K. Tsumura - Nagoya Univ.

K. Tsumura
Are you K. Tsumura?

Claim your profile, edit publications, add additional information:

Contact Details

Name
K. Tsumura
Affiliation
Nagoya Univ.
City
Toyoake-shi
Country
Japan

Pubs By Year

Pub Categories

 
High Energy Physics - Phenomenology (25)
 
Cosmology and Nongalactic Astrophysics (11)
 
Nuclear Theory (8)
 
Astrophysics of Galaxies (7)
 
Physics - Fluid Dynamics (7)
 
High Energy Physics - Experiment (6)
 
Instrumentation and Methods for Astrophysics (6)
 
Quantum Physics (4)
 
Physics - Statistical Mechanics (3)
 
Statistics - Machine Learning (3)
 
Earth and Planetary Astrophysics (3)
 
Physics - Computational Physics (3)
 
Mathematical Physics (2)
 
Mathematics - Mathematical Physics (2)
 
High Energy Astrophysical Phenomena (2)
 
Physics - Other (1)
 
General Relativity and Quantum Cosmology (1)
 
Solar and Stellar Astrophysics (1)
 
Mathematics - Statistics (1)
 
Statistics - Theory (1)
 
Physics - Optics (1)

Publications Authored By K. Tsumura

The Extragalactic Background Light (EBL) captures the total integrated emission from stars and galaxies throughout the cosmic history. The amplitude of the near-infrared EBL from space absolute photometry observations has been controversial and depends strongly on the modeling and subtraction of the Zodiacal light foreground. We report the first measurement of the diffuse background spectrum at 0. Read More

Maximum likelihood estimation (MLE) is one of the most important methods in machine learning, and the expectation-maximization (EM) algorithm is often used to obtain maximum likelihood estimates. However, EM heavily depends on initial configurations and fails to find the global optimum. On the other hand, in the field of physics, quantum annealing (QA) was proposed as a novel optimization approach. Read More

In this work, we investigate the spectrums of gravitational waves produced by chiral symmetry breaking in dark quantum chromodynamics (dQCD) sector. The dark pion ($\pi$) can be a dark matter candidate as weakly interacting massive particle (WIMP) or strongly interacting massive particle (SIMP). For a WIMP scenario, we introduce the dQCD sector coupled to the standard model (SM) sector with classical scale invariance and investigate the annihilation process of the dark pion via the $2\pi \to 2\, \text{SM}$ process. Read More

We propose a modified expectation-maximization algorithm by introducing the concept of quantum annealing, which we call the deterministic quantum annealing expectation-maximization (DQAEM) algorithm. The expectation-maximization (EM) algorithm is an established algorithm to compute maximum likelihood estimates and applied to many practical applications. However, it is known that EM heavily depends on initial values and its estimates are sometimes trapped by local optima. Read More

We present an analysis of the blank sky spectra observed with the Faint Object Spectrograph on board the Hubble Space Telescope. We study the diffuse sky emission from ultraviolet to optical wavelengths, which is composed of the zodiacal light (ZL), diffuse Galactic light (DGL), and residual emission. The observations were performed toward 54 fields distributed widely over the sky, with the spectral coverage from 0. Read More

We study how to suppress multiphoton emission background in QED against radiative emission of neutrino pair (RENP) from atoms. We purse the possibility of background suppression using the photonic band structure of periodic dielectric media, called photonic crystals. The modification of photon emission rate in photonic crystal waveguides is quantitatively examined to clarify the condition of background-free RENP. Read More

Observed baryon asymmetry can be achieved not only by the decay of right-handed neutrinos but also by the scattering processes in the reheating era. In the latter scenario, new physics in high energy scale does not need to be specified, but only two types of the higher dimensional operator of the standard model particles are assumed in the previous work. In this paper, we examine the origin of the higher dimensional operators assuming models with a certain seesaw mechanism at the high energy scale. Read More

The EM algorithm is a novel numerical method to obtain maximum likelihood estimates and is often used for practical calculations. However, many of maximum likelihood estimation problems are nonconvex, and it is known that the EM algorithm fails to give the optimal estimate by being trapped by local optima. In order to deal with this difficulty, we propose a deterministic quantum annealing EM algorithm by introducing the mathematical mechanism of quantum fluctuations into the conventional EM algorithm because quantum fluctuations induce the tunnel effect and are expected to relax the difficulty of nonconvex optimization problems in the maximum likelihood estimation problems. Read More

