K. Lau - University of Houston

K. Lau
Are you K. Lau?

Claim your profile, edit publications, add additional information:

Contact Details

Name
K. Lau
Affiliation
University of Houston
City
Houston
Country
United States

Pubs By Year

Pub Categories

 
High Energy Physics - Experiment (23)
 
Physics - Instrumentation and Detectors (14)
 
Nuclear Experiment (10)
 
Mathematics - Functional Analysis (6)
 
Mathematics - Metric Geometry (5)
 
Physics - Biological Physics (4)
 
High Energy Physics - Phenomenology (4)
 
Mathematics - General Topology (3)
 
Mathematics - Combinatorics (3)
 
Mathematics - Geometric Topology (2)
 
Mathematics - Dynamical Systems (2)
 
Mathematics - Probability (2)
 
Mathematics - Classical Analysis and ODEs (1)
 
Quantitative Biology - Molecular Networks (1)
 
Physics - Mesoscopic Systems and Quantum Hall Effect (1)
 
Physics - Accelerator Physics (1)
 
Solar and Stellar Astrophysics (1)
 
High Energy Astrophysical Phenomena (1)
 
Physics - Materials Science (1)
 
High Energy Physics - Theory (1)
 
Cosmology and Nongalactic Astrophysics (1)
 
Computer Science - Computer Vision and Pattern Recognition (1)

Publications Authored By K. Lau

2017Apr
Authors: F. P. An, A. B. Balantekin, H. R. Band, M. Bishai, S. Blyth, D. Cao, G. F. Cao, J. Cao, Y. L. Chan, J. F. Chang, Y. Chang, H. S. Chen, Q. Y. Chen, S. M. Chen, Y. X. Chen, Y. Chen, J. Cheng, Z. K. Cheng, J. J. Cherwinka, M. C. Chu, A. Chukanov, J. P. Cummings, Y. Y. Ding, M. V. Diwan, M. Dolgareva, J. Dove, D. A. Dwyer, W. R. Edwards, R. Gill, M. Gonchar, G. H. Gong, H. Gong, M. Grassi, W. Q. Gu, L. Guo, X. H. Guo, Y. H. Guo, Z. Guo, R. W. Hackenburg, S. Hans, M. He, K. M. Heeger, Y. K. Heng, A. Higuera, Y. B. Hsiung, B. Z. Hu, T. Hu, E. C. Huang, H. X. Huang, X. T. Huang, Y. B. Huang, P. Huber, W. Huo, G. Hussain, D. E. Jaffe, K. L. Jen, X. P. Ji, X. L. Ji, J. B. Jiao, R. A. Johnson, D. Jones, L. Kang, S. H. Kettell, A. Khan, S. Kohn, M. Kramer, K. K. Kwan, M. W. Kwok, T. J. Langford, K. Lau, L. Lebanowski, J. Lee, J. H. C. Lee, R. T. Lei, R. Leitner, J. K. C. Leung, C. Li, D. J. Li, F. Li, G. S. Li, Q. J. Li, S. Li, S. C. Li, W. D. Li, X. N. Li, X. Q. Li, Y. F. Li, Z. B. Li, H. Liang, C. J. Lin, G. L. Lin, S. Lin, S. K. Lin, Y. -C. Lin, J. J. Ling, J. M. Link, L. Littenberg, B. R. Littlejohn, J. L. Liu, J. C. Liu, C. W. Loh, C. Lu, H. Q. Lu, J. S. Lu, K. B. Luk, X. Y. Ma, X. B. Ma, Y. Q. Ma, Y. Malyshkin, D. A. Martinez Caicedo, K. T. McDonald, R. D. McKeown, I. Mitchell, Y. Nakajima, J. Napolitano, D. Naumov, E. Naumova, H. Y. Ngai, J. P. Ochoa-Ricoux, A. Olshevskiy, H. -R. Pan, J. Park, S. Patton, V. Pec, J. C. Peng, L. Pinsky, C. S. J. Pun, F. Z. Qi, M. Qi, X. Qian, R. M. Qiu, N. Raper, J. Ren, R. Rosero, B. Roskovec, X. C. Ruan, H. Steiner, P. Stoler, J. L. Sun, W. Tang, D. Taychenachev, K. Treskov, K. V. Tsang, C. E. Tull, N. Viaux, B. Viren, V. Vorobel, C. H. Wang, M. Wang, N. Y. Wang, R. G. Wang, W. Wang, X. Wang, Y. F. Wang, Z. Wang, Z. Wang, Z. M. Wang, H. Y. Wei, L. J. Wen, K. Whisnant, C. G. White, L. Whitehead, T. Wise, H. L. H. Wong, S. C. F. Wong, E. Worcester, C. -H. Wu, Q. Wu, W. J. Wu, D. M. Xia, J. K. Xia, Z. Z. Xing, J. L. Xu, Y. Xu, T. Xue, C. G. Yang, H. Yang, L. Yang, M. S. Yang, M. T. Yang, Y. Z. Yang, M. Ye, Z. Ye, M. Yeh, B. L. Young, Z. Y. Yu, S. Zeng, L. Zhan, C. Zhang, C. C. Zhang, H. H. Zhang, J. W. Zhang, Q. M. Zhang, R. Zhang, X. T. Zhang, Y. M. Zhang, Y. X. Zhang, Y. M. Zhang, Z. J. Zhang, Z. Y. Zhang, Z. P. Zhang, J. Zhao, L. Zhou, H. L. Zhuang, J. H. Zou

The Daya Bay experiment has observed correlations between reactor core fuel evolution and changes in the reactor antineutrino flux and energy spectrum. Four antineutrino detectors in two experimental halls were used to identify 2.2 million inverse beta decays (IBDs) over 1230 days spanning multiple fuel cycles for each of six 2. Read More

Let $B^{\sigma}_{2, \infty}$ denote the Besov space defined on a compact set $K \subset {\Bbb R}^d$ with an $\alpha$-regular measure $\mu$. The {\it critical exponent} $\sigma^*$ is the largest $\sigma$ such that $B^{\sigma^*}_{2, \infty}$ remains non-trivial. The exponent is determined by the geometry of $K$ and $\mu$. Read More

In a previous paper, we studied certain random walks on the hyperbolic graphs $X$ associated with the self-similar sets $K$, and showed that the discrete energy ${\mathcal E}_X$ on $X$ has an induced energy form ${\mathcal E}_K$ on $K$. The domain of ${\mathcal E}_K$ is a Besov space $\Lambda^{\alpha, \beta/2}_{2,2}$ where $\alpha$ is the Hausdorff dimension of $K$ and $\beta$ is a parameter determined by the "return ratio" of the random walk. In this paper, we consider the functional relationship of ${\mathcal E}_X$ and ${\mathcal E}_K$. Read More

2016Oct
Authors: Daya Bay Collaboration, F. P. An, A. B. Balantekin, H. R. Band, M. Bishai, S. Blyth, D. Cao, G. F. Cao, J. Cao, W. R. Cen, Y. L. Chan, J. F. Chang, L. C. Chang, Y. Chang, H. S. Chen, Q. Y. Chen, S. M. Chen, Y. X. Chen, Y. Chen, J. -H. Cheng, J. Cheng, Y. P. Cheng, Z. K. Cheng, J. J. Cherwinka, M. C. Chu, A. Chukanov, J. P. Cummings, J. de Arcos, Z. Y. Deng, X. F. Ding, Y. Y. Ding, M. V. Diwan, M. Dolgareva, J. Dove, D. A. Dwyer, W. R. Edwards, R. Gill, M. Gonchar, G. H. Gong, H. Gong, M. Grassi, W. Q. Gu, M. Y. Guan, L. Guo, X. H. Guo, Z. Guo, R. W. Hackenburg, R. Han, S. Hans, M. He, K. M. Heeger, Y. K. Heng, A. Higuera, Y. K. Hor, Y. B. Hsiung, B. Z. Hu, T. Hu, W. Hu, E. C. Huang, H. X. Huang, X. T. Huang, P. Huber, W. Huo, G. Hussain, D. E. Jaffe, P. Jaffke, K. L. Jen, S. Jetter, X. P. Ji, X. L. Ji, J. B. Jiao, R. A. Johnson, D. Jones, J. Joshi, L. Kang, S. H. Kettell, S. Kohn, M. Kramer, K. K. Kwan, M. W. Kwok, T. Kwok, T. J. Langford, K. Lau, L. Lebanowski, J. Lee, J. H. C. Lee, R. T. Lei, R. Leitner, J. K. C. Leung, C. Li, D. J. Li, F. Li, G. S. Li, Q. J. Li, S. Li, S. C. Li, W. D. Li, X. N. Li, Y. F. Li, Z. B. Li, H. Liang, C. J. Lin, G. L. Lin, S. Lin, S. K. Lin, Y. -C. Lin, J. J. Ling, J. M. Link, L. Littenberg, B. R. Littlejohn, D. W. Liu, J. L. Liu, J. C. Liu, C. W. Loh, C. Lu, H. Q. Lu, J. S. Lu, K. B. Luk, Z. Lv, Q. M. Ma, X. Y. Ma, X. B. Ma, Y. Q. Ma, Y. Malyshkin, D. A. Martinez Caicedo, K. T. McDonald, R. D. McKeown, I. Mitchell, M. Mooney, Y. Nakajima, J. Napolitano, D. Naumov, E. Naumova, H. Y. Ngai, Z. Ning, J. P. Ochoa-Ricoux, A. Olshevskiy, H. -R. Pan, J. Park, S. Patton, V. Pec, J. C. Peng, L. Pinsky, C. S. J. Pun, F. Z. Qi, M. Qi, X. Qian, N. Raper, J. Ren, R. Rosero, B. Roskovec, X. C. Ruan, H. Steiner, G. X. Sun, J. L. Sun, W. Tang, D. Taychenachev, K. Treskov, K. V. Tsang, C. E. Tull, N. Viaux, B. Viren, V. Vorobel, C. H. Wang, M. Wang, N. Y. Wang, R. G. Wang, W. Wang, X. Wang, Y. F. Wang, Z. Wang, Z. Wang, Z. M. Wang, H. Y. Wei, L. J. Wen, K. Whisnant, C. G. White, L. Whitehead, T. Wise, H. L. H. Wong, S. C. F. Wong, E. Worcester, C. -H. Wu, Q. Wu, W. J. Wu, D. M. Xia, J. K. Xia, Z. Z. Xing, J. Y. Xu, J. L. Xu, Y. Xu, T. Xue, C. G. Yang, H. Yang, L. Yang, M. S. Yang, M. T. Yang, M. Ye, Z. Ye, M. Yeh, B. L. Young, Z. Y. Yu, S. Zeng, L. Zhan, C. Zhang, H. H. Zhang, J. W. Zhang, Q. M. Zhang, X. T. Zhang, Y. M. Zhang, Y. X. Zhang, Y. M. Zhang, Z. J. Zhang, Z. Y. Zhang, Z. P. Zhang, J. Zhao, Q. W. Zhao, Y. B. Zhao, W. L. Zhong, L. Zhou, N. Zhou, H. L. Zhuang, J. H. Zou

A measurement of electron antineutrino oscillation by the Daya Bay Reactor Neutrino Experiment is described in detail. Six 2.9-GW$_{\rm th}$ nuclear power reactors of the Daya Bay and Ling Ao nuclear power facilities served as intense sources of $\overline{\nu}_{e}$'s. Read More

For any contractive iterated function system (IFS, including the Moran systems), we show that there is a natural hyperbolic graph on the symbolic space, which yields the H\"{o}lder equivalence of the hyperbolic boundary and the invariant set of the IFS. This completes the previous studies (\cite {[Ka]}, \cite{[LW1]}, \cite{[W]}) by eliminating superfluous conditions, and admits more classes of sets (e.g. Read More

2016Aug
Authors: F. P. An, A. B. Balantekin, H. R. Band, M. Bishai, S. Blyth, D. Cao, G. F. Cao, J. Cao, W. R. Cen, Y. L. Chan, J. F. Chang, L. C. Chang, Y. Chang, H. S. Chen, Q. Y. Chen, S. M. Chen, Y. X. Chen, Y. Chen, J. -H. Cheng, J. Cheng, Y. P. Cheng, Z. K. Cheng, J. J. Cherwinka, M. C. Chu, A. Chukanov, J. P. Cummings, J. de Arcos, Z. Y. Deng, X. F. Ding, Y. Y. Ding, M. V. Diwan, M. Dolgareva, J. Dove, D. A. Dwyer, W. R. Edwards, R. Gill, M. Gonchar, G. H. Gong, H. Gong, M. Grassi, W. Q. Gu, M. Y. Guan, L. Guo, X. H. Guo, Z. Guo, R. W. Hackenburg, R. Han, S. Hans, M. He, K. M. Heeger, Y. K. Heng, A. Higuera, Y. K. Hor, Y. B. Hsiung, B. Z. Hu, T. Hu, W. Hu, E. C. Huang, H. X. Huang, X. T. Huang, P. Huber, W. Huo, G. Hussain, D. E. Jaffe, P. Jaffke, K. L. Jen, S. Jetter, X. P. Ji, X. L. Ji, J. B. Jiao, R. A. Johnson, J. Joshi, L. Kang, S. H. Kettell, S. Kohn, M. Kramer, K. K. Kwan, M. W. Kwok, T. Kwok, T. J. Langford, K. Lau, L. Lebanowski, J. Lee, J. H. C. Lee, R. T. Lei, R. Leitner, J. K. C. Leung, C. Li, D. J. Li, F. Li, G. S. Li, Q. J. Li, S. Li, S. C. Li, W. D. Li, X. N. Li, Y. F. Li, Z. B. Li, H. Liang, C. J. Lin, G. L. Lin, S. Lin, S. K. Lin, Y. -C. Lin, J. J. Ling, J. M. Link, L. Littenberg, B. R. Littlejohn, D. W. Liu, J. L. Liu, J. C. Liu, C. W. Loh, C. Lu, H. Q. Lu, J. S. Lu, K. B. Luk, Z. Lv, Q. M. Ma, X. Y. Ma, X. B. Ma, Y. Q. Ma, Y. Malyshkin, D. A. Martinez Caicedo, R. D. McKeown, I. Mitchell, M. Mooney, Y. Nakajima, J. Napolitano, D. Naumov, E. Naumova, H. Y. Ngai, Z. Ning, J. P. Ochoa-Ricoux, A. Olshevskiy, H. -R. Pan, J. Park, S. Patton, V. Pec, J. C. Peng, L. Pinsky, C. S. J. Pun, F. Z. Qi, M. Qi, X. Qian, N. Raper, J. Ren, R. Rosero, B. Roskovec, X. C. Ruan, H. Steiner, G. X. Sun, J. L. Sun, W. Tang, D. Taychenachev, K. Treskov, K. V. Tsang, C. E. Tull, N. Viaux, B. Viren, V. Vorobel, C. H. Wang, M. Wang, N. Y. Wang, R. G. Wang, W. Wang, X. Wang, Y. F. Wang, Z. Wang, Z. Wang, Z. M. Wang, H. Y. Wei, L. J. Wen, K. Whisnant, C. G. White, L. Whitehead, T. Wise, H. L. H. Wong, S. C. F. Wong, E. Worcester, C. -H. Wu, Q. Wu, W. J. Wu, D. M. Xia, J. K. Xia, Z. Z. Xing, J. Y. Xu, J. L. Xu, Y. Xu, T. Xue, C. G. Yang, H. Yang, L. Yang, M. S. Yang, M. T. Yang, M. Ye, Z. Ye, M. Yeh, B. L. Young, Z. Y. Yu, S. Zeng, L. Zhan, C. Zhang, H. H. Zhang, J. W. Zhang, Q. M. Zhang, X. T. Zhang, Y. M. Zhang, Y. X. Zhang, Y. M. Zhang, Z. J. Zhang, Z. Y. Zhang, Z. P. Zhang, J. Zhao, Q. W. Zhao, Y. B. Zhao, W. L. Zhong, L. Zhou, N. Zhou, H. L. Zhuang, J. H. Zou

The disappearance of reactor $\bar{\nu}_e$ observed by the Daya Bay experiment is examined in the framework of a model in which the neutrino is described by a wave packet with a relative intrinsic momentum dispersion $\sigma_\text{rel}$. Three pairs of nuclear reactors and eight antineutrino detectors, each with good energy resolution, distributed among three experimental halls, supply a high-statistics sample of $\bar{\nu}_e$ acquired at nine different baselines. This provides a unique platform to test the effects which arise from the wave packet treatment of neutrino oscillation. Read More

The Andromeda Galaxy recurrent nova M31N 2008-12a had been observed in eruption ten times, including yearly eruptions from 2008-2014. With a measured recurrence period of $P_\mathrm{rec}=351\pm13$ days (we believe the true value to be half of this) and a white dwarf very close to the Chandrasekhar limit, M31N 2008-12a has become the leading pre-explosion supernova type Ia progenitor candidate. Following multi-wavelength follow-up observations of the 2013 and 2014 eruptions, we initiated a campaign to ensure early detection of the predicted 2015 eruption, which triggered ambitious ground and space-based follow-up programs. Read More

2016Jul
Authors: F. P. An, A. B. Balantekin, H. R. Band, M. Bishai, S. Blyth, D. Cao, G. F. Cao, J. Cao, W. R. Cen, Y. L. Chan, J. F. Chang, L. C. Chang, Y. Chang, H. S. Chen, Q. Y. Chen, S. M. Chen, Y. X. Chen, Y. Chen, J. -H. Cheng, J. Cheng, Y. P. Cheng, Z. K. Cheng, J. J. Cherwinka, M. C. Chu, A. Chukanov, J. P. Cummings, J. de Arcos, Z. Y. Deng, X. F. Ding, Y. Y. Ding, M. V. Diwan, M. Dolgareva, J. Dove, D. A. Dwyer, W. R. Edwards, R. Gill, M. Gonchar, G. H. Gong, H. Gong, M. Grassi, W. Q. Gu, M. Y. Guan, L. Guo, R. P. Guo, X. H. Guo, Z. Guo, R. W. Hackenburg, R. Han, S. Hans, M. He, K. M. Heeger, Y. K. Heng, A. Higuera, Y. K. Hor, Y. B. Hsiung, B. Z. Hu, T. Hu, W. Hu, E. C. Huang, H. X. Huang, X. T. Huang, P. Huber, W. Huo, G. Hussain, D. E. Jaffe, P. Jaffke, K. L. Jen, S. Jetter, X. P. Ji, X. L. Ji, J. B. Jiao, R. A. Johnson, D. Jones, J. Joshi, L. Kang, S. H. Kettell, S. Kohn, M. Kramer, K. K. Kwan, M. W. Kwok, T. Kwok, T. J. Langford, K. Lau, L. Lebanowski, J. Lee, J. H. C. Lee, R. T. Lei, R. Leitner, C. Li, D. J. Li, F. Li, G. S. Li, Q. J. Li, S. Li, S. C. Li, W. D. Li, X. N. Li, Y. F. Li, Z. B. Li, H. Liang, C. J. Lin, G. L. Lin, S. Lin, S. K. Lin, Y. -C. Lin, J. J. Ling, J. M. Link, L. Littenberg, B. R. Littlejohn, D. W. Liu, J. L. Liu, J. C. Liu, C. W. Loh, C. Lu, H. Q. Lu, J. S. Lu, K. B. Luk, Z. Lv, Q. M. Ma, X. Y. Ma, X. B. Ma, Y. Q. Ma, Y. Malyshkin, D. A. Martinez Caicedo, K. T. McDonald, R. D. McKeown, I. Mitchell, M. Mooney, Y. Nakajima, J. Napolitano, D. Naumov, E. Naumova, H. Y. Ngai, Z. Ning, J. P. Ochoa-Ricoux, A. Olshevskiy, H. -R. Pan, J. Park, S. Patton, V. Pec, J. C. Peng, L. Pinsky, C. S. J. Pun, F. Z. Qi, M. Qi, X. Qian, N. Raper, J. Ren, R. Rosero, B. Roskovec, X. C. Ruan, H. Steiner, G. X. Sun, J. L. Sun, W. Tang, D. Taychenachev, K. Treskov, K. V. Tsang, C. E. Tull, N. Viaux, B. Viren, V. Vorobel, C. H. Wang, M. Wang, N. Y. Wang, R. G. Wang, W. Wang, X. Wang, Y. F. Wang, Z. Wang, Z. Wang, Z. M. Wang, H. Y. Wei, L. J. Wen, K. Whisnant, C. G. White, L. Whitehead, T. Wise, H. L. H. Wong, S. C. F. Wong, E. Worcester, C. -H. Wu, Q. Wu, W. J. Wu, D. M. Xia, J. K. Xia, Z. Z. Xing, J. Y. Xu, J. L. Xu, Y. Xu, T. Xue, C. G. Yang, H. Yang, L. Yang, M. S. Yang, M. T. Yang, M. Ye, Z. Ye, M. Yeh, B. L. Young, Z. Y. Yu, S. Zeng, L. Zhan, C. Zhang, H. H. Zhang, J. W. Zhang, Q. M. Zhang, X. T. Zhang, Y. M. Zhang, Y. X. Zhang, Y. M. Zhang, Z. J. Zhang, Z. Y. Zhang, Z. P. Zhang, J. Zhao, Q. W. Zhao, Y. B. Zhao, W. L. Zhong, L. Zhou, N. Zhou, H. L. Zhuang, J. H. Zou

A new measurement of the reactor antineutrino flux and energy spectrum by the Daya Bay reactor neutrino experiment is reported. The antineutrinos were generated by six 2.9~GW$_{\mathrm{th}}$ nuclear reactors and detected by eight antineutrino detectors deployed in two near (560~m and 600~m flux-weighted baselines) and one far (1640~m flux-weighted baseline) underground experimental halls. Read More

2016Jul
Authors: The Daya Bay collaboration, F. P. An, A. B. Balantekin, H. R. Band, M. Bishai, S. Blyth, D. Cao, G. F. Cao, J. Cao, W. R. Cen, Y. L. Chan, J. F. Chang, L. C. Chang, Y. Chang, H. S. Chen, Q. Y. Chen, S. M. Chen, Y. X. Chen, Y. Chen, J. -H. Cheng, J. Cheng, Y. P. Cheng, Z. K. Cheng, J. J. Cherwinka, M. C. Chu, A. Chukanov, J. P. Cummings, J. de Arcos, Z. Y. Deng, X. F. Ding, Y. Y. Ding, M. V. Diwan, M. Dolgareva, J. Dove, D. A. Dwyer, W. R. Edwards, R. Gill, M. Gonchar, G. H. Gong, H. Gong, M. Grassi, W. Q. Gu, M. Y. Guan, L. Guo, R. P. Guo, X. H. Guo, Z. Guo, R. W. Hackenburg, R. Han, S. Hans, M. He, K. M. Heeger, Y. K. Heng, A. Higuera, Y. K. Hor, Y. B. Hsiung, B. Z. Hu, T. Hu, W. Hu, E. C. Huang, H. X. Huang, X. T. Huang, P. Huber, W. Huo, G. Hussain, D. E. Jaffe, P. Jaffke, K. L. Jen, S. Jetter, X. P. Ji, X. L. Ji, J. B. Jiao, R. A. Johnson, J. Joshi, L. Kang, S. H. Kettell, S. Kohn, M. Kramer, K. K. Kwan, M. W. Kwok, T. Kwok, T. J. Langford, K. Lau, L. Lebanowski, J. Lee, J. H. C. Lee, R. T. Lei, R. Leitner, J. K. C. Leung, C. Li, D. J. Li, F. Li, G. S. Li, Q. J. Li, S. Li, S. C. Li, W. D. Li, X. N. Li, Y. F. Li, Z. B. Li, H. Liang, C. J. Lin, G. L. Lin, S. Lin, S. K. Lin, Y. -C. Lin, J. J. Ling, J. M. Link, L. Littenberg, B. R. Littlejohn, D. W. Liu, J. L. Liu, J. C. Liu, C. W. Loh, C. Lu, H. Q. Lu, J. S. Lu, K. B. Luk, Z. Lv, Q. M. Ma, X. Y. Ma, X. B. Ma, Y. Q. Ma, Y. Malyshkin, D. A. Martinez Caicedo, K. T. McDonald, R. D. McKeown, I. Mitchell, M. Mooney, Y. Nakajima, J. Napolitano, D. Naumov, E. Naumova, H. Y. Ngai, Z. Ning, J. P. Ochoa-Ricoux, A. Olshevskiy, H. -R. Pan, J. Park, S. Patton, V. Pec, J. C. Peng, L. Pinsky, C. S. J. Pun, F. Z. Qi, M. Qi, X. Qian, N. Raper, J. Ren, R. Rosero, B. Roskovec, X. C. Ruan, H. Steiner, G. X. Sun, J. L. Sun, W. Tang, D. Taychenachev, K. Treskov, K. V. Tsang, C. E. Tull, N. Viaux, B. Viren, V. Vorobel, C. H. Wang, M. Wang, N. Y. Wang, R. G. Wang, W. Wang, X. Wang, Y. F. Wang, Z. Wang, Z. Wang, Z. M. Wang, H. Y. Wei, L. J. Wen, K. Whisnant, C. G. White, L. Whitehead, T. Wise, H. L. H. Wong, S. C. F. Wong, E. Worcester, C. -H. Wu, Q. Wu, W. J. Wu, D. M. Xia, J. K. Xia, Z. Z. Xing, J. Y. Xu, J. L. Xu, Y. Xu, T. Xue, C. G. Yang, H. Yang, L. Yang, M. S. Yang, M. T. Yang, M. Ye, Z. Ye, M. Yeh, B. L. Young, Z. Y. Yu, S. Zeng, L. Zhan, C. Zhang, H. H. Zhang, J. W. Zhang, Q. M. Zhang, X. T. Zhang, Y. M. Zhang, Y. X. Zhang, Y. M. Zhang, Z. J. Zhang, Z. Y. Zhang, Z. P. Zhang, J. Zhao, Q. W. Zhao, Y. B. Zhao, W. L. Zhong, L. Zhou, N. Zhou, H. L. Zhuang, J. H. Zou

This Letter reports an improved search for light sterile neutrino mixing in the electron antineutrino disappearance channel with the full configuration of the Daya Bay Reactor Neutrino Experiment. With an additional 404 days of data collected in eight antineutrino detectors, this search benefits from 3.6 times the statistics available to the previous publication, as well as from improvements in energy calibration and background reduction. Read More

2016Jul
Authors: Daya Bay, MINOS Collaborations, :, P. Adamson, F. P. An, I. Anghel, A. Aurisano, A. B. Balantekin, H. R. Band, G. Barr, M. Bishai, A. Blake, S. Blyth G. J. Bock, D. Bogert, D. Cao, G. F. Cao, J. Cao, S. V. Cao, T. J. Carroll, C. M. Castromonte, W. R. Cen, Y. L. Chan, J. F. Chang, L. C. Chang, Y. Chang, H. S. Chen, Q. Y. Chen, R. Chen, S. M. Chen, Y. Chen, Y. X. Chen, J. Cheng, J. -H. Cheng, Y. P. Chen, Z. K. Cheng, J. J. Cherwinka, S. Childress, M. C. Chu, A. Chukanov, J. A. B. Coelho, L. Corwin, D. Cronin-Hennessy, J. P. Cummings, J. de Arcos, S. De Rijck, Z. Y. Deng, A. V. Devan, N. E. Devenish, X. F. Ding, Y. Y. Ding, M. V. Diwan, M. Dolgareva, J. Dove, D. A. Dwyer, W. R. Edwards, C. O. Escobar, J. J. Evans, E. Falk, G. J. Feldman, W. Flanagan, M. V. Frohne, M. Gabrielyan, H. R. Gallagher, S. Germani, R. Gill, R. A. Gomes, M. Gonchar, G. H. Gong, H. Gong, M. C. Goodman, P. Gouffon, N. Graf, R. Gran, M. Grassi, K. Grzelak, W. Q. Gu, M. Y. Guan, L. Guo, R. P. Guo, X. H. Guo, Z. Guo, A. Habig, R. W. Hackenburg, S. R. Hahn, R. Han, S. Hans, J. Hartnell, R. Hatcher, M. He, K. M. Heeger, Y. K. Heng, A. Higuera, A. Holin, Y. K. Hor, Y. B. Hsiung, B. Z. Hu, T. Hu, W. Hu, E. C. Huang, H. X. Huang, J. Huang, X. T. Huang, P. Huber, W. Huo, G. Hussain, J. Hylen, G. M. Irwin, Z. Isvan, D. E. Jaffe, P. Jaffke, C. James, K. L. Jen, D. Jensen, S. Jetter, X. L. Ji, X. P. Ji, J. B. Jiao, R. A. Johnson, J. K. de Jong, J. Joshi, T. Kafka, L. Kang, S. M. S. Kasahara, S. H. Kettell, S. Kohn, G. Koizumi, M. Kordosky, M. Kramer, A. Kreymer, 1 K. K. Kwan, M. W. Kwok, T. Kwok, K. Lang, T. J. Langford, K. Lau, L. Lebanowski, J. Lee, J. H. C. Lee, R. T. Lei, R. Leitner, J. K. C. Leung, C. Li, D. J. Li, F. Li, G. S. Li, Q. J. Li, S. Li, S. C. Li, W. D. Li, X. N. Li, Y. F. Li, Z. B. Li, H. Liang, C. J. Lin, G. L. Lin, S. Lin, S. K. Lin, Y. -C. Lin, J. J. Ling J. M. Link, P. J. Litchfield, L. Littenberg, B. R. Littlejohn, D. W. Liu, J. C. Liu, J. L. Liu, C. W. Loh, C. Lu, H. Q. Lu, J. S. Lu, P. Lucas, K. B. Luk, Z. Lv, Q. M. Ma, X. B. Ma, X. Y. Ma, Y. Q. Ma, Y. Malyshkin, W. A. Mann, M. L. Marshak, D. A. Martinez Caicedo, N. Mayer, K. T. McDonald, C. McGivern, R. D. McKeown, M. M. Medeiros, R. Mehdiyev, J. R. Meier, M. D. Messier, W. H. Miller, S. R. Mishra, I. Mitchell, M. Mooney, C. D. Moore, L. Mualem, J. Musser, Y. Nakajima, D. Naples, J. Napolitano, D. Naumov, E. Naumova, J. K. Nelson, H. B. Newman, H. Y. Ngai, R. J. Nichol, Z. Ning, A. Nowak, J. O'Connor, J. P. Ochoa-Ricoux, A. Olshevskiy, M. Orchanian, R., R. B. Pahlka, J. Paley, H. -R. Pan, J. Park, R. B. Patterson, S. Patton, G. Pawloski, V. Pec, J. C. Peng, A. Perch, M. M. Pfutzner, D. D. Phan, S. Phan-Budd, L. Pinsky, R. K. Plunkett, N. Poonthottathil, C. S. J. Pun, F. Z. Qi, M. Qi, X. Qian, X. Qiu, A. Radovic, N. Raper, B. Rebel, J. Ren, C. Rosenfeld, R. Rosero, B. Roskovec, X. C. Ruan, H. A. Rubin, P. Sail, M. C. Sanchez, J. Schneps, A. Schreckenberger, P. Schreiner, R. Sharma, S. Moed Sher, A. Sousa, H. Steiner, G. X. Sun, J. L. Sun, N. Tagg, R. L. Talaga, W. Tang, D. Taychenachev, J. Thomas, M. A. Thomson, X. Tian A. Timmons, J. Todd, S. C. Tognini, R. Toner, D. Torretta, K. Treskov, K. V. Tsang, C. E. Tull, G. Tzanakos, J. Urheim, P. Vahle, N. Viaux, B. Viren, V. Vorobel, C. H. Wang, M. Wang, N. Y. Wang, R. G. Wang, W. Wang, X. Wang, Y. F. Wang, Z. Wang, Z. M. Wang, R. C. Webb, A. Weber, H. Y. Wei, L. J. Wen, K. Whisnant, C. White, L. Whitehead L. H. Whitehead, T. Wise, S. G. Wojcicki, H. L. H. Wong, S. C. F. Wong, E. Worcester, C. -H. Wu, Q. Wu, W. J. Wu, D. M. Xia, J. K. Xia, Z. Z. Xing, J. L. Xu, J. Y. Xu, Y. Xu, T. Xue, C. G. Yang, H. Yang, L. Yang, M. S. Yang, M. T. Yang, M. Ye., Z. Ye, M. Yeh, B. L. Young, Z. Y. Yu, S. Zeng, L. ZhanC. Zhang, H. H. Zhang, J. W. Zhang, Q. M. Zhang, X. T. Zhang, Y. M. Zhang, Y. X. Zhang, Z. J. Zhang, Z. P. Zhang, Z. Y. Zhang, J. Zhao, Q. W. Zhao, Y. B. Zhao, W. L. Zhong, L. Zhou, N. Zhou, H. L. Zhuang, J. H. Zou

Searches for a light sterile neutrino have been performed independently by the MINOS and the Daya Bay experiments using the muon (anti)neutrino and electron antineutrino disappearance channels, respectively. In this Letter, results from both experiments are combined with those from the Bugey-3 reactor neutrino experiment to constrain oscillations into light sterile neutrinos. The three experiments are sensitive to complementary regions of parameter space, enabling the combined analysis to probe regions allowed by the LSND and MiniBooNE experiments in a minimally extended four-neutrino flavor framework. Read More

Let $K$ be a self-similar set with the open set condition. It is known that there is a naturally defined augmented tree structure $E$ on the symbolic space $X$ of $K$ that is hyperbolic, and the hyperbolic boundary ${\partial}_H X$ with the Gromov metric is Holder equivalent to $K$. In the paper we consider certain reversible random walks with return ratio $0 < {\lambda} < 1$ on $(X,E)$. Read More

2016Mar
Authors: Daya Bay Collaboration, F. P. An, A. B. Balantekin, H. R. Band, M. Bishai, S. Blyth, D. Cao, G. F. Cao, J. Cao, W. R. Cen, Y. L. Chan, J. F. Chang, L. C. Chang, Y. Chang, H. S. Chen, Q. Y. Chen, S. M. Chen, Y. X. Chen, Y. Chen, J. H. Cheng, J. -H. Cheng, J. Cheng, Y. P. Cheng, Z. K. Cheng, J. J. Cherwinka, M. C. Chu, A. Chukanov, J. P. Cummings, J. de Arcos, Z. Y. Deng, X. F. Ding, Y. Y. Ding, M. V. Diwan, M. Dolgareva, J. Dove, D. A. Dwyer, W. R. Edwards, R. Gill, M. Gonchar, G. H. Gong, H. Gong, M. Grassi, W. Q. Gu, M. Y. Guan, L. Guo, R. P. Guo, X. H. Guo, Z. Guo, R. W. Hackenburg, R. Han, S. Hans, M. He, K. M. Heeger, Y. K. Heng, A. Higuera, Y. K. Hor, Y. B. Hsiung, B. Z. Hu, T. Hu, W. Hu, E. C. Huang, H. X. Huang, X. T. Huang, P. Huber, W. Huo, G. Hussain, D. E. Jaffe, P. Jaffke, K. L. Jen, S. Jetter, X. P. Ji, X. L. Ji, J. B. Jiao, R. A. Johnson, J. Joshi, L. Kang, S. H. Kettell, S. Kohn, M. Kramer, K. K. Kwan, M. W. Kwok, T. Kwok, T. J. Langford, K. Lau, L. Lebanowski, J. Lee, J. H. C. Lee, R. T. Lei, R. Leitner, J. K. C. Leung, C. Li, D. J. Li, F. Li, G. S. Li, Q. J. Li, S. Li, S. C. Li, W. D. Li, X. N. Li, Y. F. Li, Z. B. Li, H. Liang, C. J. Lin, G. L. Lin, S. Lin, S. K. Lin, Y. -C. Lin, J. J. Ling, J. M. Link, L. Littenberg, B. R. Littlejohn, D. W. Liu, J. J. Liu, J. L. Liu, J. C. Liu, C. W. Loh, C. Lu, H. Q. Lu, J. S. Lu, K. B. Luk, Z. Lv, Q. M. Ma, X. Y. Ma, X. B. Ma, Y. Q. Ma, Y. Malyshkin, D. A. Martinez Caicedo, K. T. McDonald, R. D. McKeown, I. Mitchell, M. Mooney, Y. Nakajima, J. Napolitano, D. Naumov, E. Naumova, H. Y. Ngai, Z. Ning, J. P. Ochoa-Ricoux, A. Olshevskiy, H. -R. Pan, J. Park, S. Patton, V. Pec, J. C. Peng, L. Pinsky, C. S. J. Pun, F. Z. Qi, M. Qi, X. Qian, N. Raper, J. Ren, R. Rosero, B. Roskovec, X. C. Ruan, H. Steiner, G. X. Sun, J. L. Sun, W. Tang, D. Taychenachev, T. Konstantin, K. V. Tsang, C. E. Tull, N. Viaux, B. Viren, V. Vorobel, C. H. Wang, M. Wang, N. Y. Wang, R. G. Wang, W. Wang, W. W. Wang, X. Wang, Y. F. Wang, Z. Wang, Z. Wang, Z. M. Wang, H. Y. Wei, L. J. Wen, K. Whisnant, C. G. White, L. Whitehead, T. Wise, H. L. H. Wong, S. C. F. Wong, E. Worcester, C. -H. Wu, Q. Wu, D. M. Xia, J. K. Xia, Z. Z. Xing, J. Y. Xu, J. L. Xu, J. Xu, Y. Xu, T. Xue, J. Yan, C. G. Yang, H. Yang, L. Yang, M. S. Yang, M. T. Yang, M. Ye, Z. Ye, M. Yeh, B. L. Young, G. Y. Yu, Z. Y. Yu, L. Zhan, C. Zhang, H. H. Zhang, J. W. Zhang, Q. M. Zhang, X. T. Zhang, Y. M. Zhang, Y. X. Zhang, Y. M. Zhang, Z. J. Zhang, Z. Y. Zhang, Z. P. Zhang, J. Zhao, Q. W. Zhao, Y. F. Zhao, Y. B. Zhao, W. L. Zhong, L. Zhou, N. Zhou, H. L. Zhuang, J. H. Zou

This article reports an improved independent measurement of neutrino mixing angle $\theta_{13}$ at the Daya Bay Reactor Neutrino Experiment. Electron antineutrinos were identified by inverse $\beta$-decays with the emitted neutron captured by hydrogen, yielding a data-set with principally distinct uncertainties from that with neutrons captured by gadolinium. With the final two of eight antineutrino detectors installed, this study used 621 days of data including the previously reported 217-day data set with six detectors. Read More

2015Aug
Authors: Daya Bay Collaboration, F. P. An, A. B. Balantekin, H. R. Band, M. Bishai, S. Blyth, I. Butorov, D. Cao, G. F. Cao, J. Cao, W. R. Cen, Y. L. Chan, J. F. Chang, L. C. Chang, Y. Chang, H. S. Chen, Q. Y. Chen, S. M. Chen, Y. X. Chen, Y. Chen, J. H. Cheng, J. Cheng, Y. P. Cheng, J. J. Cherwinka, M. C. Chu, J. P. Cummings, J. de Arcos, Z. Y. Deng, X. F. Ding, Y. Y. Ding, M. V. Diwan, J. Dove, E. Draeger, D. A. Dwyer, W. R. Edwards, S. R. Ely, R. Gill, M. Gonchar, G. H. Gong, H. Gong, M. Grassi, W. Q. Gu, M. Y. Guan, L. Guo, X. H. Guo, R. W. Hackenburg, R. Han, S. Hans, M. He, K. M. Heeger, Y. K. Heng, A. Higuera, Y. K. Hor, Y. B. Hsiung, B. Z. Hu, L. M. Hu, L. J. Hu, T. Hu, W. Hu, E. C. Huang, H. X. Huang, X. T. Huang, P. Huber, G. Hussain, D. E. Jaffe, P. Jaffke, K. L. Jen, S. Jetter, X. P. Ji, X. L. Ji, J. B. Jiao, R. A. Johnson, L. Kang, S. H. Kettell, S. Kohn, M. Kramer, K. K. Kwan, M. W. Kwok, T. Kwok, T. J. Langford, K. Lau, L. Lebanowski, J. Lee, R. T. Lei, R. Leitner, K. Y. Leung, J. K. C. Leung, C. A. Lewis, D. J. Li, F. Li, G. S. Li, Q. J. Li, S. C. Li, W. D. Li, X. N. Li, X. Q. Li, Y. F. Li, Z. B. Li, H. Liang, C. J. Lin, G. L. Lin, P. Y. Lin, S. K. Lin, J. J. Ling, J. M. Link, L. Littenberg, B. R. Littlejohn, D. W. Liu, H. Liu, J. L. Liu, J. C. Liu, S. S. Liu, C. Lu, H. Q. Lu, J. S. Lu, K. B. Luk, Q. M. Ma, X. Y. Ma, X. B. Ma, Y. Q. Ma, D. A. Martinez Caicedo, K. T. McDonald, R. D. McKeown, Y. Meng, I. Mitchell, J. Monari Kebwaro, Y. Nakajima, J. Napolitano, D. Naumov, E. Naumova, H. Y. Ngai, Z. Ning, J. P. Ochoa-Ricoux, A. Olshevski, H. -R. Pan, J. Park, S. Patton, V. Pec, J. C. Peng, L. E. Piilonen, L. Pinsky, C. S. J. Pun, F. Z. Qi, M. Qi, X. Qian, N. Raper, B. Ren, J. Ren, R. Rosero, B. Roskovec, X. C. Ruan, B. B. Shao, H. Steiner, G. X. Sun, J. L. Sun, W. Tang, D. Taychenachev, K. V. Tsang, C. E. Tull, Y. C. Tung, N. Viaux, B. Viren, V. Vorobel, C. H. Wang, M. Wang, N. Y. Wang, R. G. Wang, W. Wang, W. W. Wang, X. Wang, Y. F. Wang, Z. Wang, Z. Wang, Z. M. Wang, H. Y. Wei, L. J. Wen, K. Whisnant, C. G. White, L. Whitehead, T. Wise, H. L. H. Wong, S. C. F. Wong, E. Worcester, Q. Wu, D. M. Xia, J. K. Xia, X. Xia, Z. Z. Xing, J. Y. Xu, J. L. Xu, J. Xu, Y. Xu, T. Xue, J. Yan, C. G. Yang, L. Yang, M. S. Yang, M. T. Yang, M. Ye, M. Yeh, B. L. Young, G. Y. Yu, Z. Y. Yu, S. L. Zang, L. Zhan, C. Zhang, H. H. Zhang, J. W. Zhang, Q. M. Zhang, Y. M. Zhang, Y. X. Zhang, Y. M. Zhang, Z. J. Zhang, Z. Y. Zhang, Z. P. Zhang, J. Zhao, Q. W. Zhao, Y. F. Zhao, Y. B. Zhao, L. Zheng, W. L. Zhong, L. Zhou, N. Zhou, H. L. Zhuang, J. H. Zou

This Letter reports a measurement of the flux and energy spectrum of electron antineutrinos from six 2.9~GW$_{th}$ nuclear reactors with six detectors deployed in two near (effective baselines 512~m and 561~m) and one far (1,579~m) underground experimental halls in the Daya Bay experiment. Using 217 days of data, 296,721 and 41,589 inverse beta decay (IBD) candidates were detected in the near and far halls, respectively. Read More

2015Aug
Authors: F. P. An, J. Z. Bai, A. B. Balantekin, H. R. Band, D. Beavis, W. Beriguete, M. Bishai, S. Blyth, R. L. Brown, I. Butorov, D. Cao, G. F. Cao, J. Cao, R. Carr, W. R. Cen, W. T. Chan, Y. L. Chan, J. F. Chang, L. C. Chang, Y. Chang, C. Chasman, H. Y. Chen, H. S. Chen, M. J. Chen, Q. Y. Chen, S. J. Chen, S. M. Chen, X. C. Chen, X. H. Chen, X. S. Chen, Y. X. Chen, Y. Chen, J. H. Cheng, J. Cheng, Y. P. Cheng, J. J. Cherwinka, S. Chidzik, K. Chow, M. C. Chu, J. P. Cummings, J. de Arcos, Z. Y. Deng, X. F. Ding, Y. Y. Ding, M. V. Diwan, L. Dong, J. Dove, E. Draeger, X. F. Du, D. A. Dwyer, W. R. Edwards, S. R. Ely, S. D. Fang, J. Y. Fu, Z. W. Fu, L. Q. Ge, V. Ghazikhanian, R. Gill, J. Goett, M. Gonchar, G. H. Gong, H. Gong, Y. A. Gornushkin, M. Grassi, L. S. Greenler, W. Q. Gu, M. Y. Guan, R. P. Guo, X. H. Guo, R. W. Hackenburg, R. L. Hahn, R. Han, S. Hans, M. He, Q. He, W. S. He, K. M. Heeger, Y. K. Heng, A. Higuera, P. Hinrichs, T. H. Ho, M. Hoff, Y. K. Hor, Y. B. Hsiung, B. Z. Hu, L. M. Hu, L. J. Hu, T. Hu, W. Hu, E. C. Huang, H. Z. Huang, H. X. Huang, P. W. Huang, X. Huang, X. T. Huang, P. Huber, G. Hussain, Z. Isvan, D. E. Jaffe, P. Jaffke, K. L. Jen, S. Jetter, X. P. Ji, X. L. Ji, H. J. Jiang, W. Q. Jiang, J. B. Jiao, R. A. Johnson, J. Joseph, L. Kang, S. H. Kettell, S. Kohn, M. Kramer, K. K. Kwan, M. W. Kwok, T. Kwok, C. Y. Lai, W. C. Lai, W. H. Lai, T. J. Langford, K. Lau, L. Lebanowski, J. Lee, M. K. P. Lee, R. T. Lei, R. Leitner, J. K. C. Leung, K. Y. Leung, C. A. Lewis, B. Li, C. Li, D. J. Li, F. Li, G. S. Li, J. Li, N. Y. Li, Q. J. Li, S. F. Li, S. C. Li, W. D. Li, X. B. Li, X. N. Li, X. Q. Li, Y. Li, Y. F. Li, Z. B. Li, H. Liang, J. Liang, C. J. Lin, G. L. Lin, P. Y. Lin, S. X. Lin, S. K. Lin, Y. C. Lin, J. J. Ling, J. M. Link, L. Littenberg, B. R. Littlejohn, B. J. Liu, C. Liu, D. W. Liu, H. Liu, J. L. Liu, J. C. Liu, S. Liu, S. S. Liu, X. Liu, Y. B. Liu, C. Lu, H. Q. Lu, J. S. Lu, A. Luk, K. B. Luk, T. Luo, X. L. Luo, L. H. Ma, Q. M. Ma, X. Y. Ma, X. B. Ma, Y. Q. Ma, B. Mayes, K. T. McDonald, M. C. McFarlane, R. D. McKeown, Y. Meng, I. Mitchell, D. Mohapatra, J. Monari Kebwaro, J. E. Morgan, Y. Nakajima, J. Napolitano, D. Naumov, E. Naumova, C. Newsom, H. Y. Ngai, W. K. Ngai, Y. B. Nie, Z. Ning, J. P. Ochoa-Ricoux, A. Olshevskiy, A. Pagac, H. -R. Pan, S. Patton, C. Pearson, V. Pec, J. C. Peng, L. E. Piilonen, L. Pinsky, C. S. J. Pun, F. Z. Qi, M. Qi, X. Qian, N. Raper, B. Ren, J. Ren, R. Rosero, B. Roskovec, X. C. Ruan, W. R. Sands III, B. Seilhan, B. B. Shao, K. Shih, W. Y. Song, H. Steiner, P. Stoler, M. Stuart, G. X. Sun, J. L. Sun, N. Tagg, Y. H. Tam, H. K. Tanaka, W. Tang, X. Tang, D. Taychenachev, H. Themann, Y. Torun, S. Trentalange, O. Tsai, K. V. Tsang, R. H. M. Tsang, C. E. Tull, Y. C. Tung, N. Viaux, B. Viren, S. Virostek, V. Vorobel, C. H. Wang, L. S. Wang, L. Y. Wang, L. Z. Wang, M. Wang, N. Y. Wang, R. G. Wang, T. Wang, W. Wang, W. W. Wang, X. T. Wang, X. Wang, Y. F. Wang, Z. Wang, Z. Wang, Z. M. Wang, D. M. Webber, H. Y. Wei, Y. D. Wei, L. J. Wen, D. L. Wenman, K. Whisnant, C. G. White, L. Whitehead, C. A. Whitten Jr., J. Wilhelmi, T. Wise, H. C. Wong, H. L. H. Wong, J. Wong, S. C. F. Wong, E. Worcester, F. F. Wu, Q. Wu, D. M. Xia, J. K. Xia, S. T. Xiang, Q. Xiao, Z. Z. Xing, G. Xu, J. Y. Xu, J. L. Xu, J. Xu, W. Xu, Y. Xu, T. Xue, J. Yan, C. G. Yang, L. Yang, M. S. Yang, M. T. Yang, M. Ye, M. Yeh, Y. S. Yeh, K. Yip, B. L. Young, G. Y. Yu, Z. Y. Yu, S. Zeng, L. Zhan, C. Zhang, F. H. Zhang, H. H. Zhang, J. W. Zhang, K. Zhang, Q. X. Zhang, Q. M. Zhang, S. H. Zhang, X. T. Zhang, Y. C. Zhang, Y. H. Zhang, Y. M. Zhang, Y. X. Zhang, Y. M. Zhang, Z. J. Zhang, Z. Y. Zhang, Z. P. Zhang, J. Zhao, Q. W. Zhao, Y. F. Zhao, Y. B. Zhao, L. Zheng, W. L. Zhong, L. Zhou, N. Zhou, Z. Y. Zhou, H. L. Zhuang, S. Zimmerman, J. H. Zou

The Daya Bay experiment was the first to report simultaneous measurements of reactor antineutrinos at multiple baselines leading to the discovery of $\bar{\nu}_e$ oscillations over km-baselines. Subsequent data has provided the world's most precise measurement of $\rm{sin}^22\theta_{13}$ and the effective mass splitting $\Delta m_{ee}^2$. The experiment is located in Daya Bay, China where the cluster of six nuclear reactors is among the world's most prolific sources of electron antineutrinos. Read More

2015May
Authors: Daya Bay Collaboration, F. P. An, A. B. Balantekin, H. R. Band, M. Bishai, S. Blyth, I. Butorov, G. F. Cao, J. Cao, W. R. Cen, Y. L. Chan, J. F. Chang, L. C. Chang, Y. Chang, H. S. Chen, Q. Y. Chen, S. M. Chen, Y. X. Chen, Y. Chen, J. H. Cheng, J. Cheng, Y. P. Cheng, J. J. Cherwinka, M. C. Chu, J. P. Cummings, J. de Arcos, Z. Y. Deng, X. F. Ding, Y. Y. Ding, M. V. Diwan, E. Draeger, D. A. Dwyer, W. R. Edwards, S. R. Ely, R. Gill, M. Gonchar, G. H. Gong, H. Gong, M. Grassi, W. Q. Gu, M. Y. Guan, L. Guo, X. H. Guo, R. W. Hackenburg, R. Han, S. Hans, M. He, K. M. Heeger, Y. K. Heng, Y. K. Hor, Y. B. Hsiung, B. Z. Hu, L. M. Hu, L. J. Hu, T. Hu, W. Hu, E. C. Huang, H. X. Huang, X. T. Huang, P. Huber, G. Hussain, D. E. Jaffe, P. Jaffke, K. L. Jen, S. Jetter, X. P. Ji, X. L. Ji, J. B. Jiao, R. A. Johnson, L. Kang, S. H. Kettell, M. Kramer, K. K. Kwan, M. W. Kwok, T. Kwok, T. J. Langford, K. Lau, L. Lebanowski, J. Lee, R. T. Lei, R. Leitner, A. Leung, J. K. C. Leung, C. A. Lewis, D. J. Li, F. Li, G. S. Li, Q. J. Li, S. C. Li, W. D. Li, X. N. Li, X. Q. Li, Y. F. Li, Z. B. Li, H. Liang, C. J. Lin, G. L. Lin, P. Y. Lin, S. K. Lin, J. J. Ling, J. M. Link, L. Littenberg, B. R. Littlejohn, D. W. Liu, H. Liu, J. L. Liu, J. C. Liu, S. S. Liu, C. Lu, H. Q. Lu, J. S. Lu, K. B. Luk, Q. M. Ma, X. Y. Ma, X. B. Ma, Y. Q. Ma, K. T. McDonald, R. D. McKeown, Y. Meng, I. Mitchell, J. Monari Kebwaro, Y. Nakajima, J. Napolitano, D. Naumov, E. Naumova, H. Y. Ngai, Z. Ning, J. P. Ochoa-Ricoux, A. Olshevski, S. Patton, V. Pec, J. C. Peng, L. E. Piilonen, L. Pinsky, C. S. J. Pun, F. Z. Qi, M. Qi, X. Qian, N. Raper, B. Ren, J. Ren, R. Rosero, B. Roskovec, X. C. Ruan, B. B. Shao, H. Steiner, G. X. Sun, J. L. Sun, W. Tang, H. Themann, K. V. Tsang, C. E. Tull, Y. C. Tung, N. Viaux, B. Viren, V. Vorobel, C. H. Wang, M. Wang, N. Y. Wang, R. G. Wang, W. Wang, W. W. Wang, X. Wang, Y. F. Wang, Z. Wang, Z. Wang, Z. M. Wang, H. Y. Wei, L. J. Wen, K. Whisnant, C. G. White, L. Whitehead, T. Wise, H. L. H. Wong, S. C. F. Wong, E. Worcester, Q. Wu, D. M. Xia, J. K. Xia, X. Xia, Z. Z. Xing, J. Y. Xu, J. L. Xu, J. Xu, Y. Xu, T. Xue, J. Yan, C. G. Yang, L. Yang, M. S. Yang, M. T. Yang, M. Ye, M. Yeh, Y. S. Yeh, B. L. Young, G. Y. Yu, Z. Y. Yu, S. L. Zang, L. Zhan, C. Zhang, H. H. Zhang, J. W. Zhang, Q. M. Zhang, Y. M. Zhang, Y. X. Zhang, Y. M. Zhang, Z. J. Zhang, Z. Y. Zhang, Z. P. Zhang, J. Zhao, Q. W. Zhao, Y. F. Zhao, Y. B. Zhao, L. Zheng, W. L. Zhong, L. Zhou, N. Zhou, H. L. Zhuang, J. H. Zou

We report a new measurement of electron antineutrino disappearance using the fully-constructed Daya Bay Reactor Neutrino Experiment. The final two of eight antineutrino detectors were installed in the summer of 2012. Including the 404 days of data collected from October 2012 to November 2013 resulted in a total exposure of 6. Read More

2015Mar
Authors: C. Adams, J. R. Alonso, A. M. Ankowski, J. A. Asaadi, J. Ashenfelter, S. N. Axani, K. Babu, C. Backhouse, H. R. Band, P. S. Barbeau, N. Barros, A. Bernstein, M. Betancourt, M. Bishai, E. Blucher, J. Bouffard, N. Bowden, S. Brice, C. Bryan, L. Camilleri, J. Cao, J. Carlson, R. E. Carr, A. Chatterjee, M. Chen, S. Chen, M. Chiu, E. D. Church, J. I. Collar, G. Collin, J. M. Conrad, M. R. Convery, R. L. Cooper, D. Cowen, H. Davoudiasl, A. De Gouvea, D. J. Dean, G. Deichert, F. Descamps, T. DeYoung, M. V. Diwan, Z. Djurcic, M. J. Dolinski, J. Dolph, B. Donnelly, D. A. Dwyer, S. Dytman, Y. Efremenko, L. L. Everett, A. Fava, E. Figueroa-Feliciano, B. Fleming, A. Friedland, B. K. Fujikawa, T. K. Gaisser, M. Galeazzi, D. C. Galehouse, A. Galindo-Uribarri, G. T. Garvey, S. Gautam, K. E. Gilje, M. Gonzalez-Garcia, M. C. Goodman, H. Gordon, E. Gramellini, M. P. Green, A. Guglielmi, R. W. Hackenburg, A. Hackenburg, F. Halzen, K. Han, S. Hans, D. Harris, K. M. Heeger, M. Herman, R. Hill, A. Holin, P. Huber, D. E. Jaffe, R. A. Johnson, J. Joshi, G. Karagiorgi, L. J. Kaufman, B. Kayser, S. H. Kettell, B. J. Kirby, J. R. Klein, Yu. G. Kolomensky, R. M. Kriske, C. E. Lane, T. J. Langford, A. Lankford, K. Lau, J. G. Learned, J. Ling, J. M. Link, D. Lissauer, L. Littenberg, B. R. Littlejohn, S. Lockwitz, M. Lokajicek, W. C. Louis, K. Luk, J. Lykken, W. J. Marciano, J. Maricic, D. M. Markoff, D. A. Martinez Caicedo, C. Mauger, K. Mavrokoridis, E. McCluskey, D. McKeen, R. McKeown, G. Mills, I. Mocioiu, B. Monreal, M. R. Mooney, J. G. Morfin, P. Mumm, J. Napolitano, R. Neilson, J. K. Nelson, M. Nessi, D. Norcini, F. Nova, D. R. Nygren, G. D. Orebi Gann, O. Palamara, Z. Parsa, R. Patterson, P. Paul, A. Pocar, X. Qian, J. L. Raaf, R. Rameika, G. Ranucci, H. Ray, D. Reyna, G. C. Rich, P. Rodrigues, E. Romero Romero, R. Rosero, S. D. Rountree, B. Rybolt, M. C. Sanchez, G. Santucci, D. Schmitz, K. Scholberg, D. Seckel, M. Shaevitz, R. Shrock, M. B. Smy, M. Soderberg, A. Sonzogni, A. B. Sousa, J. Spitz, J. M. St. John, J. Stewart, J. B. Strait, G. Sullivan, R. Svoboda, A. M. Szelc, R. Tayloe, M. A. Thomson, M. Toups, A. Vacheret, M. Vagins, R. G. Van de Water, R. B. Vogelaar, M. Weber, W. Weng, M. Wetstein, C. White, B. R. White, L. Whitehead, D. W. Whittington, M. J. Wilking, R. J. Wilson, P. Wilson, D. Winklehner, D. R. Winn, E. Worcester, L. Yang, M. Yeh, Z. W. Yokley, J. Yoo, B. Yu, J. Yu, C. Zhang

The US neutrino community gathered at the Workshop on the Intermediate Neutrino Program (WINP) at Brookhaven National Laboratory February 4-6, 2015 to explore opportunities in neutrino physics over the next five to ten years. Scientists from particle, astroparticle and nuclear physics participated in the workshop. The workshop examined promising opportunities for neutrino physics in the intermediate term, including possible new small to mid-scale experiments, US contributions to large experiments, upgrades to existing experiments, R&D plans and theory. Read More

Today's high performance deep artificial neural networks (ANNs) rely heavily on parameter optimization, which is sequential in nature and even with a powerful GPU, would have taken weeks to train them up for solving challenging tasks [22]. HMAX [17] has demonstrated that a simple high performing network could be obtained without heavy optimization. In this paper, we had improved on the existing best HMAX neural network [12] in terms of structural simplicity and performance. Read More

2015Jan
Authors: L. Bartoszek, E. Barnes, J. P. Miller, J. Mott, A. Palladino, J. Quirk, B. L. Roberts, J. Crnkovic, V. Polychronakos, V. Tishchenko, P. Yamin, C. -h. Cheng, B. Echenard, K. Flood, D. G. Hitlin, J. H. Kim, T. S. Miyashita, F. C. Porter, M. Röhrken, J. Trevor, R. -Y. Zhu, E. Heckmaier, T. I. Kang, G. Lim, W. Molzon, Z. You, A. M. Artikov, J. A. Budagov, Yu. I. Davydov, V. V. Glagolev, A. V. Simonenko, Z. U. Usubov, S. H. Oh, C. Wang, G. Ambrosio, N. Andreev, D. Arnold, M. Ball, R. H. Bernstein, A. Bianchi, K. Biery, R. Bossert, M. Bowden, J. Brandt, G. Brown, H. Brown, M. Buehler, M. Campbell, S. Cheban, M. Chen, J. Coghill, R. Coleman, C. Crowley, A. Deshpande, G. Deuerling, J. Dey, N. Dhanaraj, M. Dinnon, S. Dixon, B. Drendel, N. Eddy, R. Evans, D. Evbota, J. Fagan, S. Feher, B. Fellenz, H. Friedsam, G. Gallo, A. Gaponenko, M. Gardner, S. Gaugel, K. Genser, G. Ginther, H. Glass, D. Glenzinski, D. Hahn, S. Hansen, B. Hartsell, S. Hays, J. A. Hocker, E. Huedem, D. Huffman, A. Ibrahim, C. Johnstone, V. Kashikhin, V. V. Kashikhin, P. Kasper, T. Kiper, D. Knapp, K. Knoepfel, L. Kokoska, M. Kozlovsky, G. Krafczyk, M. Kramp, S. Krave, K. Krempetz, R. K. Kutschke, R. Kwarciany, T. Lackowski, M. J. Lamm, M. Larwill, F. Leavell, D. Leeb, A. Leveling, D. Lincoln, V. Logashenko, V. Lombardo, M. L. Lopes, A. Makulski, A. Martinez, D. McArthur, F. McConologue, L. Michelotti, N. Mokhov, J. Morgan, A. Mukherjee, P. Murat, V. Nagaslaev, D. V. Neuffer, T. Nicol, J. Niehoff, J. Nogiec, M. Olson, D. Orris, R. Ostojic, T. Page, C. Park, T. Peterson, R. Pilipenko, A. Pla-Dalmau, V. Poloubotko, M. Popovic, E. Prebys, P. Prieto, V. Pronskikh, D. Pushka, R. Rabehl, R. E. Ray, R. Rechenmacher, R. Rivera, W. Robotham, P. Rubinov, V. L. Rusu, V. Scarpine, W. Schappert, D. Schoo, A. Stefanik, D. Still, Z. Tang, N. Tanovic, M. Tartaglia, G. Tassotto, D. Tinsley, R. S. Tschirhart, G. Vogel, R. Wagner, R. Wands, M. Wang, S. Werkema, H. B. White Jr., J. Whitmore, R. Wielgos, R. Woods, C. Worel, R. Zifko, P. Ciambrone, F. Colao, M. Cordelli, G. Corradi, E. Dane, S. Giovannella, F. Happacher, A. Luca, S. Miscetti, B. Ponzio, G. Pileggi, A. Saputi, I. Sarra, R. S. Soleti, V. Stomaci, M. Martini, P. Fabbricatore, S. Farinon, R. Musenich, D. Alexander, A. Daniel, A. Empl, E. V. Hungerford, K. Lau, G. D. Gollin, C. Huang, D. Roderick, B. Trundy, D. Na. Brown, D. Ding, Yu. G. Kolomensky, M. J. Lee, M. Cascella, F. Grancagnolo, F. Ignatov, A. Innocente, A. L'Erario, A. Miccoli, A. Maffezzoli, P. Mazzotta, G. Onorato, G. M. Piacentino, S. Rella, F. Rossetti, M. Spedicato, G. Tassielli, A. Taurino, G. Zavarise, R. Hooper, D. No. Brown, R. Djilkibaev, V. Matushko, C. Ankenbrandt, S. Boi, A. Dychkant, D. Hedin, Z. Hodge, V. Khalatian, R. Majewski, L. Martin, U. Okafor, N. Pohlman, R. S. Riddel, A. Shellito, A. L. de Gouvea, F. Cervelli, R. Carosi, S. Di Falco, S. Donati, T. Lomtadze, G. Pezzullo, L. Ristori, F. Spinella, M. Jones, M. D. Corcoran, J. Orduna, D. Rivera, R. Bennett, O. Caretta, T. Davenne, C. Densham, P. Loveridge, J. Odell, R. Bomgardner, E. C. Dukes, R. Ehrlich, M. Frank, S. Goadhouse, R. Group, E. Ho, H. Ma, Y. Oksuzian, J. Purvis, Y. Wu, D. W. Hertzog, P. Kammel, K. R. Lynch, J. L. Popp

The Mu2e experiment at Fermilab will search for charged lepton flavor violation via the coherent conversion process mu- N --> e- N with a sensitivity approximately four orders of magnitude better than the current world's best limits for this process. The experiment's sensitivity offers discovery potential over a wide array of new physics models and probes mass scales well beyond the reach of the LHC. We describe herein the preliminary design of the proposed Mu2e experiment. Read More

2014Jul
Authors: F. P. An1, A. B. Balantekin2, H. R. Band3, W. Beriguete4, M. Bishai5, S. Blyth6, I. Butorov7, G. F. Cao8, J. Cao9, Y. L. Chan10, J. F. Chang11, L. C. Chang12, Y. Chang13, C. Chasman14, H. Chen15, Q. Y. Chen16, S. M. Chen17, X. Chen18, X. Chen19, Y. X. Chen20, Y. Chen21, Y. P. Cheng22, J. J. Cherwinka23, M. C. Chu24, J. P. Cummings25, J. de Arcos26, Z. Y. Deng27, Y. Y. Ding28, M. V. Diwan29, E. Draeger30, X. F. Du31, D. A. Dwyer32, W. R. Edwards33, S. R. Ely34, J. Y. Fu35, L. Q. Ge36, R. Gill37, M. Gonchar38, G. H. Gong39, H. Gong40, M. Grassi41, W. Q. Gu42, M. Y. Guan43, X. H. Guo44, R. W. Hackenburg45, G. H. Han46, S. Hans47, M. He48, K. M. Heeger49, Y. K. Heng50, P. Hinrichs51, Y. K. Hor52, Y. B. Hsiung53, B. Z. Hu54, L. M. Hu55, L. J. Hu56, T. Hu57, W. Hu58, E. C. Huang59, H. Huang60, X. T. Huang61, P. Huber62, G. Hussain63, Z. Isvan64, D. E. Jaffe65, P. Jaffke66, K. L. Jen67, S. Jetter68, X. P. Ji69, X. L. Ji70, H. J. Jiang71, J. B. Jiao72, R. A. Johnson73, L. Kang74, S. H. Kettell75, M. Kramer76, K. K. Kwan77, M. W. Kwok78, T. Kwok79, W. C. Lai80, K. Lau81, L. Lebanowski82, J. Lee83, R. T. Lei84, R. Leitner85, A. Leung86, J. K. C. Leung87, C. A. Lewis88, D. J. Li89, F. Li90, G. S. Li91, Q. J. Li92, W. D. Li93, X. N. Li94, X. Q. Li95, Y. F. Li96, Z. B. Li97, H. Liang98, C. J. Lin99, G. L. Lin100, P. Y. Lin101, S. K. Lin102, Y. C. Lin103, J. J. Ling104, J. M. Link105, L. Littenberg106, B. R. Littlejohn107, D. W. Liu108, H. Liu109, J. L. Liu110, J. C. Liu111, S. S. Liu112, Y. B. Liu113, C. Lu114, H. Q. Lu115, K. B. Luk116, Q. M. Ma117, X. Y. Ma118, X. B. Ma119, Y. Q. Ma120, K. T. McDonald121, M. C. McFarlane122, R. D. McKeown123, Y. Meng124, I. Mitchell125, J. Monari Kebwaro126, Y. Nakajima127, J. Napolitano128, D. Naumov129, E. Naumova130, I. Nemchenok131, H. Y. Ngai132, Z. Ning133, J. P. Ochoa-Ricoux134, A. Olshevski135, S. Patton136, V. Pec137, J. C. Peng138, L. E. Piilonen139, L. Pinsky140, C. S. J. Pun141, F. Z. Qi142, M. Qi143, X. Qian144, N. Raper145, B. Ren146, J. Ren147, R. Rosero148, B. Roskovec149, X. C. Ruan150, B. B. Shao151, H. Steiner152, G. X. Sun153, J. L. Sun154, Y. H. Tam155, X. Tang156, H. Themann157, K. V. Tsang158, R. H. M. Tsang159, C. E. Tull160, Y. C. Tung161, B. Viren162, V. Vorobel163, C. H. Wang164, L. S. Wang165, L. Y. Wang166, M. Wang167, N. Y. Wang168, R. G. Wang169, W. Wang170, W. W. Wang171, X. Wang172, Y. F. Wang173, Z. Wang174, Z. Wang175, Z. M. Wang176, D. M. Webber177, H. Y. Wei178, Y. D. Wei179, L. J. Wen180, K. Whisnant181, C. G. White182, L. Whitehead183, T. Wise184, H. L. H. Wong185, S. C. F. Wong186, E. Worcester187, Q. Wu188, D. M. Xia189, J. K. Xia190, X. Xia191, Z. Z. Xing192, J. Y. Xu193, J. L. Xu194, J. Xu195, Y. Xu196, T. Xue197, J. Yan198, C. C. Yang199, L. Yang200, M. S. Yang201, M. T. Yang202, M. Ye203, M. Yeh204, Y. S. Yeh205, B. L. Young206, G. Y. Yu207, J. Y. Yu208, Z. Y. Yu209, S. L. Zang210, B. Zeng211, L. Zhan212, C. Zhang213, F. H. Zhang214, J. W. Zhang215, Q. M. Zhang216, Q. Zhang217, S. H. Zhang218, Y. C. Zhang219, Y. M. Zhang220, Y. H. Zhang221, Y. X. Zhang222, Z. J. Zhang223, Z. Y. Zhang224, Z. P. Zhang225, J. Zhao226, Q. W. Zhao227, Y. Zhao228, Y. B. Zhao229, L. Zheng230, W. L. Zhong231, L. Zhou232, Z. Y. Zhou233, H. L. Zhuang234, J. H. Zou235
Affiliations: 1Daya Bay Collaboration, 2Daya Bay Collaboration, 3Daya Bay Collaboration, 4Daya Bay Collaboration, 5Daya Bay Collaboration, 6Daya Bay Collaboration, 7Daya Bay Collaboration, 8Daya Bay Collaboration, 9Daya Bay Collaboration, 10Daya Bay Collaboration, 11Daya Bay Collaboration, 12Daya Bay Collaboration, 13Daya Bay Collaboration, 14Daya Bay Collaboration, 15Daya Bay Collaboration, 16Daya Bay Collaboration, 17Daya Bay Collaboration, 18Daya Bay Collaboration, 19Daya Bay Collaboration, 20Daya Bay Collaboration, 21Daya Bay Collaboration, 22Daya Bay Collaboration, 23Daya Bay Collaboration, 24Daya Bay Collaboration, 25Daya Bay Collaboration, 26Daya Bay Collaboration, 27Daya Bay Collaboration, 28Daya Bay Collaboration, 29Daya Bay Collaboration, 30Daya Bay Collaboration, 31Daya Bay Collaboration, 32Daya Bay Collaboration, 33Daya Bay Collaboration, 34Daya Bay Collaboration, 35Daya Bay Collaboration, 36Daya Bay Collaboration, 37Daya Bay Collaboration, 38Daya Bay Collaboration, 39Daya Bay Collaboration, 40Daya Bay Collaboration, 41Daya Bay Collaboration, 42Daya Bay Collaboration, 43Daya Bay Collaboration, 44Daya Bay Collaboration, 45Daya Bay Collaboration, 46Daya Bay Collaboration, 47Daya Bay Collaboration, 48Daya Bay Collaboration, 49Daya Bay Collaboration, 50Daya Bay Collaboration, 51Daya Bay Collaboration, 52Daya Bay Collaboration, 53Daya Bay Collaboration, 54Daya Bay Collaboration, 55Daya Bay Collaboration, 56Daya Bay Collaboration, 57Daya Bay Collaboration, 58Daya Bay Collaboration, 59Daya Bay Collaboration, 60Daya Bay Collaboration, 61Daya Bay Collaboration, 62Daya Bay Collaboration, 63Daya Bay Collaboration, 64Daya Bay Collaboration, 65Daya Bay Collaboration, 66Daya Bay Collaboration, 67Daya Bay Collaboration, 68Daya Bay Collaboration, 69Daya Bay Collaboration, 70Daya Bay Collaboration, 71Daya Bay Collaboration, 72Daya Bay Collaboration, 73Daya Bay Collaboration, 74Daya Bay Collaboration, 75Daya Bay Collaboration, 76Daya Bay Collaboration, 77Daya Bay Collaboration, 78Daya Bay Collaboration, 79Daya Bay Collaboration, 80Daya Bay Collaboration, 81Daya Bay Collaboration, 82Daya Bay Collaboration, 83Daya Bay Collaboration, 84Daya Bay Collaboration, 85Daya Bay Collaboration, 86Daya Bay Collaboration, 87Daya Bay Collaboration, 88Daya Bay Collaboration, 89Daya Bay Collaboration, 90Daya Bay Collaboration, 91Daya Bay Collaboration, 92Daya Bay Collaboration, 93Daya Bay Collaboration, 94Daya Bay Collaboration, 95Daya Bay Collaboration, 96Daya Bay Collaboration, 97Daya Bay Collaboration, 98Daya Bay Collaboration, 99Daya Bay Collaboration, 100Daya Bay Collaboration, 101Daya Bay Collaboration, 102Daya Bay Collaboration, 103Daya Bay Collaboration, 104Daya Bay Collaboration, 105Daya Bay Collaboration, 106Daya Bay Collaboration, 107Daya Bay Collaboration, 108Daya Bay Collaboration, 109Daya Bay Collaboration, 110Daya Bay Collaboration, 111Daya Bay Collaboration, 112Daya Bay Collaboration, 113Daya Bay Collaboration, 114Daya Bay Collaboration, 115Daya Bay Collaboration, 116Daya Bay Collaboration, 117Daya Bay Collaboration, 118Daya Bay Collaboration, 119Daya Bay Collaboration, 120Daya Bay Collaboration, 121Daya Bay Collaboration, 122Daya Bay Collaboration, 123Daya Bay Collaboration, 124Daya Bay Collaboration, 125Daya Bay Collaboration, 126Daya Bay Collaboration, 127Daya Bay Collaboration, 128Daya Bay Collaboration, 129Daya Bay Collaboration, 130Daya Bay Collaboration, 131Daya Bay Collaboration, 132Daya Bay Collaboration, 133Daya Bay Collaboration, 134Daya Bay Collaboration, 135Daya Bay Collaboration, 136Daya Bay Collaboration, 137Daya Bay Collaboration, 138Daya Bay Collaboration, 139Daya Bay Collaboration, 140Daya Bay Collaboration, 141Daya Bay Collaboration, 142Daya Bay Collaboration, 143Daya Bay Collaboration, 144Daya Bay Collaboration, 145Daya Bay Collaboration, 146Daya Bay Collaboration, 147Daya Bay Collaboration, 148Daya Bay Collaboration, 149Daya Bay Collaboration, 150Daya Bay Collaboration, 151Daya Bay Collaboration, 152Daya Bay Collaboration, 153Daya Bay Collaboration, 154Daya Bay Collaboration, 155Daya Bay Collaboration, 156Daya Bay Collaboration, 157Daya Bay Collaboration, 158Daya Bay Collaboration, 159Daya Bay Collaboration, 160Daya Bay Collaboration, 161Daya Bay Collaboration, 162Daya Bay Collaboration, 163Daya Bay Collaboration, 164Daya Bay Collaboration, 165Daya Bay Collaboration, 166Daya Bay Collaboration, 167Daya Bay Collaboration, 168Daya Bay Collaboration, 169Daya Bay Collaboration, 170Daya Bay Collaboration, 171Daya Bay Collaboration, 172Daya Bay Collaboration, 173Daya Bay Collaboration, 174Daya Bay Collaboration, 175Daya Bay Collaboration, 176Daya Bay Collaboration, 177Daya Bay Collaboration, 178Daya Bay Collaboration, 179Daya Bay Collaboration, 180Daya Bay Collaboration, 181Daya Bay Collaboration, 182Daya Bay Collaboration, 183Daya Bay Collaboration, 184Daya Bay Collaboration, 185Daya Bay Collaboration, 186Daya Bay Collaboration, 187Daya Bay Collaboration, 188Daya Bay Collaboration, 189Daya Bay Collaboration, 190Daya Bay Collaboration, 191Daya Bay Collaboration, 192Daya Bay Collaboration, 193Daya Bay Collaboration, 194Daya Bay Collaboration, 195Daya Bay Collaboration, 196Daya Bay Collaboration, 197Daya Bay Collaboration, 198Daya Bay Collaboration, 199Daya Bay Collaboration, 200Daya Bay Collaboration, 201Daya Bay Collaboration, 202Daya Bay Collaboration, 203Daya Bay Collaboration, 204Daya Bay Collaboration, 205Daya Bay Collaboration, 206Daya Bay Collaboration, 207Daya Bay Collaboration, 208Daya Bay Collaboration, 209Daya Bay Collaboration, 210Daya Bay Collaboration, 211Daya Bay Collaboration, 212Daya Bay Collaboration, 213Daya Bay Collaboration, 214Daya Bay Collaboration, 215Daya Bay Collaboration, 216Daya Bay Collaboration, 217Daya Bay Collaboration, 218Daya Bay Collaboration, 219Daya Bay Collaboration, 220Daya Bay Collaboration, 221Daya Bay Collaboration, 222Daya Bay Collaboration, 223Daya Bay Collaboration, 224Daya Bay Collaboration, 225Daya Bay Collaboration, 226Daya Bay Collaboration, 227Daya Bay Collaboration, 228Daya Bay Collaboration, 229Daya Bay Collaboration, 230Daya Bay Collaboration, 231Daya Bay Collaboration, 232Daya Bay Collaboration, 233Daya Bay Collaboration, 234Daya Bay Collaboration, 235Daya Bay Collaboration

A search for light sterile neutrino mixing was performed with the first 217 days of data from the Daya Bay Reactor Antineutrino Experiment. The experiment's unique configuration of multiple baselines from six 2.9~GW$_{\rm th}$ nuclear reactors to six antineutrino detectors deployed in two near (effective baselines 512~m and 561~m) and one far (1579~m) underground experimental halls makes it possible to test for oscillations to a fourth (sterile) neutrino in the $10^{\rm -3}~{\rm eV}^{2} < |\Delta m_{41}^{2}| < 0. Read More

2014Jun
Authors: Daya Bay Collaboration, F. P. An, A. B. Balantekin, H. R. Band, W. Beriguete, M. Bishai, S. Blyth, I. Butorov, G. F. Cao, J. Cao, Y. L. Chan, J. F. Chang, L. C. Chang, Y. Chang, C. Chasman, H. Chen, Q. Y. Chen, S. M. Chen, X. Chen, X. Chen, Y. X. Chen, Y. Chen, Y. P. Cheng, J. J. Cherwinka, M. C. Chu, J. P. Cummings, J. de Arcos, Z. Y. Deng, Y. Y. Ding, M. V. Diwan, E. Draeger, X. F. Du, D. A. Dwyer, W. R. Edwards, S. R. Ely, J. Y. Fu, L. Q. Ge, R. Gill, M. Gonchar, G. H. Gong, H. Gong, W. Q. Gu, M. Y. Guan, X. H. Guo, R. W. Hackenburg, G. H. Han, S. Hans, M. He, K. M. Heeger, Y. K. Heng, P. Hinrichs, Y. K. Hor, Y. B. Hsiung, B. Z. Hu, L. M. Hu, L. J. Hu, T. Hu, W. Hu, E. C. Huang, H. Huang, X. T. Huang, P. Huber, G. Hussain, Z. Isvan, D. E. Jaffe, P. Jaffke, K. L. Jen, S. Jetter, X. P. Ji, X. L. Ji, H. J. Jiang, J. B. Jiao, R. A. Johnson, L. Kang, S. H. Kettell, M. Kramer, K. K. Kwan, M. W. Kwok, T. Kwok, W. C. Lai, K. Lau, L. Lebanowski, J. Lee, R. T. Lei, R. Leitner, A. Leung, J. K. C. Leung, C. A. Lewis, D. J. Li, F. Li, G. S. Li, Q. J. Li, W. D. Li, X. N. Li, X. Q. Li, Y. F. Li, Z. B. Li, H. Liang, C. J. Lin, G. L. Lin, P. Y. Lin, S. K. Lin, Y. C. Lin, J. J. Ling, J. M. Link, L. Littenberg, B. R. Littlejohn, D. W. Liu, H. Liu, J. L. Liu, J. C. Liu, S. S. Liu, Y. B. Liu, C. Lu, H. Q. Lu, K. -B. Luk, Q. M. Ma, X. Y. Ma, X. B. Ma, Y. Q. Ma, K. T. McDonald, M. C. McFarlane, R. D. McKeown, Y. Meng, I. Mitchell, J. Monari Kebwaro, Y. Nakajima, J. Napolitano, D. Naumov, E. Naumova, I. Nemchenok, H. Y. Ngai, Z. Ning, J. P. Ochoa-Ricoux, A. Olshevski, S. Patton, V. Pec, J. C. Peng, L. E. Piilonen, L. Pinsky, C. S. J. Pun, F. Z. Qi, M. Qi, X. Qian, N. Raper, B. Ren, J. Ren, R. Rosero, B. Roskovec, X. C. Ruan, B. B. Shao, H. Steiner, G. X. Sun, J. L. Sun, Y. H. Tam, X. Tang, H. Themann, K. V. Tsang, R. H. M. Tsang, C. E. Tull, Y. C. Tung, B. Viren, V. Vorobel, C. H. Wang, L. S. Wang, L. Y. Wang, M. Wang, N. Y. Wang, R. G. Wang, W. Wang, W. W. Wang, X. Wang, Y. F. Wang, Z. Wang, Z. Wang, Z. M. Wang, D. M. Webber, H. Y. Wei, Y. D. Wei, L. J. Wen, K. Whisnant, C. G. White, L. Whitehead, T. Wise, H. L. H. Wong, S. C. F. Wong, E. Worcester, Q. Wu, D. M. Xia, J. K. Xia, X. Xia, Z. Z. Xing, J. Y. Xu, J. L. Xu, J. Xu, Y. Xu, T. Xue, J. Yan, C. C. Yang, L. Yang, M. S. Yang, M. T. Yang, M. Ye, M. Yeh, Y. S. Yeh, B. L. Young, G. Y. Yu, J. Y. Yu, Z. Y. Yu, S. L. Zang, B. Zeng, L. Zhan, C. Zhang, F. H. Zhang, J. W. Zhang, Q. M. Zhang, Q. Zhang, S. H. Zhang, Y. C. Zhang, Y. M. Zhang, Y. H. Zhang, Y. X. Zhang, Z. J. Zhang, Z. Y. Zhang, Z. P. Zhang, J. Zhao, Q. W. Zhao, Y. Zhao, Y. B. Zhao, L. Zheng, W. L. Zhong, L. Zhou, Z. Y. Zhou, H. L. Zhuang, J. H. Zou

A new measurement of the $\theta_{13}$ mixing angle has been obtained at the Daya Bay Reactor Neutrino Experiment via the detection of inverse beta decays tagged by neutron capture on hydrogen. The antineutrino events for hydrogen capture are distinct from those for gadolinium capture with largely different systematic uncertainties, allowing a determination independent of the gadolinium-capture result and an improvement on the precision of $\theta_{13}$ measurement. With a 217-day antineutrino data set obtained with six antineutrino detectors and from six 2. Read More

In \cite{LuLa13}, two of the authors initiated a study of Lipschitz equivalence of self-similar sets through the augmented trees, a class of hyperbolic graphs introduced by Kaimanovich \cite{Ka03} and developed by Lau and Wang \cite{LaWa09}. In this paper, we continue such investigation. We remove a major assumption in the main theorem in \cite{LuLa13} by using a new notion of quasi-rearrangeable matrix, and show that the hyperbolic boundary of any simple augmented tree is Lipschitz equivalent to a Cantor-type set. Read More

For $0<\rho<1$ and $N>1$ an integer, let $\mu$ be the self-similar measure defined by $\mu(\cdot)=\sum_{i=0}^{N-1}\frac 1N\mu(\rho^{-1}(\cdot)-i)$. We prove that $L^2(\mu)$ has an exponential orthonormal basis if and only if $\rho=\frac 1q$ for some $q>0$ and $N$ divides $q$. The special case is the Cantor measure with $\rho =\frac 1{2k}$ and $N=2$ \cite {JP}, which was proved recently to be the only spectral measure among the Bernoulli convolutions with $0<\rho<1$ \cite {D}. Read More

2013Oct
Authors: Daya Bay Collaboration, F. P. An, A. B. Balantekin, H. R. Band, W. Beriguete, M. Bishai, S. Blyth, R. L. Brown, I. Butorov, G. F. Cao, J. Cao, R. Carr, Y. L. Chan, J. F. Chang, Y. Chang, C. Chasman, H. S. Chen, H. Y. Chen, S. J. Chen, S. M. Chen, X. C. Chen, X. H. Chen, Y. Chen, Y. X. Chen, Y. P. Cheng, J. J. Cherwinka, M. C. Chu, J. P. Cummings, J. de Arcos, Z. Y. Deng, Y. Y. Ding, M. V. Diwan, E. Draeger, X. F. Du, D. A. Dwyer, W. R. Edwards, S. R. Ely, J. Y. Fu, L. Q. Ge, R. Gill, M. Gonchar, G. H. Gong, H. Gong, Y. A. Gornushkin, W. Q. Gu, M. Y. Guan, X. H. Guo, R. W. Hackenburg, R. L. Hahn, G. H. Han, S. Hans, M. He, K. M. Heeger, Y. K. Heng, P. Hinrichs, yk. Hor, Y. B. Hsiung, B. Z. Hu, L. J. Hu, L. M. Hu, T. Hu, W. Hu, E. C. Huang, H. X. Huang, H. Z. Huang, X. T. Huang, P. Huber, G. Hussain, Z. Isvan, D. E. Jaffe, P. Jaffke, S. Jetter, X. L. Ji, X. P. Ji, H. J. Jiang, J. B. Jiao, R. A. Johnson, L. Kang, S. H. Kettell, M. Kramer, K. K. Kwan, M. W. Kwok, T. Kwok, W. C. Lai, W. H. Lai, K. Lau, L. Lebanowski, J. Lee, R. T. Lei, R. Leitner, A. Leung, J. K. C. Leung, C. A. Lewis, D. J. Li, F. Li, G. S. Li, Q. J. Li, W. D. Li, X. N. Li, X. Q. Li, Y. F. Li, Z. B. Li, H. Liang, C. J. Lin, G. L. Lin, S. K. Lin, Y. C. Lin, J. J. Ling, J. M. Link, L. Littenberg, B. R. Littlejohn, D. W. Liu, H. Liu, J. C. Liu, J. L. Liu, S. S. Liu, Y. B. Liu, C. Lu, H. Q. Lu, K. B. Luk, Q. M. Ma, X. B. Ma, X. Y. Ma, Y. Q. Ma, K. T. McDonald, M. C. McFarlane, R. D. McKeown, Y. Meng, I. Mitchell, Y. Nakajima, J. Napolitano, D. Naumov, E. Naumova, I. Nemchenok, H. Y. Ngai, W. K. Ngai, Z. Ning, J. P. Ochoa-Ricoux, A. Olshevski, S. Patton, V. Pec, J. C. Peng, L. E. Piilonen, L. Pinsky, C. S. J. Pun, F. Z. Qi, M. Qi, X. Qian, N. Raper, B. Ren, J. Ren, R. Rosero, B. Roskovec, X. C. Ruan, B. B. Shao, H. Steiner, G. X. Sun, J. L. Sun, Y. H. Tam, H. K. Tanaka, X. Tang, H. Themann, S. Trentalange, O. Tsai, K. V. Tsang, R. H. M. Tsang, C. E. Tull, Y. C. Tung, B. Viren, V. Vorobel, C. H. Wang, L. S. Wang, L. Y. Wang, L. Z. Wang, M. Wang, N. Y. Wang, R. G. Wang, W. Wang, W. W. Wang, X. Wang, Y. F. Wang, Z. Wang, Z. Wang, Z. M. Wang, D. M. Webber, H. Wei, Y. D. Wei, L. J. Wen, K. Whisnant, C. G. White, L. Whitehead, T. Wise, H. L. H. Wong, S. C. F. Wong, E. Worcester, Q. Wu, D. M. Xia, J. K. Xia, X. Xia, Z. Z. Xing, J. Xu, J. L. Xu, J. Y. Xu, Y. Xu, T. Xue, J. Yan, C. G. Yang, L. Yang, M. S. Yang, M. Ye, M. Yeh, Y. S. Yeh, B. L. Young, G. Y. Yu, J. Y. Yu, Z. Y. Yu, S. L. Zang, L. Zhan, C. Zhang, F. H. Zhang, J. W. Zhang, Q. M. Zhang, S. H. Zhang, Y. C. Zhang, Y. H. Zhang, Y. M. Zhang, Y. X. Zhang, Z. J. Zhang, Z. P. Zhang, Z. Y. Zhang, J. Zhao, Q. W. Zhao, Y. B. Zhao, L. Zheng, W. L. Zhong, L. Zhou, Z. Y. Zhou, H. L. Zhuang, J. H. Zou

A measurement of the energy dependence of antineutrino disappearance at the Daya Bay Reactor Neutrino Experiment is reported. Electron antineutrinos ($\overline{\nu}_{e}$) from six $2.9$ GW$_{\rm th}$ reactors were detected with six detectors deployed in two near (effective baselines 512 m and 561 m) and one far (1579 m) underground experimental halls. Read More

2013Oct
Authors: A. de Gouvea, K. Pitts, K. Scholberg, G. P. Zeller, J. Alonso, A. Bernstein, M. Bishai, S. Elliott, K. Heeger, K. Hoffman, P. Huber, L. J. Kaufman, B. Kayser, J. Link, C. Lunardini, B. Monreal, J. G. Morfin, H. Robertson, R. Tayloe, N. Tolich, K. Abazajian, T. Akiri, C. Albright, J. Asaadi, K. S Babu, A. B. Balantekin, P. Barbeau, M. Bass, A. Blake, A. Blondel, E. Blucher, N. Bowden, S. J. Brice, A. Bross, B. Carls, F. Cavanna, B. Choudhary, P. Coloma, A. Connolly, J. Conrad, M. Convery, R. L. Cooper, D. Cowen, H. da Motta, T. de Young, F. Di Lodovico, M. Diwan, Z. Djurcic, M. Dracos, S. Dodelson, Y. Efremenko, T. Ekelof, J. L. Feng, B. Fleming, J. Formaggio, A. Friedland, G. Fuller, H. Gallagher, S. Geer, M. Gilchriese, M. Goodman, D. Grant, G. Gratta, C. Hall, F. Halzen, D. Harris, M. Heffner, R. Henning, J. L. Hewett, R. Hill, A. Himmel, G. Horton-Smith, A. Karle, T. Katori, E. Kearns, S. Kettell, J. Klein, Y. Kim, Y. K. Kim, Yu. Kolomensky, M. Kordosky, Yu. Kudenko, V. A. Kudryavtsev, K. Lande, K. Lang, R. Lanza, K. Lau, H. Lee, Z. Li, B. R. Littlejohn, C. J. Lin, D. Liu, H. Liu, K. Long, W. Louis, K. B. Luk, W. Marciano, C. Mariani, M. Marshak, C. Mauger, K. T. McDonald, K. McFarland, R. McKeown, M. Messier, S. R. Mishra, U. Mosel, P. Mumm, T. Nakaya, J. K. Nelson, D. Nygren, G. D. Orebi Gann, J. Osta, O. Palamara, J. Paley, V. Papadimitriou, S. Parke, Z. Parsa, R. Patterson, A. Piepke, R. Plunkett, A. Poon, X. Qian, J. Raaf, R. Rameika, M. Ramsey-Musolf, B. Rebel, R. Roser, J. Rosner, C. Rott, G. Rybka, H. Sahoo, S. Sangiorgio, D. Schmitz, R. Shrock, M. Shaevitz, N. Smith, M. Smy, H. Sobel, P. Sorensen, A. Sousa, J. Spitz, T. Strauss, R. Svoboda, H. A. Tanaka, J. Thomas, X. Tian, R. Tschirhart, C. Tully, K. Van Bibber, R. G. Van de Water, P. Vahle, P. Vogel, C. W. Walter, D. Wark, M. Wascko, D. Webber, H. Weerts, C. White, H. White, L. Whitehead, R. J. Wilson, L. Winslow, T Wongjirad, E. Worcester, M. Yokoyama, J. Yoo, E. D. Zimmerman

This document represents the response of the Intensity Frontier Neutrino Working Group to the Snowmass charge. We summarize the current status of neutrino physics and identify many exciting future opportunities for studying the properties of neutrinos and for addressing important physics and astrophysics questions with neutrinos. Read More

We call a set $K \subset {\mathbb R}^s$ with positive Lebesgue measure a {\it spectral set} if $L^2(K)$ admits an exponential orthonormal basis. It was conjectured that $K$ is a spectral set if and only if $K$ is a tile (Fuglede's conjecture). Despite the conjecture was proved to be false on ${\mathbb R}^s$, $s\geq 3$ ([T], [KM2]), it still poses challenging questions with additional assumptions. Read More

Coarse (<=20 micron) titanium particles were deposited on low-carbon steel substrates by cathodic electrophoretic deposition (EPD) with ethanol as suspension medium and poly(diallyldimethylammonium chloride) (PDADMAC) as polymeric charging agent. The preceding data demonstrated that Ti particles of ~1-12 micron size, electrosterically modified by the PDADMAC charging agent, acted effectively as colloidal particles during EPD. Owing to the non-colloidal nature of the particles and the stabilization of the Ti particles by electrosteric forces, the relevance of the zeta potential is questionable, so the more fundamental parameter of electrophoretic mobility was used. Read More

We discuss the effects of a direct coupling between a rank-two antisymmetric tensor field and the Maxwell field. The coupling we consider leads to vacuum birefringence, allowing us to place constraints on the magnitude of the tensor field and the strength of its coupling to the Maxwell field via cosmological birefringence measurements. For light propagating in the presence of a topological defect solution, we find that light rays with different polarizations will follow different trajectories; the magnitude of this deflection is predicted to be extremely small (on the order of 10^-10 arcseconds). Read More

Medium-baseline reactor neutrino oscillation experiments (MBRO) have been proposed to determine the neutrino mass hierarchy (MH) and to make precise measurements of the neutrino oscillation parameters. With sufficient statistics, better than ~3%/\sqrt{E} energy resolution and well understood energy non-linearity, MH can be determined by analyzing oscillation signals driven by the atmospheric mass-squared difference in the survival spectrum of reactor antineutrinos. With such high performance MBRO detectors, oscillation parameters, such as \sin^22\theta_{12}, \Delta m^2_{21}, and \Delta m^2_{32}, can be measured to sub-percent level, which enables a future test of the PMNS matrix unitarity to ~1% level and helps the forthcoming neutrinoless double beta decay experiments to constrain the allowed values. Read More

One of the main goals of modern cosmic microwave background (CMB) missions is to measure the tensor-to-scalar ratio $r$ accurately to constrain inflation models. Due to ignorance about the reionization history $X_{e}(z)$, this analysis is usually done by assuming an instantaneous reionization $X_{e}(z)$ which, however, can bias the best-fit value of $r$. Moreover, due to the strong mixing of B-mode and E-mode polarizations in cut-sky measurements, multiplying the sky coverage fraction $f_{sky}$ by the full-sky likelihood would not give satisfactory results. Read More

Let $A$ be an expanding matrix on ${\Bbb R}^s$ with integral entries. A fundamental question in the fractal tiling theory is to understand the structure of the digit set ${\mathcal D}\subset{\Bbb Z}^s$ so that the integral self-affine set $T(A,\mathcal D)$ is a translational tile on ${\Bbb R}^s$. In our previous paper, we classified such tile digit sets ${\mathcal D}\subset{\Bbb Z}$ by expressing the mask polynomial $P_{\mathcal D}$ into product of cyclotomic polynomials. Read More

2012Nov
Authors: The Mu2e Project, Collaboration, :, R. J. Abrams, D. Alezander, G. Ambrosio, N. Andreev, C. M. Ankenbrandt, D. M. Asner, D. Arnold, A. Artikov, E. Barnes, L. Bartoszek, R. H. Bernstein, K. Biery, V. Biliyar, R. Bonicalzi, R. Bossert, M. Bowden, J. Brandt, D. N. Brown, J. Budagov, M. