han, S. Hans, M. He, K. M. Heeger, Y. K. Heng, A. Higuera, Y. K. Hor, Y. B. Hsiung, B. Z. Hu, T. Hu, W. Hu, E. C. Huang, H. X. Huang, X. T. Huang, P. Huber, W. Huo, G. Hussain, D. E. Jaffe, P. Jaffke, K. L. Jen, S. Jetter, X. P. Ji, X. L. Ji, J. B. Jiao, R. A. Johnson, J. Joshi, L. Kang, S. H. Kettell, S. Kohn, M. Kramer, K. K. Kwan, M. W. Kwok, T. Kwok, T. J. Langford, K. Lau, L. Lebanowski, J. Lee, J. H. C. Lee, R. T. Lei, R. Leitner, J. K. C. Leung, C. Li, D. J. Li, F. Li, G. S. Li, Q. J. Li, S. Li, S. C. Li, W. D. Li, X. N. Li, Y. F. Li, Z. B. Li, H. Liang, C. J. Lin, G. L. Lin, S. Lin, S. K. Lin, Y. -C. Lin, J. J. Ling, J. M. Link, L. Littenberg, B. R. Littlejohn, D. W. Liu, J. L. Liu, J. C. Liu, C. W. Loh, C. Lu, H. Q. Lu, J. S. Lu, K. B. Luk, Z. Lv, Q. M. Ma, X. Y. Ma, X. B. Ma, Y. Q. Ma, Y. Malyshkin, D. A. Martinez Caicedo, R. D. McKeown, I. Mitchell, M. Mooney, Y. Nakajima, J. Napolitano, D. Naumov, E. Naumova, H. Y. Ngai, Z. Ning, J. P. Ochoa-Ricoux, A. Olshevskiy, H. -R. Pan, J. Park, S. Patton, V. Pec, J. C. Peng, L. Pinsky, C. S. J. Pun, F. Z. Qi, M. Qi, X. Qian, N. Raper, J. Ren, R. Rosero, B. Roskovec, X. C. Ruan, H. Steiner, G. X. Sun, J. L. Sun, W. Tang, D. Taychenachev, K. Treskov, K. V. Tsang, C. E. Tull, N. Viaux, B. Viren, V. Vorobel, C. H. Wang, M. Wang, N. Y. Wang, R. G. Wang, W. Wang, X. Wang, Y. F. Wang, Z. Wang, Z. Wang, Z. M. Wang, H. Y. Wei, L. J. Wen, K. Whisnant, C. G. White, L. Whitehead, T. Wise, H. L. H. Wong, S. C. F. Wong, E. Worcester, C. -H. Wu, Q. Wu, W. J. Wu, D. M. Xia, J. K. Xia, Z. Z. Xing, J. Y. Xu, J. L. Xu, Y. Xu, T. Xue, C. G. Yang, H. Yang, L. Yang, M. S. Yang, M. T. Yang, M. Ye, Z. Ye, M. Yeh, B. L. Young, Z. Y. Yu, S. Zeng, L. Zhan, C. Zhang, H. H. Zhang, J. W. Zhang, Q. M. Zhang, X. T. Zhang, Y. M. Zhang, Y. X. Zhang, Y. M. Zhang, Z. J. Zhang, Z. Y. Zhang, Z. P. Zhang, J. Zhao, Q. W. Zhao, Y. B. Zhao, W. L. Zhong, L. Zhou, N. Zhou, H. L. Zhuang, J. H. Zou

The disappearance of reactor $\bar{\nu}_e$ observed by the Daya Bay experiment is examined in the framework of a model in which the neutrino is described by a wave packet with a relative intrinsic momentum dispersion $\sigma_\text{rel}$. Three pairs of nuclear reactors and eight antineutrino detectors, each with good energy resolution, distributed among three experimental halls, supply a high-statistics sample of $\bar{\nu}_e$ acquired at nine different baselines. This provides a unique platform to test the effects which arise from the wave packet treatment of neutrino oscillation. Read More

2016Jul
Authors: F. P. An, A. B. Balantekin, H. R. Band, M. Bishai, S. Blyth, D. Cao, G. F. Cao, J. Cao, W. R. Cen, Y. L. Chan, J. F. Chang, L. C. Chang, Y. Chang, H. S. Chen, Q. Y. Chen, S. M. Chen, Y. X. Chen, Y. Chen, J. -H. Cheng, J. Cheng, Y. P. Cheng, Z. K. Cheng, J. J. Cherwinka, M. C. Chu, A. Chukanov, J. P. Cummings, J. de Arcos, Z. Y. Deng, X. F. Ding, Y. Y. Ding, M. V. Diwan, M. Dolgareva, J. Dove, D. A. Dwyer, W. R. Edwards, R. Gill, M. Gonchar, G. H. Gong, H. Gong, M. Grassi, W. Q. Gu, M. Y. Guan, L. Guo, R. P. Guo, X. H. Guo, Z. Guo, R. W. Hackenburg, R. Han, S. Hans, M. He, K. M. Heeger, Y. K. Heng, A. Higuera, Y. K. Hor, Y. B. Hsiung, B. Z. Hu, T. Hu, W. Hu, E. C. Huang, H. X. Huang, X. T. Huang, P. Huber, W. Huo, G. Hussain, D. E. Jaffe, P. Jaffke, K. L. Jen, S. Jetter, X. P. Ji, X. L. Ji, J. B. Jiao, R. A. Johnson, D. Jones, J. Joshi, L. Kang, S. H. Kettell, S. Kohn, M. Kramer, K. K. Kwan, M. W. Kwok, T. Kwok, T. J. Langford, K. Lau, L. Lebanowski, J. Lee, J. H. C. Lee, R. T. Lei, R. Leitner, C. Li, D. J. Li, F. Li, G. S. Li, Q. J. Li, S. Li, S. C. Li, W. D. Li, X. N. Li, Y. F. Li, Z. B. Li, H. Liang, C. J. Lin, G. L. Lin, S. Lin, S. K. Lin, Y. -C. Lin, J. J. Ling, J. M. Link, L. Littenberg, B. R. Littlejohn, D. W. Liu, J. L. Liu, J. C. Liu, C. W. Loh, C. Lu, H. Q. Lu, J. S. Lu, K. B. Luk, Z. Lv, Q. M. Ma, X. Y. Ma, X. B. Ma, Y. Q. Ma, Y. Malyshkin, D. A. Martinez Caicedo, K. T. McDonald, R. D. McKeown, I. Mitchell, M. Mooney, Y. Nakajima, J. Napolitano, D. Naumov, E. Naumova, H. Y. Ngai, Z. Ning, J. P. Ochoa-Ricoux, A. Olshevskiy, H. -R. Pan, J. Park, S. Patton, V. Pec, J. C. Peng, L. Pinsky, C. S. J. Pun, F. Z. Qi, M. Qi, X. Qian, N. Raper, J. Ren, R. Rosero, B. Roskovec, X. C. Ruan, H. Steiner, G. X. Sun, J. L. Sun, W. Tang, D. Taychenachev, K. Treskov, K. V. Tsang, C. E. Tull, N. Viaux, B. Viren, V. Vorobel, C. H. Wang, M. Wang, N. Y. Wang, R. G. Wang, W. Wang, X. Wang, Y. F. Wang, Z. Wang, Z. Wang, Z. M. Wang, H. Y. Wei, L. J. Wen, K. Whisnant, C. G. White, L. Whitehead, T. Wise, H. L. H. Wong, S. C. F. Wong, E. Worcester, C. -H. Wu, Q. Wu, W. J. Wu, D. M. Xia, J. K. Xia, Z. Z. Xing, J. Y. Xu, J. L. Xu, Y. Xu, T. Xue, C. G. Yang, H. Yang, L. Yang, M. S. Yang, M. T. Yang, M. Ye, Z. Ye, M. Yeh, B. L. Young, Z. Y. Yu, S. Zeng, L. Zhan, C. Zhang, H. H. Zhang, J. W. Zhang, Q. M. Zhang, X. T. Zhang, Y. M. Zhang, Y. X. Zhang, Y. M. Zhang, Z. J. Zhang, Z. Y. Zhang, Z. P. Zhang, J. Zhao, Q. W. Zhao, Y. B. Zhao, W. L. Zhong, L. Zhou, N. Zhou, H. L. Zhuang, J. H. Zou

A new measurement of the reactor antineutrino flux and energy spectrum by the Daya Bay reactor neutrino experiment is reported. The antineutrinos were generated by six 2.9~GW$_{\mathrm{th}}$ nuclear reactors and detected by eight antineutrino detectors deployed in two near (560~m and 600~m flux-weighted baselines) and one far (1640~m flux-weighted baseline) underground experimental halls. Read More

2016Jul
Authors: The Daya Bay collaboration, F. P. An, A. B. Balantekin, H. R. Band, M. Bishai, S. Blyth, D. Cao, G. F. Cao, J. Cao, W. R. Cen, Y. L. Chan, J. F. Chang, L. C. Chang, Y. Chang, H. S. Chen, Q. Y. Chen, S. M. Chen, Y. X. Chen, Y. Chen, J. -H. Cheng, J. Cheng, Y. P. Cheng, Z. K. Cheng, J. J. Cherwinka, M. C. Chu, A. Chukanov, J. P. Cummings, J. de Arcos, Z. Y. Deng, X. F. Ding, Y. Y. Ding, M. V. Diwan, M. Dolgareva, J. Dove, D. A. Dwyer, W. R. Edwards, R. Gill, M. Gonchar, G. H. Gong, H. Gong, M. Grassi, W. Q. Gu, M. Y. Guan, L. Guo, R. P. Guo, X. H. Guo, Z. Guo, R. W. Hackenburg, R. Han, S. Hans, M. He, K. M. Heeger, Y. K. Heng, A. Higuera, Y. K. Hor, Y. B. Hsiung, B. Z. Hu, T. Hu, W. Hu, E. C. Huang, H. X. Huang, X. T. Huang, P. Huber, W. Huo, G. Hussain, D. E. Jaffe, P. Jaffke, K. L. Jen, S. Jetter, X. P. Ji, X. L. Ji, J. B. Jiao, R. A. Johnson, J. Joshi, L. Kang, S. H. Kettell, S. Kohn, M. Kramer, K. K. Kwan, M. W. Kwok, T. Kwok, T. J. Langford, K. Lau, L. Lebanowski, J. Lee, J. H. C. Lee, R. T. Lei, R. Leitner, J. K. C. Leung, C. Li, D. J. Li, F. Li, G. S. Li, Q. J. Li, S. Li, S. C. Li, W. D. Li, X. N. Li, Y. F. Li, Z. B. Li, H. Liang, C. J. Lin, G. L. Lin, S. Lin, S. K. Lin, Y. -C. Lin, J. J. Ling, J. M. Link, L. Littenberg, B. R. Littlejohn, D. W. Liu, J. L. Liu, J. C. Liu, C. W. Loh, C. Lu, H. Q. Lu, J. S. Lu, K. B. Luk, Z. Lv, Q. M. Ma, X. Y. Ma, X. B. Ma, Y. Q. Ma, Y. Malyshkin, D. A. Martinez Caicedo, K. T. McDonald, R. D. McKeown, I. Mitchell, M. Mooney, Y. Nakajima, J. Napolitano, D. Naumov, E. Naumova, H. Y. Ngai, Z. Ning, J. P. Ochoa-Ricoux, A. Olshevskiy, H. -R. Pan, J. Park, S. Patton, V. Pec, J. C. Peng, L. Pinsky, C. S. J. Pun, F. Z. Qi, M. Qi, X. Qian, N. Raper, J. Ren, R. Rosero, B. Roskovec, X. C. Ruan, H. Steiner, G. X. Sun, J. L. Sun, W. Tang, D. Taychenachev, K. Treskov, K. V. Tsang, C. E. Tull, N. Viaux, B. Viren, V. Vorobel, C. H. Wang, M. Wang, N. Y. Wang, R. G. Wang, W. Wang, X. Wang, Y. F. Wang, Z. Wang, Z. Wang, Z. M. Wang, H. Y. Wei, L. J. Wen, K. Whisnant, C. G. White, L. Whitehead, T. Wise, H. L. H. Wong, S. C. F. Wong, E. Worcester, C. -H. Wu, Q. Wu, W. J. Wu, D. M. Xia, J. K. Xia, Z. Z. Xing, J. Y. Xu, J. L. Xu, Y. Xu, T. Xue, C. G. Yang, H. Yang, L. Yang, M. S. Yang, M. T. Yang, M. Ye, Z. Ye, M. Yeh, B. L. Young, Z. Y. Yu, S. Zeng, L. Zhan, C. Zhang, H. H. Zhang, J. W. Zhang, Q. M. Zhang, X. T. Zhang, Y. M. Zhang, Y. X. Zhang, Y. M. Zhang, Z. J. Zhang, Z. Y. Zhang, Z. P. Zhang, J. Zhao, Q. W. Zhao, Y. B. Zhao, W. L. Zhong, L. Zhou, N. Zhou, H. L. Zhuang, J. H. Zou

This Letter reports an improved search for light sterile neutrino mixing in the electron antineutrino disappearance channel with the full configuration of the Daya Bay Reactor Neutrino Experiment. With an additional 404 days of data collected in eight antineutrino detectors, this search benefits from 3.6 times the statistics available to the previous publication, as well as from improvements in energy calibration and background reduction. Read More

2016Jul
Authors: Daya Bay, MINOS Collaborations, :, P. Adamson, F. P. An, I. Anghel, A. Aurisano, A. B. Balantekin, H. R. Band, G. Barr, M. Bishai, A. Blake, S. Blyth G. J. Bock, D. Bogert, D. Cao, G. F. Cao, J. Cao, S. V. Cao, T. J. Carroll, C. M. Castromonte, W. R. Cen, Y. L. Chan, J. F. Chang, L. C. Chang, Y. Chang, H. S. Chen, Q. Y. Chen, R. Chen, S. M. Chen, Y. Chen, Y. X. Chen, J. Cheng, J. -H. Cheng, Y. P. Chen, Z. K. Cheng, J. J. Cherwinka, S. Childress, M. C. Chu, A. Chukanov, J. A. B. Coelho, L. Corwin, D. Cronin-Hennessy, J. P. Cummings, J. de Arcos, S. De Rijck, Z. Y. Deng, A. V. Devan, N. E. Devenish, X. F. Ding, Y. Y. Ding, M. V. Diwan, M. Dolgareva, J. Dove, D. A. Dwyer, W. R. Edwards, C. O. Escobar, J. J. Evans, E. Falk, G. J. Feldman, W. Flanagan, M. V. Frohne, M. Gabrielyan, H. R. Gallagher, S. Germani, R. Gill, R. A. Gomes, M. Gonchar, G. H. Gong, H. Gong, M. C. Goodman, P. Gouffon, N. Graf, R. Gran, M. Grassi, K. Grzelak, W. Q. Gu, M. Y. Guan, L. Guo, R. P. Guo, X. H. Guo, Z. Guo, A. Habig, R. W. Hackenburg, S. R. Hahn, R. Han, S. Hans, J. Hartnell, R. Hatcher, M. He, K. M. Heeger, Y. K. Heng, A. Higuera, A. Holin, Y. K. Hor, Y. B. Hsiung, B. Z. Hu, T. Hu, W. Hu, E. C. Huang, H. X. Huang, J. Huang, X. T. Huang, P. Huber, W. Huo, G. Hussain, J. Hylen, G. M. Irwin, Z. Isvan, D. E. Jaffe, P. Jaffke, C. James, K. L. Jen, D. Jensen, S. Jetter, X. L. Ji, X. P. Ji, J. B. Jiao, R. A. Johnson, J. K. de Jong, J. Joshi, T. Kafka, L. Kang, S. M. S. Kasahara, S. H. Kettell, S. Kohn, G. Koizumi, M. Kordosky, M. Kramer, A. Kreymer, 1 K. K. Kwan, M. W. Kwok, T. Kwok, K. Lang, T. J. Langford, K. Lau, L. Lebanowski, J. Lee, J. H. C. Lee, R. T. Lei, R. Leitner, J. K. C. Leung, C. Li, D. J. Li, F. Li, G. S. Li, Q. J. Li, S. Li, S. C. Li, W. D. Li, X. N. Li, Y. F. Li, Z. B. Li, H. Liang, C. J. Lin, G. L. Lin, S. Lin, S. K. Lin, Y. -C. Lin, J. J. Ling J. M. Link, P. J. Litchfield, L. Littenberg, B. R. Littlejohn, D. W. Liu, J. C. Liu, J. L. Liu, C. W. Loh, C. Lu, H. Q. Lu, J. S. Lu, P. Lucas, K. B. Luk, Z. Lv, Q. M. Ma, X. B. Ma, X. Y. Ma, Y. Q. Ma, Y. Malyshkin, W. A. Mann, M. L. Marshak, D. A. Martinez Caicedo, N. Mayer, K. T. McDonald, C. McGivern, R. D. McKeown, M. M. Medeiros, R. Mehdiyev, J. R. Meier, M. D. Messier, W. H. Miller, S. R. Mishra, I. Mitchell, M. Mooney, C. D. Moore, L. Mualem, J. Musser, Y. Nakajima, D. Naples, J. Napolitano, D. Naumov, E. Naumova, J. K. Nelson, H. B. Newman, H. Y. Ngai, R. J. Nichol, Z. Ning, A. Nowak, J. O'Connor, J. P. Ochoa-Ricoux, A. Olshevskiy, M. Orchanian, R., R. B. Pahlka, J. Paley, H. -R. Pan, J. Park, R. B. Patterson, S. Patton, G. Pawloski, V. Pec, J. C. Peng, A. Perch, M. M. Pfutzner, D. D. Phan, S. Phan-Budd, L. Pinsky, R. K. Plunkett, N. Poonthottathil, C. S. J. Pun, F. Z. Qi, M. Qi, X. Qian, X. Qiu, A. Radovic, N. Raper, B. Rebel, J. Ren, C. Rosenfeld, R. Rosero, B. Roskovec, X. C. Ruan, H. A. Rubin, P. Sail, M. C. Sanchez, J. Schneps, A. Schreckenberger, P. Schreiner, R. Sharma, S. Moed Sher, A. Sousa, H. Steiner, G. X. Sun, J. L. Sun, N. Tagg, R. L. Talaga, W. Tang, D. Taychenachev, J. Thomas, M. A. Thomson, X. Tian A. Timmons, J. Todd, S. C. Tognini, R. Toner, D. Torretta, K. Treskov, K. V. Tsang, C. E. Tull, G. Tzanakos, J. Urheim, P. Vahle, N. Viaux, B. Viren, V. Vorobel, C. H. Wang, M. Wang, N. Y. Wang, R. G. Wang, W. Wang, X. Wang, Y. F. Wang, Z. Wang, Z. M. Wang, R. C. Webb, A. Weber, H. Y. Wei, L. J. Wen, K. Whisnant, C. White, L. Whitehead L. H. Whitehead, T. Wise, S. G. Wojcicki, H. L. H. Wong, S. C. F. Wong, E. Worcester, C. -H. Wu, Q. Wu, W. J. Wu, D. M. Xia, J. K. Xia, Z. Z. Xing, J. L. Xu, J. Y. Xu, Y. Xu, T. Xue, C. G. Yang, H. Yang, L. Yang, M. S. Yang, M. T. Yang, M. Ye., Z. Ye, M. Yeh, B. L. Young, Z. Y. Yu, S. Zeng, L. ZhanC. Zhang, H. H. Zhang, J. W. Zhang, Q. M. Zhang, X. T. Zhang, Y. M. Zhang, Y. X. Zhang, Z. J. Zhang, Z. P. Zhang, Z. Y. Zhang, J. Zhao, Q. W. Zhao, Y. B. Zhao, W. L. Zhong, L. Zhou, N. Zhou, H. L. Zhuang, J. H. Zou

Searches for a light sterile neutrino have been performed independently by the MINOS and the Daya Bay experiments using the muon (anti)neutrino and electron antineutrino disappearance channels, respectively. In this Letter, results from both experiments are combined with those from the Bugey-3 reactor neutrino experiment to constrain oscillations into light sterile neutrinos. The three experiments are sensitive to complementary regions of parameter space, enabling the combined analysis to probe regions allowed by the LSND and MiniBooNE experiments in a minimally extended four-neutrino flavor framework. Read More

2016Mar
Authors: Daya Bay Collaboration, F. P. An, A. B. Balantekin, H. R. Band, M. Bishai, S. Blyth, D. Cao, G. F. Cao, J. Cao, W. R. Cen, Y. L. Chan, J. F. Chang, L. C. Chang, Y. Chang, H. S. Chen, Q. Y. Chen, S. M. Chen, Y. X. Chen, Y. Chen, J. H. Cheng, J. -H. Cheng, J. Cheng, Y. P. Cheng, Z. K. Cheng, J. J. Cherwinka, M. C. Chu, A. Chukanov, J. P. Cummings, J. de Arcos, Z. Y. Deng, X. F. Ding, Y. Y. Ding, M. V. Diwan, M. Dolgareva, J. Dove, D. A. Dwyer, W. R. Edwards, R. Gill, M. Gonchar, G. H. Gong, H. Gong, M. Grassi, W. Q. Gu, M. Y. Guan, L. Guo, R. P. Guo, X. H. Guo, Z. Guo, R. W. Hackenburg, R. Han, S. Hans, M. He, K. M. Heeger, Y. K. Heng, A. Higuera, Y. K. Hor, Y. B. Hsiung, B. Z. Hu, T. Hu, W. Hu, E. C. Huang, H. X. Huang, X. T. Huang, P. Huber, W. Huo, G. Hussain, D. E. Jaffe, P. Jaffke, K. L. Jen, S. Jetter, X. P. Ji, X. L. Ji, J. B. Jiao, R. A. Johnson, J. Joshi, L. Kang, S. H. Kettell, S. Kohn, M. Kramer, K. K. Kwan, M. W. Kwok, T. Kwok, T. J. Langford, K. Lau, L. Lebanowski, J. Lee, J. H. C. Lee, R. T. Lei, R. Leitner, J. K. C. Leung, C. Li, D. J. Li, F. Li, G. S. Li, Q. J. Li, S. Li, S. C. Li, W. D. Li, X. N. Li, Y. F. Li, Z. B. Li, H. Liang, C. J. Lin, G. L. Lin, S. Lin, S. K. Lin, Y. -C. Lin, J. J. Ling, J. M. Link, L. Littenberg, B. R. Littlejohn, D. W. Liu, J. J. Liu, J. L. Liu, J. C. Liu, C. W. Loh, C. Lu, H. Q. Lu, J. S. Lu, K. B. Luk, Z. Lv, Q. M. Ma, X. Y. Ma, X. B. Ma, Y. Q. Ma, Y. Malyshkin, D. A. Martinez Caicedo, K. T. McDonald, R. D. McKeown, I. Mitchell, M. Mooney, Y. Nakajima, J. Napolitano, D. Naumov, E. Naumova, H. Y. Ngai, Z. Ning, J. P. Ochoa-Ricoux, A. Olshevskiy, H. -R. Pan, J. Park, S. Patton, V. Pec, J. C. Peng, L. Pinsky, C. S. J. Pun, F. Z. Qi, M. Qi, X. Qian, N. Raper, J. Ren, R. Rosero, B. Roskovec, X. C. Ruan, H. Steiner, G. X. Sun, J. L. Sun, W. Tang, D. Taychenachev, T. Konstantin, K. V. Tsang, C. E. Tull, N. Viaux, B. Viren, V. Vorobel, C. H. Wang, M. Wang, N. Y. Wang, R. G. Wang, W. Wang, W. W. Wang, X. Wang, Y. F. Wang, Z. Wang, Z. Wang, Z. M. Wang, H. Y. Wei, L. J. Wen, K. Whisnant, C. G. White, L. Whitehead, T. Wise, H. L. H. Wong, S. C. F. Wong, E. Worcester, C. -H. Wu, Q. Wu, D. M. Xia, J. K. Xia, Z. Z. Xing, J. Y. Xu, J. L. Xu, J. Xu, Y. Xu, T. Xue, J. Yan, C. G. Yang, H. Yang, L. Yang, M. S. Yang, M. T. Yang, M. Ye, Z. Ye, M. Yeh, B. L. Young, G. Y. Yu, Z. Y. Yu, L. Zhan, C. Zhang, H. H. Zhang, J. W. Zhang, Q. M. Zhang, X. T. Zhang, Y. M. Zhang, Y. X. Zhang, Y. M. Zhang, Z. J. Zhang, Z. Y. Zhang, Z. P. Zhang, J. Zhao, Q. W. Zhao, Y. F. Zhao, Y. B. Zhao, W. L. Zhong, L. Zhou, N. Zhou, H. L. Zhuang, J. H. Zou

This article reports an improved independent measurement of neutrino mixing angle $\theta_{13}$ at the Daya Bay Reactor Neutrino Experiment. Electron antineutrinos were identified by inverse $\beta$-decays with the emitted neutron captured by hydrogen, yielding a data-set with principally distinct uncertainties from that with neutrons captured by gadolinium. With the final two of eight antineutrino detectors installed, this study used 621 days of data including the previously reported 217-day data set with six detectors. Read More

We study parameter degeneracies that can occur in long-baseline neutrino appearance experiments due to nonstandard interactions (NSI) in neutrino propagation. For a single off-diagonal NSI parameter, and neutrino and antineutrino measurements at a single L/E, there exists a continuous four-fold degeneracy (related to the mass hierarchy and $\theta_{23}$ octant) that renders the mass hierarchy, octant, and CP phase unknowable. Even with a combination of NO$\nu$A and T2K data, which in principle can resolve the degeneracy, both NSI and the CP phase remain unconstrained because of experimental uncertainties. Read More

In the context of the Type I seesaw mechanism, we carry out a systematic study of the constraints that result from zeros in both the Dirac and right-handed Majorana neutrino mass matrices. We find that most constraints can be expressed in the standard form with one or two element/cofactor zeros alone, while there are 9 classes of nonstandard constraints. We show that all the constraints are stable under one-loop renormalization group running from the lightest right-handed neutrino mass scale to the electroweak scale. Read More

2015Aug
Authors: Daya Bay Collaboration, F. P. An, A. B. Balantekin, H. R. Band, M. Bishai, S. Blyth, I. Butorov, D. Cao, G. F. Cao, J. Cao, W. R. Cen, Y. L. Chan, J. F. Chang, L. C. Chang, Y. Chang, H. S. Chen, Q. Y. Chen, S. M. Chen, Y. X. Chen, Y. Chen, J. H. Cheng, J. Cheng, Y. P. Cheng, J. J. Cherwinka, M. C. Chu, J. P. Cummings, J. de Arcos, Z. Y. Deng, X. F. Ding, Y. Y. Ding, M. V. Diwan, J. Dove, E. Draeger, D. A. Dwyer, W. R. Edwards, S. R. Ely, R. Gill, M. Gonchar, G. H. Gong, H. Gong, M. Grassi, W. Q. Gu, M. Y. Guan, L. Guo, X. H. Guo, R. W. Hackenburg, R. Han, S. Hans, M. He, K. M. Heeger, Y. K. Heng, A. Higuera, Y. K. Hor, Y. B. Hsiung, B. Z. Hu, L. M. Hu, L. J. Hu, T. Hu, W. Hu, E. C. Huang, H. X. Huang, X. T. Huang, P. Huber, G. Hussain, D. E. Jaffe, P. Jaffke, K. L. Jen, S. Jetter, X. P. Ji, X. L. Ji, J. B. Jiao, R. A. Johnson, L. Kang, S. H. Kettell, S. Kohn, M. Kramer, K. K. Kwan, M. W. Kwok, T. Kwok, T. J. Langford, K. Lau, L. Lebanowski, J. Lee, R. T. Lei, R. Leitner, K. Y. Leung, J. K. C. Leung, C. A. Lewis, D. J. Li, F. Li, G. S. Li, Q. J. Li, S. C. Li, W. D. Li, X. N. Li, X. Q. Li, Y. F. Li, Z. B. Li, H. Liang, C. J. Lin, G. L. Lin, P. Y. Lin, S. K. Lin, J. J. Ling, J. M. Link, L. Littenberg, B. R. Littlejohn, D. W. Liu, H. Liu, J. L. Liu, J. C. Liu, S. S. Liu, C. Lu, H. Q. Lu, J. S. Lu, K. B. Luk, Q. M. Ma, X. Y. Ma, X. B. Ma, Y. Q. Ma, D. A. Martinez Caicedo, K. T. McDonald, R. D. McKeown, Y. Meng, I. Mitchell, J. Monari Kebwaro, Y. Nakajima, J. Napolitano, D. Naumov, E. Naumova, H. Y. Ngai, Z. Ning, J. P. Ochoa-Ricoux, A. Olshevski, H. -R. Pan, J. Park, S. Patton, V. Pec, J. C. Peng, L. E. Piilonen, L. Pinsky, C. S. J. Pun, F. Z. Qi, M. Qi, X. Qian, N. Raper, B. Ren, J. Ren, R. Rosero, B. Roskovec, X. C. Ruan, B. B. Shao, H. Steiner, G. X. Sun, J. L. Sun, W. Tang, D. Taychenachev, K. V. Tsang, C. E. Tull, Y. C. Tung, N. Viaux, B. Viren, V. Vorobel, C. H. Wang, M. Wang, N. Y. Wang, R. G. Wang, W. Wang, W. W. Wang, X. Wang, Y. F. Wang, Z. Wang, Z. Wang, Z. M. Wang, H. Y. Wei, L. J. Wen, K. Whisnant, C. G. White, L. Whitehead, T. Wise, H. L. H. Wong, S. C. F. Wong, E. Worcester, Q. Wu, D. M. Xia, J. K. Xia, X. Xia, Z. Z. Xing, J. Y. Xu, J. L. Xu, J. Xu, Y. Xu, T. Xue, J. Yan, C. G. Yang, L. Yang, M. S. Yang, M. T. Yang, M. Ye, M. Yeh, B. L. Young, G. Y. Yu, Z. Y. Yu, S. L. Zang, L. Zhan, C. Zhang, H. H. Zhang, J. W. Zhang, Q. M. Zhang, Y. M. Zhang, Y. X. Zhang, Y. M. Zhang, Z. J. Zhang, Z. Y. Zhang, Z. P. Zhang, J. Zhao, Q. W. Zhao, Y. F. Zhao, Y. B. Zhao, L. Zheng, W. L. Zhong, L. Zhou, N. Zhou, H. L. Zhuang, J. H. Zou

This Letter reports a measurement of the flux and energy spectrum of electron antineutrinos from six 2.9~GW$_{th}$ nuclear reactors with six detectors deployed in two near (effective baselines 512~m and 561~m) and one far (1,579~m) underground experimental halls in the Daya Bay experiment. Using 217 days of data, 296,721 and 41,589 inverse beta decay (IBD) candidates were detected in the near and far halls, respectively. Read More

2015Aug
Authors: F. P. An, J. Z. Bai, A. B. Balantekin, H. R. Band, D. Beavis, W. Beriguete, M. Bishai, S. Blyth, R. L. Brown, I. Butorov, D. Cao, G. F. Cao, J. Cao, R. Carr, W. R. Cen, W. T. Chan, Y. L. Chan, J. F. Chang, L. C. Chang, Y. Chang, C. Chasman, H. Y. Chen, H. S. Chen, M. J. Chen, Q. Y. Chen, S. J. Chen, S. M. Chen, X. C. Chen, X. H. Chen, X. S. Chen, Y. X. Chen, Y. Chen, J. H. Cheng, J. Cheng, Y. P. Cheng, J. J. Cherwinka, S. Chidzik, K. Chow, M. C. Chu, J. P. Cummings, J. de Arcos, Z. Y. Deng, X. F. Ding, Y. Y. Ding, M. V. Diwan, L. Dong, J. Dove, E. Draeger, X. F. Du, D. A. Dwyer, W. R. Edwards, S. R. Ely, S. D. Fang, J. Y. Fu, Z. W. Fu, L. Q. Ge, V. Ghazikhanian, R. Gill, J. Goett, M. Gonchar, G. H. Gong, H. Gong, Y. A. Gornushkin, M. Grassi, L. S. Greenler, W. Q. Gu, M. Y. Guan, R. P. Guo, X. H. Guo, R. W. Hackenburg, R. L. Hahn, R. Han, S. Hans, M. He, Q. He, W. S. He, K. M. Heeger, Y. K. Heng, A. Higuera, P. Hinrichs, T. H. Ho, M. Hoff, Y. K. Hor, Y. B. Hsiung, B. Z. Hu, L. M. Hu, L. J. Hu, T. Hu, W. Hu, E. C. Huang, H. Z. Huang, H. X. Huang, P. W. Huang, X. Huang, X. T. Huang, P. Huber, G. Hussain, Z. Isvan, D. E. Jaffe, P. Jaffke, K. L. Jen, S. Jetter, X. P. Ji, X. L. Ji, H. J. Jiang, W. Q. Jiang, J. B. Jiao, R. A. Johnson, J. Joseph, L. Kang, S. H. Kettell, S. Kohn, M. Kramer, K. K. Kwan, M. W. Kwok, T. Kwok, C. Y. Lai, W. C. Lai, W. H. Lai, T. J. Langford, K. Lau, L. Lebanowski, J. Lee, M. K. P. Lee, R. T. Lei, R. Leitner, J. K. C. Leung, K. Y. Leung, C. A. Lewis, B. Li, C. Li, D. J. Li, F. Li, G. S. Li, J. Li, N. Y. Li, Q. J. Li, S. F. Li, S. C. Li, W. D. Li, X. B. Li, X. N. Li, X. Q. Li, Y. Li, Y. F. Li, Z. B. Li, H. Liang, J. Liang, C. J. Lin, G. L. Lin, P. Y. Lin, S. X. Lin, S. K. Lin, Y. C. Lin, J. J. Ling, J. M. Link, L. Littenberg, B. R. Littlejohn, B. J. Liu, C. Liu, D. W. Liu, H. Liu, J. L. Liu, J. C. Liu, S. Liu, S. S. Liu, X. Liu, Y. B. Liu, C. Lu, H. Q. Lu, J. S. Lu, A. Luk, K. B. Luk, T. Luo, X. L. Luo, L. H. Ma, Q. M. Ma, X. Y. Ma, X. B. Ma, Y. Q. Ma, B. Mayes, K. T. McDonald, M. C. McFarlane, R. D. McKeown, Y. Meng, I. Mitchell, D. Mohapatra, J. Monari Kebwaro, J. E. Morgan, Y. Nakajima, J. Napolitano, D. Naumov, E. Naumova, C. Newsom, H. Y. Ngai, W. K. Ngai, Y. B. Nie, Z. Ning, J. P. Ochoa-Ricoux, A. Olshevskiy, A. Pagac, H. -R. Pan, S. Patton, C. Pearson, V. Pec, J. C. Peng, L. E. Piilonen, L. Pinsky, C. S. J. Pun, F. Z. Qi, M. Qi, X. Qian, N. Raper, B. Ren, J. Ren, R. Rosero, B. Roskovec, X. C. Ruan, W. R. Sands III, B. Seilhan, B. B. Shao, K. Shih, W. Y. Song, H. Steiner, P. Stoler, M. Stuart, G. X. Sun, J. L. Sun, N. Tagg, Y. H. Tam, H. K. Tanaka, W. Tang, X. Tang, D. Taychenachev, H. Themann, Y. Torun, S. Trentalange, O. Tsai, K. V. Tsang, R. H. M. Tsang, C. E. Tull, Y. C. Tung, N. Viaux, B. Viren, S. Virostek, V. Vorobel, C. H. Wang, L. S. Wang, L. Y. Wang, L. Z. Wang, M. Wang, N. Y. Wang, R. G. Wang, T. Wang, W. Wang, W. W. Wang, X. T. Wang, X. Wang, Y. F. Wang, Z. Wang, Z. Wang, Z. M. Wang, D. M. Webber, H. Y. Wei, Y. D. Wei, L. J. Wen, D. L. Wenman, K. Whisnant, C. G. White, L. Whitehead, C. A. Whitten Jr., J. Wilhelmi, T. Wise, H. C. Wong, H. L. H. Wong, J. Wong, S. C. F. Wong, E. Worcester, F. F. Wu, Q. Wu, D. M. Xia, J. K. Xia, S. T. Xiang, Q. Xiao, Z. Z. Xing, G. Xu, J. Y. Xu, J. L. Xu, J. Xu, W. Xu, Y. Xu, T. Xue, J. Yan, C. G. Yang, L. Yang, M. S. Yang, M. T. Yang, M. Ye, M. Yeh, Y. S. Yeh, K. Yip, B. L. Young, G. Y. Yu, Z. Y. Yu, S. Zeng, L. Zhan, C. Zhang, F. H. Zhang, H. H. Zhang, J. W. Zhang, K. Zhang, Q. X. Zhang, Q. M. Zhang, S. H. Zhang, X. T. Zhang, Y. C. Zhang, Y. H. Zhang, Y. M. Zhang, Y. X. Zhang, Y. M. Zhang, Z. J. Zhang, Z. Y. Zhang, Z. P. Zhang, J. Zhao, Q. W. Zhao, Y. F. Zhao, Y. B. Zhao, L. Zheng, W. L. Zhong, L. Zhou, N. Zhou, Z. Y. Zhou, H. L. Zhuang, S. Zimmerman, J. H. Zou

The Daya Bay experiment was the first to report simultaneous measurements of reactor antineutrinos at multiple baselines leading to the discovery of $\bar{\nu}_e$ oscillations over km-baselines. Subsequent data has provided the world's most precise measurement of $\rm{sin}^22\theta_{13}$ and the effective mass splitting $\Delta m_{ee}^2$. The experiment is located in Daya Bay, China where the cluster of six nuclear reactors is among the world's most prolific sources of electron antineutrinos. Read More

We derive expressions for the neutrino mixing parameters that result from complex perturbations on (1) the Majorana neutrino mass matrix (in the basis of charged lepton mass eigenstates) and on (2) the charged lepton mass matrix, for arbitrary initial (unperturbed) mixing matrices. In the first case, we find that the phases of the elements of the perturbation matrix, and the initial values of the Dirac and Majorana phases, strongly impact the leading order corrections to the neutrino mixing parameters and phases. For experimentally compatible scenarios wherein the initial neutrino mass matrix has $\mu-\tau$ symmetry, we find that the Dirac phase can take any value under small perturbations. Read More

2015May
Authors: Daya Bay Collaboration, F. P. An, A. B. Balantekin, H. R. Band, M. Bishai, S. Blyth, I. Butorov, G. F. Cao, J. Cao, W. R. Cen, Y. L. Chan, J. F. Chang, L. C. Chang, Y. Chang, H. S. Chen, Q. Y. Chen, S. M. Chen, Y. X. Chen, Y. Chen, J. H. Cheng, J. Cheng, Y. P. Cheng, J. J. Cherwinka, M. C. Chu, J. P. Cummings, J. de Arcos, Z. Y. Deng, X. F. Ding, Y. Y. Ding, M. V. Diwan, E. Draeger, D. A. Dwyer, W. R. Edwards, S. R. Ely, R. Gill, M. Gonchar, G. H. Gong, H. Gong, M. Grassi, W. Q. Gu, M. Y. Guan, L. Guo, X. H. Guo, R. W. Hackenburg, R. Han, S. Hans, M. He, K. M. Heeger, Y. K. Heng, Y. K. Hor, Y. B. Hsiung, B. Z. Hu, L. M. Hu, L. J. Hu, T. Hu, W. Hu, E. C. Huang, H. X. Huang, X. T. Huang, P. Huber, G. Hussain, D. E. Jaffe, P. Jaffke, K. L. Jen, S. Jetter, X. P. Ji, X. L. Ji, J. B. Jiao, R. A. Johnson, L. Kang, S. H. Kettell, M. Kramer, K. K. Kwan, M. W. Kwok, T. Kwok, T. J. Langford, K. Lau, L. Lebanowski, J. Lee, R. T. Lei, R. Leitner, A. Leung, J. K. C. Leung, C. A. Lewis, D. J. Li, F. Li, G. S. Li, Q. J. Li, S. C. Li, W. D. Li, X. N. Li, X. Q. Li, Y. F. Li, Z. B. Li, H. Liang, C. J. Lin, G. L. Lin, P. Y. Lin, S. K. Lin, J. J. Ling, J. M. Link, L. Littenberg, B. R. Littlejohn, D. W. Liu, H. Liu, J. L. Liu, J. C. Liu, S. S. Liu, C. Lu, H. Q. Lu, J. S. Lu, K. B. Luk, Q. M. Ma, X. Y. Ma, X. B. Ma, Y. Q. Ma, K. T. McDonald, R. D. McKeown, Y. Meng, I. Mitchell, J. Monari Kebwaro, Y. Nakajima, J. Napolitano, D. Naumov, E. Naumova, H. Y. Ngai, Z. Ning, J. P. Ochoa-Ricoux, A. Olshevski, S. Patton, V. Pec, J. C. Peng, L. E. Piilonen, L. Pinsky, C. S. J. Pun, F. Z. Qi, M. Qi, X. Qian, N. Raper, B. Ren, J. Ren, R. Rosero, B. Roskovec, X. C. Ruan, B. B. Shao, H. Steiner, G. X. Sun, J. L. Sun, W. Tang, H. Themann, K. V. Tsang, C. E. Tull, Y. C. Tung, N. Viaux, B. Viren, V. Vorobel, C. H. Wang, M. Wang, N. Y. Wang, R. G. Wang, W. Wang, W. W. Wang, X. Wang, Y. F. Wang, Z. Wang, Z. Wang, Z. M. Wang, H. Y. Wei, L. J. Wen, K. Whisnant, C. G. White, L. Whitehead, T. Wise, H. L. H. Wong, S. C. F. Wong, E. Worcester, Q. Wu, D. M. Xia, J. K. Xia, X. Xia, Z. Z. Xing, J. Y. Xu, J. L. Xu, J. Xu, Y. Xu, T. Xue, J. Yan, C. G. Yang, L. Yang, M. S. Yang, M. T. Yang, M. Ye, M. Yeh, Y. S. Yeh, B. L. Young, G. Y. Yu, Z. Y. Yu, S. L. Zang, L. Zhan, C. Zhang, H. H. Zhang, J. W. Zhang, Q. M. Zhang, Y. M. Zhang, Y. X. Zhang, Y. M. Zhang, Z. J. Zhang, Z. Y. Zhang, Z. P. Zhang, J. Zhao, Q. W. Zhao, Y. F. Zhao, Y. B. Zhao, L. Zheng, W. L. Zhong, L. Zhou, N. Zhou, H. L. Zhuang, J. H. Zou

We report a new measurement of electron antineutrino disappearance using the fully-constructed Daya Bay Reactor Neutrino Experiment. The final two of eight antineutrino detectors were installed in the summer of 2012. Including the 404 days of data collected from October 2012 to November 2013 resulted in a total exposure of 6. Read More

2014Jul
Authors: F. P. An1, A. B. Balantekin2, H. R. Band3, W. Beriguete4, M. Bishai5, S. Blyth6, I. Butorov7, G. F. Cao8, J. Cao9, Y. L. Chan10, J. F. Chang11, L. C. Chang12, Y. Chang13, C. Chasman14, H. Chen15, Q. Y. Chen16, S. M. Chen17, X. Chen18, X. Chen19, Y. X. Chen20, Y. Chen21, Y. P. Cheng22, J. J. Cherwinka23, M. C. Chu24, J. P. Cummings25, J. de Arcos26, Z. Y. Deng27, Y. Y. Ding28, M. V. Diwan29, E. Draeger30, X. F. Du31, D. A. Dwyer32, W. R. Edwards33, S. R. Ely34, J. Y. Fu35, L. Q. Ge36, R. Gill37, M. Gonchar38, G. H. Gong39, H. Gong40, M. Grassi41, W. Q. Gu42, M. Y. Guan43, X. H. Guo44, R. W. Hackenburg45, G. H. Han46, S. Hans47, M. He48, K. M. Heeger49, Y. K. Heng50, P. Hinrichs51, Y. K. Hor52, Y. B. Hsiung53, B. Z. Hu54, L. M. Hu55, L. J. Hu56, T. Hu57, W. Hu58, E. C. Huang59, H. Huang60, X. T. Huang61, P. Huber62, G. Hussain63, Z. Isvan64, D. E. Jaffe65, P. Jaffke66, K. L. Jen67, S. Jetter68, X. P. Ji69, X. L. Ji70, H. J. Jiang71, J. B. Jiao72, R. A. Johnson73, L. Kang74, S. H. Kettell75, M. Kramer76, K. K. Kwan77, M. W. Kwok78, T. Kwok79, W. C. Lai80, K. Lau81, L. Lebanowski82, J. Lee83, R. T. Lei84, R. Leitner85, A. Leung86, J. K. C. Leung87, C. A. Lewis88, D. J. Li89, F. Li90, G. S. Li91, Q. J. Li92, W. D. Li93, X. N. Li94, X. Q. Li95, Y. F. Li96, Z. B. Li97, H. Liang98, C. J. Lin99, G. L. Lin100, P. Y. Lin101, S. K. Lin102, Y. C. Lin103, J. J. Ling104, J. M. Link105, L. Littenberg106, B. R. Littlejohn107, D. W. Liu108, H. Liu109, J. L. Liu110, J. C. Liu111, S. S. Liu112, Y. B. Liu113, C. Lu114, H. Q. Lu115, K. B. Luk116, Q. M. Ma117, X. Y. Ma118, X. B. Ma119, Y. Q. Ma120, K. T. McDonald121, M. C. McFarlane122, R. D. McKeown123, Y. Meng124, I. Mitchell125, J. Monari Kebwaro126, Y. Nakajima127, J. Napolitano128, D. Naumov129, E. Naumova130, I. Nemchenok131, H. Y. Ngai132, Z. Ning133, J. P. Ochoa-Ricoux134, A. Olshevski135, S. Patton136, V. Pec137, J. C. Peng138, L. E. Piilonen139, L. Pinsky140, C. S. J. Pun141, F. Z. Qi142, M. Qi143, X. Qian144, N. Raper145, B. Ren146, J. Ren147, R. Rosero148, B. Roskovec149, X. C. Ruan150, B. B. Shao151, H. Steiner152, G. X. Sun153, J. L. Sun154, Y. H. Tam155, X. Tang156, H. Themann157, K. V. Tsang158, R. H. M. Tsang159, C. E. Tull160, Y. C. Tung161, B. Viren162, V. Vorobel163, C. H. Wang164, L. S. Wang165, L. Y. Wang166, M. Wang167, N. Y. Wang168, R. G. Wang169, W. Wang170, W. W. Wang171, X. Wang172, Y. F. Wang173, Z. Wang174, Z. Wang175, Z. M. Wang176, D. M. Webber177, H. Y. Wei178, Y. D. Wei179, L. J. Wen180, K. Whisnant181, C. G. White182, L. Whitehead183, T. Wise184, H. L. H. Wong185, S. C. F. Wong186, E. Worcester187, Q. Wu188, D. M. Xia189, J. K. Xia190, X. Xia191, Z. Z. Xing192, J. Y. Xu193, J. L. Xu194, J. Xu195, Y. Xu196, T. Xue197, J. Yan198, C. C. Yang199, L. Yang200, M. S. Yang201, M. T. Yang202, M. Ye203, M. Yeh204, Y. S. Yeh205, B. L. Young206, G. Y. Yu207, J. Y. Yu208, Z. Y. Yu209, S. L. Zang210, B. Zeng211, L. Zhan212, C. Zhang213, F. H. Zhang214, J. W. Zhang215, Q. M. Zhang216, Q. Zhang217, S. H. Zhang218, Y. C. Zhang219, Y. M. Zhang220, Y. H. Zhang221, Y. X. Zhang222, Z. J. Zhang223, Z. Y. Zhang224, Z. P. Zhang225, J. Zhao226, Q. W. Zhao227, Y. Zhao228, Y. B. Zhao229, L. Zheng230, W. L. Zhong231, L. Zhou232, Z. Y. Zhou233, H. L. Zhuang234, J. H. Zou235
Affiliations: 1Daya Bay Collaboration, 2Daya Bay Collaboration, 3Daya Bay Collaboration, 4Daya Bay Collaboration, 5Daya Bay Collaboration, 6Daya Bay Collaboration, 7Daya Bay Collaboration, 8Daya Bay Collaboration, 9Daya Bay Collaboration, 10Daya Bay Collaboration, 11Daya Bay Collaboration, 12Daya Bay Collaboration, 13Daya Bay Collaboration, 14Daya Bay Collaboration, 15Daya Bay Collaboration, 16Daya Bay Collaboration, 17Daya Bay Collaboration, 18Daya Bay Collaboration, 19Daya Bay Collaboration, 20Daya Bay Collaboration, 21Daya Bay Collaboration, 22Daya Bay Collaboration, 23Daya Bay Collaboration, 24Daya Bay Collaboration, 25Daya Bay Collaboration, 26Daya Bay Collaboration, 27Daya Bay Collaboration, 28Daya Bay Collaboration, 29Daya Bay Collaboration, 30Daya Bay Collaboration, 31Daya Bay Collaboration, 32Daya Bay Collaboration, 33Daya Bay Collaboration, 34Daya Bay Collaboration, 35Daya Bay Collaboration, 36Daya Bay Collaboration, 37Daya Bay Collaboration, 38Daya Bay Collaboration, 39Daya Bay Collaboration, 40Daya Bay Collaboration, 41Daya Bay Collaboration, 42Daya Bay Collaboration, 43Daya Bay Collaboration, 44Daya Bay Collaboration, 45Daya Bay Collaboration, 46Daya Bay Collaboration, 47Daya Bay Collaboration, 48Daya Bay Collaboration, 49Daya Bay Collaboration, 50Daya Bay Collaboration, 51Daya Bay Collaboration, 52Daya Bay Collaboration, 53Daya Bay Collaboration, 54Daya Bay Collaboration, 55Daya Bay Collaboration, 56Daya Bay Collaboration, 57Daya Bay Collaboration, 58Daya Bay Collaboration, 59Daya Bay Collaboration, 60Daya Bay Collaboration, 61Daya Bay Collaboration, 62Daya Bay Collaboration, 63Daya Bay Collaboration, 64Daya Bay Collaboration, 65Daya Bay Collaboration, 66Daya Bay Collaboration, 67Daya Bay Collaboration, 68Daya Bay Collaboration, 69Daya Bay Collaboration, 70Daya Bay Collaboration, 71Daya Bay Collaboration, 72Daya Bay Collaboration, 73Daya Bay Collaboration, 74Daya Bay Collaboration, 75Daya Bay Collaboration, 76Daya Bay Collaboration, 77Daya Bay Collaboration, 78Daya Bay Collaboration, 79Daya Bay Collaboration, 80Daya Bay Collaboration, 81Daya Bay Collaboration, 82Daya Bay Collaboration, 83Daya Bay Collaboration, 84Daya Bay Collaboration, 85Daya Bay Collaboration, 86Daya Bay Collaboration, 87Daya Bay Collaboration, 88Daya Bay Collaboration, 89Daya Bay Collaboration, 90Daya Bay Collaboration, 91Daya Bay Collaboration, 92Daya Bay Collaboration, 93Daya Bay Collaboration, 94Daya Bay Collaboration, 95Daya Bay Collaboration, 96Daya Bay Collaboration, 97Daya Bay Collaboration, 98Daya Bay Collaboration, 99Daya Bay Collaboration, 100Daya Bay Collaboration, 101Daya Bay Collaboration, 102Daya Bay Collaboration, 103Daya Bay Collaboration, 104Daya Bay Collaboration, 105Daya Bay Collaboration, 106Daya Bay Collaboration, 107Daya Bay Collaboration, 108Daya Bay Collaboration, 109Daya Bay Collaboration, 110Daya Bay Collaboration, 111Daya Bay Collaboration, 112Daya Bay Collaboration, 113Daya Bay Collaboration, 114Daya Bay Collaboration, 115Daya Bay Collaboration, 116Daya Bay Collaboration, 117Daya Bay Collaboration, 118Daya Bay Collaboration, 119Daya Bay Collaboration, 120Daya Bay Collaboration, 121Daya Bay Collaboration, 122Daya Bay Collaboration, 123Daya Bay Collaboration, 124Daya Bay Collaboration, 125Daya Bay Collaboration, 126Daya Bay Collaboration, 127Daya Bay Collaboration, 128Daya Bay Collaboration, 129Daya Bay Collaboration, 130Daya Bay Collaboration, 131Daya Bay Collaboration, 132Daya Bay Collaboration, 133Daya Bay Collaboration, 134Daya Bay Collaboration, 135Daya Bay Collaboration, 136Daya Bay Collaboration, 137Daya Bay Collaboration, 138Daya Bay Collaboration, 139Daya Bay Collaboration, 140Daya Bay Collaboration, 141Daya Bay Collaboration, 142Daya Bay Collaboration, 143Daya Bay Collaboration, 144Daya Bay Collaboration, 145Daya Bay Collaboration, 146Daya Bay Collaboration, 147Daya Bay Collaboration, 148Daya Bay Collaboration, 149Daya Bay Collaboration, 150Daya Bay Collaboration, 151Daya Bay Collaboration, 152Daya Bay Collaboration, 153Daya Bay Collaboration, 154Daya Bay Collaboration, 155Daya Bay Collaboration, 156Daya Bay Collaboration, 157Daya Bay Collaboration, 158Daya Bay Collaboration, 159Daya Bay Collaboration, 160Daya Bay Collaboration, 161Daya Bay Collaboration, 162Daya Bay Collaboration, 163Daya Bay Collaboration, 164Daya Bay Collaboration, 165Daya Bay Collaboration, 166Daya Bay Collaboration, 167Daya Bay Collaboration, 168Daya Bay Collaboration, 169Daya Bay Collaboration, 170Daya Bay Collaboration, 171Daya Bay Collaboration, 172Daya Bay Collaboration, 173Daya Bay Collaboration, 174Daya Bay Collaboration, 175Daya Bay Collaboration, 176Daya Bay Collaboration, 177Daya Bay Collaboration, 178Daya Bay Collaboration, 179Daya Bay Collaboration, 180Daya Bay Collaboration, 181Daya Bay Collaboration, 182Daya Bay Collaboration, 183Daya Bay Collaboration, 184Daya Bay Collaboration, 185Daya Bay Collaboration, 186Daya Bay Collaboration, 187Daya Bay Collaboration, 188Daya Bay Collaboration, 189Daya Bay Collaboration, 190Daya Bay Collaboration, 191Daya Bay Collaboration, 192Daya Bay Collaboration, 193Daya Bay Collaboration, 194Daya Bay Collaboration, 195Daya Bay Collaboration, 196Daya Bay Collaboration, 197Daya Bay Collaboration, 198Daya Bay Collaboration, 199Daya Bay Collaboration, 200Daya Bay Collaboration, 201Daya Bay Collaboration, 202Daya Bay Collaboration, 203Daya Bay Collaboration, 204Daya Bay Collaboration, 205Daya Bay Collaboration, 206Daya Bay Collaboration, 207Daya Bay Collaboration, 208Daya Bay Collaboration, 209Daya Bay Collaboration, 210Daya Bay Collaboration, 211Daya Bay Collaboration, 212Daya Bay Collaboration, 213Daya Bay Collaboration, 214Daya Bay Collaboration, 215Daya Bay Collaboration, 216Daya Bay Collaboration, 217Daya Bay Collaboration, 218Daya Bay Collaboration, 219Daya Bay Collaboration, 220Daya Bay Collaboration, 221Daya Bay Collaboration, 222Daya Bay Collaboration, 223Daya Bay Collaboration, 224Daya Bay Collaboration, 225Daya Bay Collaboration, 226Daya Bay Collaboration, 227Daya Bay Collaboration, 228Daya Bay Collaboration, 229Daya Bay Collaboration, 230Daya Bay Collaboration, 231Daya Bay Collaboration, 232Daya Bay Collaboration, 233Daya Bay Collaboration, 234Daya Bay Collaboration, 235Daya Bay Collaboration

A search for light sterile neutrino mixing was performed with the first 217 days of data from the Daya Bay Reactor Antineutrino Experiment. The experiment's unique configuration of multiple baselines from six 2.9~GW$_{\rm th}$ nuclear reactors to six antineutrino detectors deployed in two near (effective baselines 512~m and 561~m) and one far (1579~m) underground experimental halls makes it possible to test for oscillations to a fourth (sterile) neutrino in the $10^{\rm -3}~{\rm eV}^{2} < |\Delta m_{41}^{2}| < 0. Read More

We study a model with partial quark-lepton universality that can naturally arise in grand unified theories. We find that constraints on the model can be reduced to a single condition on the Dirac CP phase $\delta$ in the neutrino sector. Using our current knowledge of the CKM and PMNS mixing matrices, we predict $-32. Read More

2014Jun
Authors: Daya Bay Collaboration, F. P. An, A. B. Balantekin, H. R. Band, W. Beriguete, M. Bishai, S. Blyth, I. Butorov, G. F. Cao, J. Cao, Y. L. Chan, J. F. Chang, L. C. Chang, Y. Chang, C. Chasman, H. Chen, Q. Y. Chen, S. M. Chen, X. Chen, X. Chen, Y. X. Chen, Y. Chen, Y. P. Cheng, J. J. Cherwinka, M. C. Chu, J. P. Cummings, J. de Arcos, Z. Y. Deng, Y. Y. Ding, M. V. Diwan, E. Draeger, X. F. Du, D. A. Dwyer, W. R. Edwards, S. R. Ely, J. Y. Fu, L. Q. Ge, R. Gill, M. Gonchar, G. H. Gong, H. Gong, W. Q. Gu, M. Y. Guan, X. H. Guo, R. W. Hackenburg, G. H. Han, S. Hans, M. He, K. M. Heeger, Y. K. Heng, P. Hinrichs, Y. K. Hor, Y. B. Hsiung, B. Z. Hu, L. M. Hu, L. J. Hu, T. Hu, W. Hu, E. C. Huang, H. Huang, X. T. Huang, P. Huber, G. Hussain, Z. Isvan, D. E. Jaffe, P. Jaffke, K. L. Jen, S. Jetter, X. P. Ji, X. L. Ji, H. J. Jiang, J. B. Jiao, R. A. Johnson, L. Kang, S. H. Kettell, M. Kramer, K. K. Kwan, M. W. Kwok, T. Kwok, W. C. Lai, K. Lau, L. Lebanowski, J. Lee, R. T. Lei, R. Leitner, A. Leung, J. K. C. Leung, C. A. Lewis, D. J. Li, F. Li, G. S. Li, Q. J. Li, W. D. Li, X. N. Li, X. Q. Li, Y. F. Li, Z. B. Li, H. Liang, C. J. Lin, G. L. Lin, P. Y. Lin, S. K. Lin, Y. C. Lin, J. J. Ling, J. M. Link, L. Littenberg, B. R. Littlejohn, D. W. Liu, H. Liu, J. L. Liu, J. C. Liu, S. S. Liu, Y. B. Liu, C. Lu, H. Q. Lu, K. -B. Luk, Q. M. Ma, X. Y. Ma, X. B. Ma, Y. Q. Ma, K. T. McDonald, M. C. McFarlane, R. D. McKeown, Y. Meng, I. Mitchell, J. Monari Kebwaro, Y. Nakajima, J. Napolitano, D. Naumov, E. Naumova, I. Nemchenok, H. Y. Ngai, Z. Ning, J. P. Ochoa-Ricoux, A. Olshevski, S. Patton, V. Pec, J. C. Peng, L. E. Piilonen, L. Pinsky, C. S. J. Pun, F. Z. Qi, M. Qi, X. Qian, N. Raper, B. Ren, J. Ren, R. Rosero, B. Roskovec, X. C. Ruan, B. B. Shao, H. Steiner, G. X. Sun, J. L. Sun, Y. H. Tam, X. Tang, H. Themann, K. V. Tsang, R. H. M. Tsang, C. E. Tull, Y. C. Tung, B. Viren, V. Vorobel, C. H. Wang, L. S. Wang, L. Y. Wang, M. Wang, N. Y. Wang, R. G. Wang, W. Wang, W. W. Wang, X. Wang, Y. F. Wang, Z. Wang, Z. Wang, Z. M. Wang, D. M. Webber, H. Y. Wei, Y. D. Wei, L. J. Wen, K. Whisnant, C. G. White, L. Whitehead, T. Wise, H. L. H. Wong, S. C. F. Wong, E. Worcester, Q. Wu, D. M. Xia, J. K. Xia, X. Xia, Z. Z. Xing, J. Y. Xu, J. L. Xu, J. Xu, Y. Xu, T. Xue, J. Yan, C. C. Yang, L. Yang, M. S. Yang, M. T. Yang, M. Ye, M. Yeh, Y. S. Yeh, B. L. Young, G. Y. Yu, J. Y. Yu, Z. Y. Yu, S. L. Zang, B. Zeng, L. Zhan, C. Zhang, F. H. Zhang, J. W. Zhang, Q. M. Zhang, Q. Zhang, S. H. Zhang, Y. C. Zhang, Y. M. Zhang, Y. H. Zhang, Y. X. Zhang, Z. J. Zhang, Z. Y. Zhang, Z. P. Zhang, J. Zhao, Q. W. Zhao, Y. Zhao, Y. B. Zhao, L. Zheng, W. L. Zhong, L. Zhou, Z. Y. Zhou, H. L. Zhuang, J. H. Zou

A new measurement of the $\theta_{13}$ mixing angle has been obtained at the Daya Bay Reactor Neutrino Experiment via the detection of inverse beta decays tagged by neutron capture on hydrogen. The antineutrino events for hydrogen capture are distinct from those for gadolinium capture with largely different systematic uncertainties, allowing a determination independent of the gadolinium-capture result and an improvement on the precision of $\theta_{13}$ measurement. With a 217-day antineutrino data set obtained with six antineutrino detectors and from six 2. Read More

We study Majorana neutrino mass matrices that have two texture zeros, or two cofactor zeros, or one texture zero and one cofactor zero. The two texture/cofactor zero conditions give four constraints, which in conjunction with the five measured oscillation parameters completely determine the nine independent real parameters of the neutrino mass matrix. We also study the implications that future measurements of neutrinoless double beta decay and the Dirac CP phase will have on these cases. Read More

2013Oct
Authors: Daya Bay Collaboration, F. P. An, A. B. Balantekin, H. R. Band, W. Beriguete, M. Bishai, S. Blyth, R. L. Brown, I. Butorov, G. F. Cao, J. Cao, R. Carr, Y. L. Chan, J. F. Chang, Y. Chang, C. Chasman, H. S. Chen, H. Y. Chen, S. J. Chen, S. M. Chen, X. C. Chen, X. H. Chen, Y. Chen, Y. X. Chen, Y. P. Cheng, J. J. Cherwinka, M. C. Chu, J. P. Cummings, J. de Arcos, Z. Y. Deng, Y. Y. Ding, M. V. Diwan, E. Draeger, X. F. Du, D. A. Dwyer, W. R. Edwards, S. R. Ely, J. Y. Fu, L. Q. Ge, R. Gill, M. Gonchar, G. H. Gong, H. Gong, Y. A. Gornushkin, W. Q. Gu, M. Y. Guan, X. H. Guo, R. W. Hackenburg, R. L. Hahn, G. H. Han, S. Hans, M. He, K. M. Heeger, Y. K. Heng, P. Hinrichs, yk. Hor, Y. B. Hsiung, B. Z. Hu, L. J. Hu, L. M. Hu, T. Hu, W. Hu, E. C. Huang, H. X. Huang, H. Z. Huang, X. T. Huang, P. Huber, G. Hussain, Z. Isvan, D. E. Jaffe, P. Jaffke, S. Jetter, X. L. Ji, X. P. Ji, H. J. Jiang, J. B. Jiao, R. A. Johnson, L. Kang, S. H. Kettell, M. Kramer, K. K. Kwan, M. W. Kwok, T. Kwok, W. C. Lai, W. H. Lai, K. Lau, L. Lebanowski, J. Lee, R. T. Lei, R. Leitner, A. Leung, J. K. C. Leung, C. A. Lewis, D. J. Li, F. Li, G. S. Li, Q. J. Li, W. D. Li, X. N. Li, X. Q. Li, Y. F. Li, Z. B. Li, H. Liang, C. J. Lin, G. L. Lin, S. K. Lin, Y. C. Lin, J. J. Ling, J. M. Link, L. Littenberg, B. R. Littlejohn, D. W. Liu, H. Liu, J. C. Liu, J. L. Liu, S. S. Liu, Y. B. Liu, C. Lu, H. Q. Lu, K. B. Luk, Q. M. Ma, X. B. Ma, X. Y. Ma, Y. Q. Ma, K. T. McDonald, M. C. McFarlane, R. D. McKeown, Y. Meng, I. Mitchell, Y. Nakajima, J. Napolitano, D. Naumov, E. Naumova, I. Nemchenok, H. Y. Ngai, W. K. Ngai, Z. Ning, J. P. Ochoa-Ricoux, A. Olshevski, S. Patton, V. Pec, J. C. Peng, L. E. Piilonen, L. Pinsky, C. S. J. Pun, F. Z. Qi, M. Qi, X. Qian, N. Raper, B. Ren, J. Ren, R. Rosero, B. Roskovec, X. C. Ruan, B. B. Shao, H. Steiner, G. X. Sun, J. L. Sun, Y. H. Tam, H. K. Tanaka, X. Tang, H. Themann, S. Trentalange, O. Tsai, K. V. Tsang, R. H. M. Tsang, C. E. Tull, Y. C. Tung, B. Viren, V. Vorobel, C. H. Wang, L. S. Wang, L. Y. Wang, L. Z. Wang, M. Wang, N. Y. Wang, R. G. Wang, W. Wang, W. W. Wang, X. Wang, Y. F. Wang, Z. Wang, Z. Wang, Z. M. Wang, D. M. Webber, H. Wei, Y. D. Wei, L. J. Wen, K. Whisnant, C. G. White, L. Whitehead, T. Wise, H. L. H. Wong, S. C. F. Wong, E. Worcester, Q. Wu, D. M. Xia, J. K. Xia, X. Xia, Z. Z. Xing, J. Xu, J. L. Xu, J. Y. Xu, Y. Xu, T. Xue, J. Yan, C. G. Yang, L. Yang, M. S. Yang, M. Ye, M. Yeh, Y. S. Yeh, B. L. Young, G. Y. Yu, J. Y. Yu, Z. Y. Yu, S. L. Zang, L. Zhan, C. Zhang, F. H. Zhang, J. W. Zhang, Q. M. Zhang, S. H. Zhang, Y. C. Zhang, Y. H. Zhang, Y. M. Zhang, Y. X. Zhang, Z. J. Zhang, Z. P. Zhang, Z. Y. Zhang, J. Zhao, Q. W. Zhao, Y. B. Zhao, L. Zheng, W. L. Zhong, L. Zhou, Z. Y. Zhou, H. L. Zhuang, J. H. Zou

A measurement of the energy dependence of antineutrino disappearance at the Daya Bay Reactor Neutrino Experiment is reported. Electron antineutrinos ($\overline{\nu}_{e}$) from six $2.9$ GW$_{\rm th}$ reactors were detected with six detectors deployed in two near (effective baselines 512 m and 561 m) and one far (1579 m) underground experimental halls. Read More

We show that any model with a homogeneous relationship among elements of the neutrino mass matrix with one mass hierarchy yields predictions for the oscillation parameters and Majorana phases similar to those given by a model with the same homogeneous relationship among cofactors of the neutrino mass matrix with the opposite mass hierarchy, except when the lightest mass is of order 20 meV or less. Read More

In view of the recent measurement of nonzero $\theta_{13}$, we carry out a systematic study of a simple class of neutrino models that has one diagonal texture or cofactor zero in the mass matrix. There are seven free parameters in the model and five of them are already measured by neutrino oscillation experiments; some cases for the normal or inverted hierarchy are excluded and for the rest we obtain the preferred values for the lightest neutrino mass and Dirac CP phase. We find that there are strong similarities between one diagonal texture zero models with one mass hierarchy and one diagonal cofactor zero models with the opposite mass hierarchy. Read More

With the recent observation of nonzero \theta_{13}, five neutrino oscillation parameters are now known. By imposing four zeros in the Yukawa coupling matrix of the type I seesaw model, the number of parameters in the neutrino mass matrix is reduced to seven, and we are able to make predictions for the lightest neutrino mass, Dirac CP phase, and neutrinoless double beta decay. Four texture zeros in the Yukawa coupling matrix is equivalent to either a single texture zero or a single cofactor zero for an off-diagonal element of the light neutrino mass matrix. Read More

2012Oct
Authors: Daya Bay Collaboration, F. P. An, Q. An, J. Z. Bai, A. B. Balantekin, H. R. Band, W. Beriguete, M. Bishai, S. Blyth, R. L. Brown, G. F. Cao, J. Cao, R. Carr, W. T. Chan, J. F. Chang, Y. Chang, C. Chasman, H. S. Chen, H. Y. Chen, S. J. Chen, S. M. Chen, X. C. Chen, X. H. Chen, X. S. Chen, Y. Chen, Y. X. Chen, J. J. Cherwinka, M. C. Chu, J. P. Cummings, Z. Y. Deng, Y. Y. Ding, M. V. Diwan, E. Draeger, X. F. Du, D. Dwyer, W. R. Edwards, S. R. Ely, S. D. Fang, J. Y. Fu, Z. W. Fu, L. Q. Ge, R. L. Gill, M. Gonchar, G. H. Gong, H. Gong, Y. A. Gornushkin, W. Q. Gu, M. Y. Guan, X. H. Guo, R. W. Hackenburg, R. L. Hahn, S. Hans, H. F. Hao, M. He, Q. He, K. M. Heeger, Y. K. Heng, P. Hinrichs, Y. K. Hor, Y. B. Hsiung, B. Z. Hu, T. Hu, H. X. Huang, H. Z. Huang, X. T. Huang, P. Huber, V. Issakov, Z. Isvan, D. E. Jaffe, S. Jetter, X. L. Ji, X. P. Ji, H. J. Jiang, J. B. Jiao, R. A. Johnson, L. Kang, S. H. Kettell, M. Kramer, K. K. Kwan, M. W. Kwok, T. Kwok, C. Y. Lai, W. C. Lai, W. H. Lai, K. Lau, L. Lebanowski, J. Lee, R. T. Lei, R. Leitner, J. K. C. Leung, K. Y. Leung, C. A. Lewis, F. Li, G. S. Li, Q. J. Li, W. D. Li, X. B. Li, X. N. Li, X. Q. Li, Y. Li, Z. B. Li, H. Liang, C. J. Lin, G. L. Lin, S. K. Lin, Y. C. Lin, J. J. Ling, J. M. Link, L. Littenberg, B. R. Littlejohn, D. W. Liu, J. C. Liu, J. L. Liu, Y. B. Liu, C. Lu, H. Q. Lu, A. Luk, K. B. Luk, Q. M. Ma, X. B. Ma, X. Y. Ma, Y. Q. Ma, K. T. McDonald, M. C. McFarlane, R. D. McKeown, Y. Meng, D. Mohapatra, Y. Nakajima, J. Napolitano, D. Naumov, I. Nemchenok, H. Y. Ngai, W. K. Ngai, Y. B. Nie, Z. Ning, J. P. Ochoa-Ricoux, A. Olshevski, S. Patton, V. Pec, J. C. Peng, L. E. Piilonen, L. Pinsky, C. S. J. Pun, F. Z. Qi, M. Qi, X. Qian, N. Raper, J. Ren, R. Rosero, B. Roskovec, X. C. Ruan, B. B. Shao, K. Shih, H. Steiner, G. X. Sun, J. L. Sun, N. Tagg, Y. H. Tam, H. K. Tanaka, X. Tang, H. Themann, Y. Torun, S. Trentalange, O. Tsai, K. V. Tsang, R. H. M. Tsang, C. E. Tull, Y. C. Tung, B. Viren, V. Vorobel, C. H. Wang, L. S. Wang, L. Y. Wang, L. Z. Wang, M. Wang, N. Y. Wang, R. G. Wang, W. Wang, X. Wang, Y. F. Wang, Z. Wang, Z. Wang, Z. M. Wang, D. M. Webber, H. Y. Wei, Y. D. Wei, L. J. Wen, K. Whisnant, C. G. White, L. Whitehead, Y. Williamson, T. Wise, H. L. H. Wong, E. T. Worcester, F. F. Wu, Q. Wu, J. B. Xi, D. M. Xia, Z. Z. Xing, J. Xu, J. Xu, J. L. Xu, Y. Xu, T. Xue, C. G. Yang, L. Yang, M. Ye, M. Yeh, Y. S. Yeh, B. L. Young, Z. Y. Yu, L. Zhan, C. Zhang, F. H. Zhang, J. W. Zhang, Q. M. Zhang, S. H. Zhang, Y. C. Zhang, Y. H. Zhang, Y. X. Zhang, Z. J. Zhang, Z. P. Zhang, Z. Y. Zhang, J. Zhao, Q. W. Zhao, Y. B. Zhao, L. Zheng, W. L. Zhong, L. Zhou, Z. Y. Zhou, H. L. Zhuang, J. H. Zou

We report an improved measurement of the neutrino mixing angle $\theta_{13}$ from the Daya Bay Reactor Neutrino Experiment. We exclude a zero value for $\sin^22\theta_{13}$ with a significance of 7.7 standard deviations. Read More

Many neutrino mixing scenarios that have \mu-\tau symmetry with \theta_{13}=0 are in disagreement with recent experimental results that indicate a nonzero value for \theta_{13}. We investigate the effect of small perturbations on Majorana mass matrices with \mu-\tau symmetry and derive analytic formulae for the corrections to the mixing angles. We find that since m_1 and m_2 are nearly degenerate, \mu-\tau symmetry mixing scenarios are able to explain the experimental data with about the same size perturbation for most values of \theta_{12}. Read More

2012Mar
Authors: F. P. An, J. Z. Bai, A. B. Balantekin, H. R. Band, D. Beavis, W. Beriguete, M. Bishai, S. Blyth, K. Boddy, R. L. Brown, B. Cai, G. F. Cao, J. Cao, R. Carr, W. T. Chan, J. F. Chang, Y. Chang, C. Chasman, H. S. Chen, H. Y. Chen, S. J. Chen, S. M. Chen, X. C. Chen, X. H. Chen, X. S. Chen, Y. Chen, Y. X. Chen, J. J. Cherwinka, M. C. Chu, J. P. Cummings, Z. Y. Deng, Y. Y. Ding, M. V. Diwan, L. Dong, E. Draeger, X. F. Du, D. A. Dwyer, W. R. Edwards, S. R. Ely, S. D. Fang, J. Y. Fu, Z. W. Fu, L. Q. Ge, V. Ghazikhanian, R. L. Gill, J. Goett, M. Gonchar, G. H. Gong, H. Gong, Y. A. Gornushkin, L. S. Greenler, W. Q. Gu, M. Y. Guan, X. H. Guo, R. W. Hackenburg, R. L. Hahn, S. Hans, M. He, Q. He, W. S. He, K. M. Heeger, Y. K. Heng, P. Hinrichs, T. H. Ho, Y. K. Hor, Y. B. Hsiung, B. Z. Hu, T. Hu, T. Hu, H. X. Huang, H. Z. Huang, P. W. Huang, X. Huang, X. T. Huang, P. Huber, Z. Isvan, D. E. Jaffe, S. Jetter, X. L. Ji, X. P. Ji, H. J. Jiang, W. Q. Jiang, J. B. Jiao, R. A. Johnson, L. Kang, S. H. Kettell, M. Kramer, K. K. Kwan, M. W. Kwok, T. Kwok, C. Y. Lai, W. C. Lai, W. H. Lai, K. Lau, L. Lebanowski, J. Lee, M. K. P. Lee, R. Leitner, J. K. C. Leung, K. Y. Leung, C. A. Lewis, B. Li, F. Li, G. S. Li, J. Li, Q. J. Li, S. F. Li, W. D. Li, X. B. Li, X. N. Li, X. Q. Li, Y. Li, Z. B. Li, H. Liang, J. Liang, C. J. Lin, G. L. Lin, S. K. Lin, S. X. Lin, Y. C. Lin, J. J. Ling, J. M. Link, L. Littenberg, B. R. Littlejohn, B. J. Liu, C. Liu, D. W. Liu, H. Liu, J. C. Liu, J. L. Liu, S. Liu, X. Liu, Y. B. Liu, C. Lu, H. Q. Lu, A. Luk, K. B. Luk, T. Luo, X. L. Luo, L. H. Ma, Q. M. Ma, X. B. Ma, X. Y. Ma, Y. Q. Ma, B. Mayes, K. T. McDonald, M. C. McFarlane, R. D. McKeown, Y. Meng, D. Mohapatra, J. E. Morgan, Y. Nakajima, J. Napolitano, D. Naumov, I. Nemchenok, C. Newsom, H. Y. Ngai, W. K. Ngai, Y. B. Nie, Z. Ning, J. P. Ochoa-Ricoux, D. Oh, A. Olshevski, A. Pagac, S. Patton, C. Pearson, V. Pec, J. C. Peng, L. E. Piilonen, L. Pinsky, C. S. J. Pun, F. Z. Qi, M. Qi, X. Qian, N. Raper, R. Rosero, B. Roskovec, X. C. Ruan, B. Seilhan, B. B. Shao, K. Shih, H. Steiner, P. Stoler, G. X. Sun, J. L. Sun, Y. H. Tam, H. K. Tanaka, X. Tang, H. Themann, Y. Torun, S. Trentalange, O. Tsai, K. V. Tsang, R. H. M. Tsang, C. Tull, B. Viren, S. Virostek, V. Vorobel, C. H. Wang, L. S. Wang, L. Y. Wang, L. Z. Wang, M. Wang, N. Y. Wang, R. G. Wang, T. Wang, W. Wang, X. Wang, X. Wang, Y. F. Wang, Z. Wang, Z. Wang, Z. M. Wang, D. M. Webber, Y. D. Wei, L. J. Wen, D. L. Wenman, K. Whisnant, C. G. White, L. Whitehead, C. A. Whitten Jr., J. Wilhelmi, T. Wise, H. C. Wong, H. L. H. Wong, J. Wong, E. T. Worcester, F. F. Wu, Q. Wu, D. M. Xia, S. T. Xiang, Q. Xiao, Z. Z. Xing, G. Xu, J. Xu, J. Xu, J. L. Xu, W. Xu, Y. Xu, T. Xue, C. G. Yang, L. Yang, M. Ye, M. Yeh, Y. S. Yeh, K. Yip, B. L. Young, Z. Y. Yu, L. Zhan, C. Zhang, F. H. Zhang, J. W. Zhang, Q. M. Zhang, K. Zhang, Q. X. Zhang, S. H. Zhang, Y. C. Zhang, Y. H. Zhang, Y. X. Zhang, Z. J. Zhang, Z. P. Zhang, Z. Y. Zhang, J. Zhao, Q. W. Zhao, Y. B. Zhao, L. Zheng, W. L. Zhong, L. Zhou, Z. Y. Zhou, H. L. Zhuang, J. H. Zou

The Daya Bay Reactor Neutrino Experiment has measured a non-zero value for the neutrino mixing angle $\theta_{13}$ with a significance of 5.2 standard deviations. Antineutrinos from six 2. Read More

2012Feb
Authors: Daya Bay Collaboration, F. P. An, Q. An, J. Z. Bai, A. B. Balantekin, H. R. Band, W. Beriguete, M. Bishai, S. Blyth, R. L. Brown, G. F. Cao, J. Cao, R. Carr, J. F. Chang, Y. Chang, C. Chasman, H. S. Chen, S. J. Chen, S. M. Chen, X. C. Chen, X. H. Chen, X. S. Chen, Y. Chen, J. J. Cherwinka, M. C. Chu, J. P. Cummings, Z. Y. Deng, Y. Y. Ding, M. V. Diwan, E. Draeger, X. F. Du, D. Dwyer, W. R. Edwards, S. R. Ely, S. D. Fang, J. Y. Fu, Z. W. Fu, L. Q. Ge, R. L. Gill, M. Gonchar, G. H. Gong, H. Gong, Y. A. Gornushkin, L. S. Greenler, W. Q. Gu, M. Y. Guan, X. H. Guo, R. W. Hackenburg, R. L. Hahn, S. Hans, H. F. Hao, M. He, Q. He, W. S. He, K. M. Heeger, Y. K. Heng, P. Hinrichs, T. H. Ho, Y. K. Hor, Y. B. Hsiung, B. Z. Hu, T. Hu, T. Hu, H. X. Huang, H. Z. Huang, P. W. Huang, X. Huang, X. T. Huang, P. Huber, D. E. Jaffe, S. Jetter, X. L. Ji, X. P. Ji, H. J. Jiang, W. Q. Jiang, J. B. Jiao, R. A. Johnson, L. Kang, S. H. Kettell, M. Kramer, K. K. Kwan, M. W. Kwok, T. Kwok, C. Y. Lai, W. C. Lai, W. H. Lai, K. Lau, L. Lebanowski, M. K. P. Lee, R. Leitner, J. K. C. Leung, K. Y. Leung, C. A. Lewis, F. Li, G. S. Li, J. Li, Q. J. Li, S. F. Li, W. D. Li, X. B. Li, X. N. Li, X. Q. Li, Y. Li, Z. B. Li, H. Liang, C. J. Lin, G. L. Lin, S. K. Lin, S. X. Lin, Y. C. Lin, J. J. Ling, J. M. Link, L. Littenberg, B. R. Littlejohn, B. J. Liu, D. W. Liu, J. C. Liu, J. L. Liu, S. Liu, X. Liu, Y. B. Liu, C. Lu, H. Q. Lu, A. Luk, K. B. Luk, X. L. Luo, L. H. Ma, Q. M. Ma, X. Y. Ma, Y. Q. Ma, B. Mayes, K. T. McDonald, M. C. McFarlane, R. D. McKeown, Y. Meng, D. Mohapatra, Y. Nakajima, J. Napolitano, D. Naumov, I. Nemchenok, C. Newsom, H. Y. Ngai, W. K. Ngai, Y. B. Nie, Z. Ning, J. P. Ochoa-Ricoux, A. Olshevski, A. Pagac, S. Patton, V. Pec, J. C. Peng, L. E. Piilonen, L. Pinsky, C. S. J. Pun, F. Z. Qi, M. Qi, X. Qian, R. Rosero, B. Roskovec, X. C. Ruan, B. Seilhan, B. B. Shao, K. Shih, H. Steiner, P. Stoler, G. X. Sun, J. L. Sun, Y. H. Tam, H. K. Tanaka, X. Tang, Y. Torun, S. Trentalange, O. Tsai, K. V. Tsang, R. H. M. Tsang, C. Tull, B. Viren, V. Vorobel, C. H. Wang, L. S. Wang, L. Y. Wang, M. Wang, N. Y. Wang, R. G. Wang, W. Wang, X. Wang, Y. F. Wang, Z. Wang, Z. Wang, Z. M. Wang, D. M. Webber, Y. D. Wei, L. J. Wen, D. L. Wenman, K. Whisnant, C. G. White, L. Whitehead, J. Wilhelmi, T. Wise, H. L. H. Wong, J. Wong, F. F. Wu, Q. Wu, J. B. Xi, D. M. Xia, Q. Xiao, Z. Z. Xing, G. Xu, J. Xu, J. Xu, J. L. Xu, Y. Xu, T. Xue, C. G. Yang, L. Yang, M. Ye, M. Yeh, Y. S. Yeh, B. L. Young, Z. Y. Yu, L. Zhan, C. Zhang, F. H. Zhang, J. W. Zhang, Q. M. Zhang, S. H. Zhang, Y. C. Zhang, Y. H. Zhang, Y. X. Zhang, Z. J. Zhang, Z. P. Zhang, Z. Y. Zhang, H. Zhao, J. Zhao, Q. W. Zhao, Y. B. Zhao, L. Zheng, W. L. Zhong, L. Zhou, Y. Z. Zhou, Z. Y. Zhou, H. L. Zhuang, J. H. Zou

The Daya Bay Reactor Neutrino Experiment is designed to determine precisely the neutrino mixing angle $\theta_{13}$ with a sensitivity better than 0.01 in the parameter sin$^22\theta_{13}$ at the 90% confidence level. To achieve this goal, the collaboration will build eight functionally identical antineutrino detectors. Read More

The bicycle model of Lorentz noninvariant neutrino oscillations without neutrino masses naturally predicts maximal mixing and a 1/E dependence of the oscillation argument for $\nu_\mu \to \nu_\tau$ oscillations of atmospheric and long-baseline neutrinos, but cannot also simultaneously fit the data for solar neutrinos and KamLAND. We examine all nineteen possible structures of the Standard Model Extension for Lorentz noninvariant oscillations of massless neutrinos that naturally have a 1/E dependence at high neutrino energy. Due to the lack of any evidence for direction dependence, we consider only direction-independent oscillations. Read More

The bicycle model of Lorentz noninvariant neutrino oscillations without neutrino masses naturally predicts maximal mixing and a 1/E dependence of the oscillation argument for muon-neutrino to tau-neutrino oscillations of atmospheric and long-baseline neutrinos, but cannot also simultaneously fit the data for solar neutrinos and KamLAND. Within the Standard Model Extension, we examine all 19 possible structures of the effective Hamiltonian for Lorentz noninvariant oscillations of massless neutrinos that naturally have a 1/E dependence at high neutrino energy. Due to the lack of any evidence for direction dependence, we consider only direction-independent oscillations. Read More

The NSF has chosen the site for the Deep Underground Science and Engineering Laboratory (DUSEL) to be in Lead, South Dakota. In fact, the state of South Dakota has already stepped up to the plate and contributed its own funding for the proposed lab, see http://www.sanfordlaboratoryathomestake. Read More

We show that the combined data from solar, long-baseline and reactor neutrino experiments can exclude the generalized bicycle model of Lorentz noninvariant direction-dependent and/or direction-independent oscillations of massless neutrinos. This model has five parameters, which is more than is needed in standard oscillation phenomenology with neutrino masses. Solar data alone are sufficient to exclude the pure direction-dependent case. Read More

We investigate the extent to which leptonic CP-violation in (3+2) sterile neutrino models leads to different oscillation probabilities for $\bar{\nu}_{\mu}\to\bar{\nu}_e$ and $\nu_{\mu}\to\nu_e$ oscillations at MiniBooNE. We are using a combined analysis of short-baseline (SBL) oscillation results, including the LSND and null SBL results, to which we impose additional constraints from atmospheric oscillation data. We obtain the favored regions in MiniBooNE oscillation probability space for both (3+2) CP-conserving and (3+2) CP-violating models. Read More

We study the proposal that mass-varying neutrinos could provide an explanation for the LSND signal for \bar\nu_mu to \bar\nu_e oscillations. We first point out that all positive oscillation signals occur in matter and that three active mass-varying neutrinos are insufficient to describe all existing neutrino data including LSND. We then examine the possibility that a model with four mass-varying neutrinos (three active and one sterile) can explain the LSND effect and remain consistent with all other neutrino data. Read More

We perform a comparative study of two methods of determining the survival probabilities of low, intermediate, and high energy solar neutrinos that emphasizes the general agreement between the Large Mixing Angle (LMA) solution and extant solar neutrino data. The first analysis is oscillation parameter-independent and the second analysis involves an approximate calculation of the survival probabilities in the three energy ranges that depends only on oscillation parameters. We show that future experiments like BOREXino, CLEAN, Heron, LENS and MOON, that measure $pp$ and $^7$Be neutrinos, will facilitate a stringent test of the LMA solution independently of the Standard Solar Model (SSM), without recourse to earth-matter effects. Read More

The long-term prospects for fully exploring three-flavor mixing in the neutrino sector depend upon an ongoing and increased investment in the appropriate accelerator R&D. Two new concepts have been proposed that would revolutionize neutrino experiments, namely the Neutrino Factory and the Beta Beam facility. These new facilities would dramatically improve our ability to test the three-flavor mixing framework, measure \textsl{CP} violation in the lepton sector, and perhaps determine the neutrino mass hierarchy, and, if necessary, probe extremely small values of the mixing angle $\theta_{13}$. Read More

We examine a strategy for using neutral current measurements in long-baseline neutrino oscillation experiments to put limits on the existence of more than three light, active neutrinos. We determine the relative contributions of statistics, cross section uncertainties, event misidentification and other systematic errors to the overall uncertainty of these measurements. As specific case studies, we make simulations of beams and detectors that are like the K2K, T2K, and MINOS experiments. Read More

The LSND signal for \bar\nu_\mu to \bar\nu_e oscillations has prompted supposition that there may be a fourth light neutrino or that CPT is violated. Neither explanation provides a good fit to all existing neutrino data. We examine the even more speculative possibility that a four-neutrino model with CPT violation can explain the LSND effect and remain consistent with all other data. Read More

The current status of the physics of massive neutrinos is reviewed with a forward-looking emphasis. The article begins with the general phenomenology of neutrino oscillations in vacuum and matter and documents the experimental evidence for oscillations of solar, reactor, atmospheric and accelerator neutrinos. Both active and sterile oscillation possibilities are considered. Read More

We examine the use of two superbeam neutrino oscillation experiments with baselines $\lsim 1000$ km to resolve parameter degeneracies inherent in the three-neutrino analysis of such experiments. We find that with appropriate choices of neutrino energies and baselines two experiments with different baselines can provide a much better determination of the neutrino mass ordering than a single experiment alone. Two baselines are especially beneficial when the mass scale for solar neutrino oscillations $\delta m^2_{\rm sol}$ is $\gsim 5\times10^{-5}$ eV$^2$. Read More

We propose to measure the CP phase $\delta_{\rm CP}$, the magnitude of the neutrino mixing matrix element $|U_{e3}|$ and the sign of the atmopheric scale mass--squared difference $\Delta{\rm m}^2_{31}$ with a superbeam by the joint analysis of two different long baseline neutrino oscillation experiments. One is a long baseline experiment (LBL) at 300 km and the other is a very long baseline (VLBL) experiment at 2100 km. We take the neutrino source to be the approved high intensity proton synchrotron, HIPA. Read More

There are three parameter degeneracies inherent in the three--neutrino analysis of long--baseline neutrino experiments. We develop a systematic method for determining whether or not a set of measurements in neutrino oscillation appearance experiments with approximately monoenergetic beams can completely resolve these ambiguities. We then use this method to identify experimental scenarios in which the parameter degeneracies may be efficiently resolved. Read More

We perform a global analysis in the framework of two active neutrino oscillations of all solar neutrino data, including the recent SNO day and night spectra (comprised of the charged current (CC), elastic scattering (ES) and neutral current (NC) events), the Super-Kamiokande (SK) day and night spectra (from 1496 days) and the updated SAGE results. We find that the Large Mixing Angle (LMA) solution is selected at the 99% C.L. Read More

We examine how constraints can be placed on the neutrino component of dark matter by an accurate measurement of neutrinoless double beta ($0\nu\beta\beta$) decay and the solar oscillation amplitude. We comment on the alleged evidence for $0\nu\beta\beta$ decay. Read More

We identify three independent two-fold parameter degeneracies (\delta, \theta_{13}), sgn(\delta m^2_{31}) and (\theta_{23}, \pi/2-\theta_{23}) inherent in the usual three-neutrino analysis of long-baseline neutrino experiments, which can lead to as much as an eight-fold degeneracy in the determination of the oscillation parameters. We discuss the implications these degeneracies have for detecting CP violation and present criteria for breaking them. A superbeam facility with a baseline at least as long as the distance between Fermilab and Homestake (1290 km) and a narrow band beam with energy tuned so that the measurements are performed at the first oscillation peak can resolve all the ambiguities other than the (\theta_{23}, \pi/2-\theta_{23}) ambiguity (which can be resolved at a neutrino factory) and a residual (\delta, \pi-\delta) ambiguity. Read More

We examine the prospects of making a joint analysis of neutrino oscillation at two baselines with neutrino superbeams. Assuming narrow band superbeams and a 100 kt water Cerenkov calorimeter, we calculate the event rates and sensitivities to the matter effect, the signs of the neutrino mass differences, the CP phase and the mixing angle \theta_{13}. Taking into account all possible experimental errors under general consideration, we explored the optimum cases of narrow band beam to measure the matter effect and the CP violation effect at all baselines up to 3000 km. Read More

For high energy long baseline neutrino oscillation experiments, we propose a Figure of Merit criterion to compare the statistical quality of experiments at various oscillation distances under the condition of identical detectors and a given neutrino beam. We take into account all possible experimental errors under general consideration. In this way the Figure of Merit is closely related to the usual statistical criterion of number of sigmas. Read More

We discuss options for U.S. long baseline neutrino experiments using upgraded conventional neutrino beams, assuming $L/E_\nu$ is chosen to be near the peak of the leading oscillation. Read More

We perform a model-independent analysis of solar neutrino flux rates including the recent charged-current measurement at the Sudbury Neutrino Observatory (SNO). We derive a universal sum rule involving SNO and SuperKamiokande rates, and show that the SNO neutral-current measurement can not fix the fraction of solar $\nu_e$ oscillating to sterile neutrinos. The large uncertainty in the SSM $^8$B flux impedes a determination of the sterile neutrino fraction. Read More