We study the gauged U(1)_{B-L} extensions of the models for neutrino masses and dark matter. In this class of models, tiny neutrino masses are radiatively induced through the loop diagrams, while the origin of the dark matter stability is guaranteed by the remnant of the gauge symmetry. Depending on how the lepton number is violated in the neutrino mass diagrams, these models are systematically classified. Read More

We give a detailed derivation of the second-order (local) hydrodynamics for Boltzmann equation with an external force by using the renormalization group method. In this method, we solve the Boltzmann equation faithfully to extract the hydrodynamics without recourse to any ansatz. Our method leads to microscopic expressions of not only all the transport coefficients that are of the same form as those in Chapman-Enskog method but also those of the viscous relaxation times $\tau_i$ that admit physically natural interpretations. Read More

Observational study on near-infrared (IR) scattering properties of interstellar dust grains has been limited due to its faintness. Using all-sky maps obtained from Diffuse Infrared Background Experiment (DIRBE), we investigate the scattering property from diffuse Galactic light (DGL) measurements at 1.25, 2. Read More

We discuss a possibility to explain the LHC diphoton excesses at $750$GeV by the new scalar $X$ that couples to the gauge bosons through the loop of new massive particles with Standard Model charges. We assume that the new particles decay into the Standard Model particles at the tree level. We systematically examine the models that preserve the vacuum stability and the perturbativity up to the Planck scale. Read More

We give a quantitative analysis of the dynamical properties of fermionic cold atomic gases in normal phase, such as the shear viscosity, heat conductivity, and viscous relaxation times, using the novel microscopic expressions derived by the renormalization group (RG) method, where the Boltzmann equation is faithfully solved to extract the hydrodynamics without recourse to any ansatz. In particular, we examine the quantum statistical effects, temperature dependence, and scattering-length dependence of the transport coefficients and the viscous relaxation times. The numerical calculation shows that the relation $\tau_\pi=\eta/P$, which is derived in the relaxation-time approximation (RTA) and is used in most of the literature, turns out to be satisfied quite well, while the similar relation for the viscous relaxation time $\tau_J$ of the heat conductivity is satisfied only approximately with a considerable error. Read More

We derive the second-order hydrodynamic equation for reactive multi-component systems from the relativistic Boltzmann equation. In the reactive system, particles can change their species under the restriction of the imposed conservation laws during the collision process. Our derivation is based on the renormalization group (RG) method, in which the Boltzmann equation is solved in an organized perturbation method as faithfully as possible and possible secular terms are resummed away by a suitable setting of the initial value of the distribution function. Read More

We investigate diboson signals in the Standard Model (SM) with an extended Higgs sector, motivated by the excesses in the diboson channels at the LHC. We begin with the unitarity sum-rules of the weak gauge boson scattering assuming the Higgs sector is extended. According to the sum-rules, we discuss the Higgs interpretations of the diboson signals and the consistency with the ATLAS diboson anomaly and other experimental constraints. Read More

We derive the second-order hydrodynamic equation and the microscopic formulae of the relaxation times as well as the transport coefficients systematically from the relativistic Boltzmann equation. Our derivation is based on a novel development of the renormalization-group method, a powerful reduction theory of dynamical systems, which has been applied successfully to derive the non-relativistic second-order hydrodynamic equation Our theory nicely gives a compact expression of the deviation of the distribution function in terms of the linearized collision operator, which is different from those used as an ansatz in the conventional fourteen-moment method. It is confirmed that the resultant microscopic expressions of the transport coefficients coincide with those derived in the Chapman-Enskog expansion method. Read More

We consider the Standard Model with a new scalar field $X$ which is a $n_X^{}$ representation of the $SU(2)_L$ with a hypercharge $Y_X$. The renormalization group running effects on the new scalar quartic coupling constants are evaluated. Even if we set the scalar quartic coupling constants to be zero at the scale of the new scalar field, the coupling constants are induced by the one-loop effect of the weak gauge bosons. Read More

We report measurements of the Diffuse Galactic Light (DGL) spectrum in the near-infrared, spanning the wavelength range 0.95-1.65 {\mu}m by the Cosmic Infrared Background ExpeRiment (CIBER). Read More

The Georgi-Machacek model predicts the existence of four neutral Higgs bosons, one of which can be identified as the 125-GeV Higgs boson. The latest Higgs data favor the parameter space of small mixing angle alpha between the two custodial singlets of the model. The other two neutral Higgs bosons belong respectively to the custodial triplet and quintet. Read More

We reanalyze data of near-infrared background taken by Infrared Telescope in Space (IRTS) based on up-to-date observational results of zodiacal light, integrated star light and diffuse Galactic light. We confirm the existence of residual isotropic emission, which is slightly lower but almost the same as previously reported. At wavelengths longer than 2 {\mu}m, the result is fairly consistent with the recent observation with AKARI. Read More

Extragalactic background light (EBL) anisotropy traces variations in the total production of photons over cosmic history, and may contain faint, extended components missed in galaxy point source surveys. Infrared EBL fluctuations have been attributed to primordial galaxies and black holes at the epoch of reionization (EOR), or alternately, intra-halo light (IHL) from stars tidally stripped from their parent galaxies at low redshift. We report new EBL anisotropy measurements from a specialized sounding rocket experiment at 1. Read More

Introducing arbitrary number of neutral Higgs bosons in the electroweak symmetry breaking sector, we derive a set of conditions among Higgs couplings which need to be satisfied to maintain the unitarity of the high energy scattering amplitudes of weak gauge bosons at the tree level (unitarity sum rules). It is shown that the unitarity sum rules require the tree level $\rho$ parameter to be 1, without explicitly invoking the custodial symmetry arguments. The one-loop finiteness of the electroweak oblique corrections is automatically guaranteed once these unitarity sum rules are imposed among Higgs couplings. Read More

A numerical simulation method, based on Dang et al.'s self-consistent theory of large-amplitude collective motion, for rare transition events is presented. The method provides a one-dimensional pathway without knowledge of the final configuration, which includes a dynamical effect caused by not only a potential but also kinetic term. Read More

We report the results from an X-ray and near-infrared observation of the Galactic black hole binary 4U 1630--47 in the very high state, performed with {\it Suzaku} and IRSF around the peak of the 2012 September-October outburst. The X-ray spectrum is approximated by a steep power law, with photon index of 3.2, identifying the source as being in the very high state. Read More

After the discovery of the standard-model-like Higgs boson at the LHC, the structure of the Higgs sector remains unknown. We discuss how it can be determined by the combination of direct and indirect searches for additional Higgs bosons at future collider experiments. First of all, we evaluate expected excluded regions for the mass of additional neutral Higgs bosons from direct searches at the LHC with the 14 TeV collision energy in the two Higgs doublet models with a softly-broken $Z_2$ symmetry. Read More

We have discovered that Europa, Ganymede and Callisto are bright around 1.5 {\mu}m even when not directly lit by sunlight, based on observations from the Hubble Space Telescope and the Subaru Telescope. The observations were conducted with non-sidereal tracking on Jupiter outside of the field of view to reduce the stray light subtraction uncertainty due to the close proximity of Jupiter. Read More

We develop a general framework in the renormalization-group (RG) method for extracting a mesoscopic dynamics from an evolution equation by incorporating some excited (fast) modes as additional components to the invariant manifold spanned by zero modes. We call this framework the doublet scheme. The validity of the doublet scheme is first tested and demonstrated by taking the Lorenz model as a simple three-dimensional dynamical system; it is shown that the two-dimensional reduced dynamics on the attractive manifold composed of the would-be zero and a fast modes are successfully obtained in a natural way. Read More

2013Oct

This report summarizes the work of the Energy Frontier Higgs Boson working group of the 2013 Community Summer Study (Snowmass). We identify the key elements of a precision Higgs physics program and document the physics potential of future experimental facilities as elucidated during the Snowmass study. We study Higgs couplings to gauge boson and fermion pairs, double Higgs production for the Higgs self-coupling, its quantum numbers and $CP$-mixing in Higgs couplings, the Higgs mass and total width, and prospects for direct searches for additional Higgs bosons in extensions of the Standard Model. Read More

The ILC Higgs White Paper is a review of Higgs Boson theory and experiment at the International Linear Collider (ILC). Theory topics include the Standard Model Higgs, the two-Higgs doublet model, alternative approaches to electroweak symmetry breaking, and precision goals for Higgs boson experiments. Experimental topics include the measurement of the Higgs cross section times branching ratio for various Higgs decay modes at ILC center of mass energies of 250, 500, and 1000 GeV, and the extraction of Higgs couplings and the total Higgs width from these measurements. Read More

Recent results from the LHC experiments, both for the Higgs mass measurement and the direct search for supersymmetric (SUSY) particles, might indicate that the SUSY breaking scale is much higher than the electroweak scale. Although it is difficult to investigate such a scenario at collider experiments, the measurement of the hadronic electric dipole moments is one of promising ways to detect the effects of the SUSY particles. These effects are expressed in terms of the CP-violating effective operators defined at the SUSY breaking scale, which involve quarks, gluons, photons, and gluinos. Read More

The Peccei-Quinn anomalous global U(1)_{PQ} symmetry is important not only for solving the strong CP problem with a cosmologically relevant axion, but it may also be the origin of a residual Z_2 symmetry. This new symmetry may be responsible for a second component of dark matter composed of an absolutely stable Weakly Interacting Massive Particle, as well as for generating radiative neutrino mass. Two specific realizations of this idea are proposed. Read More

We first obtained the spectrum of the diffuse Galactic light (DGL) at general interstellar space in 1.8-5.3 um wavelength region with the low-resolution prism spectroscopy mode of the AKARI Infra-Red Camera (IRC) NIR channel. Read More

The Extragalactic Background Light (EBL) as an integrated light from outside of our Galaxy includes information of the early universe and the Dark Ages. We analyzed the spectral data of the astrophysical diffuse emission obtained with the low-resolution spectroscopy mode on the AKARI Infra-Red Camera (IRC) in 1.8-5. Read More

We have developed a near-infrared spectrometer designed to measure the absolute intensity of the Solar 854.2 nm CaII Fraunhofer line, scattered by interplanetary dust, in the Zodiacal light spectrum. Based on the known equivalent line width in the Solar spectrum, this measurement can derive the Zodiacal brightness, testing models of the Zodiacal light based on morphology that are used to determine the extragalactic background light in absolute photometry measurements. Read More

We present the near- and mid-infrared zodiacal light spectrum obtained with the AKARI Infra-Red Camera (IRC). A catalog of 278 spectra of the diffuse sky covering a wide range of Galactic and ecliptic latitudes was constructed. The wavelength range of this catalog is 1. Read More

In the two Higgs doublet model, $\tan\beta$ is an important parameter, which is defined as the ratio of the vacuum expectation values of the doublets. We study how accurately $\tan\beta$ can be determined at linear colliders via the precision measurement of the decay branching fraction of the standard model (SM) like Higgs boson. Since the effective coupling constants of the Higgs boson with the weak gauge bosons are expected to be measured accurately, the branching ratios can be precisely determined. Read More

The two Higgs doublet model (THDM) is a simple extension of the standard model, which can provide a low energy effective description of more fundamental theories. The model contains additional Higgs bosons, and predicts rich phenomenology especially due to the variation of Yukawa interactions. Under imposing a softly broken discrete symmetry, there are four independent types of Yukawa interactions in THDMs. Read More

We study a possibility of the Higgs boson, which consists of an SU(2) doublet and a septet. The vacuum expectation value of a septet with hypercharge Y=2 is known to preserve the electroweak rho parameter unity at the tree level. Therefore, the septet can give significant contribution to the electroweak symmetry breaking. Read More

We investigate a model in which tiny neutrino masses are generated at the two-loop level by using scalar leptoquark and diquark multiplets. The diquark can be singly produced at the LHC, and it can decay into a pair of leptoquarks through the lepton number violating interaction. Subsequent decays of the two leptoquarks can provide a clear signature of the lepton number violation, namely two QCD jets and a pair of same-signed charged leptons without missing energy. Read More

Tracking a randomly varying optical phase is a key task in metrology, with applications in optical communication. The best precision for optical phase tracking has till now been limited by the quantum vacuum fluctuations of coherent light. Here we surpass this coherent-state limit by using a continuous-wave beam in a phase-squeezed quantum state. Read More

The doubly charged scalar boson (H^{\pm\pm}) is introduced in several models of the new physics beyond the standard model. The H^{\pm\pm} has Yukawa interactions with two left-handed charged leptons or two right-handed charged leptons depending on the models. We study kinematical properties of H^{\pm\pm} decay products through tau leptons in order to discriminate the chiral structures of the new Yukawa interaction. Read More

We have developed and characterized an imaging instrument to measure the spatial properties of the diffuse near-infrared extragalactic background light in a search for fluctuations from z > 6 galaxies during the epoch of reionization. The instrument is part of the Cosmic Infrared Background Experiment (CIBER), designed to observe the extragalactic background light above the Earth's atmosphere during a suborbital sounding rocket flight. The imaging instrument incorporates a 2x2 degree field of view, to measure fluctuations over the predicted peak of the spatial power spectrum at 10 arcminutes, and 7"x7" pixels, to remove lower redshift galaxies to a depth sufficient to reduce the low-redshift galaxy clustering foreground below instrumental sensitivity. Read More

We show that the relativistic dissipative hydrodynamic equation derived from the relativistic Boltzmann equation by the renormalization-group method uniquely leads to the one in the energy frame proposed by Landau and Lifshitz, provided that the macroscopic-frame vector, which defines the local rest frame of the fluid velocity, is independent of the momenta of constituent particles, as it should. We argue that the relativistic hydrodynamic equations for viscous fluids must be defined on the energy frame if it is consistent with the underlying relativistic kinetic equation. Read More

We review our work on the application of the renormalization-group method to obtain first- and second-order relativistic hydrodynamics of the relativistic Boltzmann equation (RBE) as a dynamical system, with some corrections and new unpublished results. For the first-order equation, we explicitly obtain the distribution function in the asymptotic regime as the invariant manifold of the dynamical system, which turns out to be nothing but the matching condition defining the energy frame, i.e. Read More

After a brief account of the derivation of the first-order relativistic hydrodynamic equation as a construction of the invariant manifold of relativistic Boltzmann equation, we give a sketch of derivation of the second-order hydrodynamic equation (extended thermodynamics) both in the nonrelativistic and relativistic cases. We show that the resultant equation suggests a novel ansatz for the functional form to be used in Grad moment method, which turns out to give the same expressions for the transport coefficients as those given in the Chapman-Enskog theory as well as the novel expressions for the relaxation times and lenghts allowing natural physical interpretaion. Read More

We studied the feasibility of the measurement of Higgs pair creation at a Photon Linear Collider (PLC). From the sensitivity to the anomalous self-coupling of the Higgs boson, the optimum $\gamma \gamma$ collision energy was found to be around 270 GeV for a Higgs mass of 120 GeV/$c^2$. We found that large backgrounds such as $\gamma \gamma \rightarrow W^+W^-, ZZ,$ and $b\bar{b}b\bar{b}$, can be suppressed if correct assignment of tracks to parent partons is achieved and Higgs pair events can be observed with a statistical significance of $\sim 5 \sigma$ by operating the PLC for 5 years. Read More

In this paper, the renormalization-group equations for the (flavor-conserving) CP-violating interaction are derived up to the dimension six, including all the four-quark operators, at one-loop level. We apply them to the models with the neutral scalar boson or the color-octet scalar boson which have CP-violating Yukawa interactions with quarks, and discuss the neutron electric dipole moment in these models. Read More

Doubly charged Higgs bosons are predicted in many new physics models with an extended Higgs sector that contains a Higgs triplet field. Current experimental searches have been focusing mainly on the scenario in which the same-sign dilepton decay modes are the dominant ones. We study the scenario where the vacuum expectation value of the triplet field is sufficiently large so that the associated charged Higgs bosons decay dominantly to a pair of weak gauge bosons instead. Read More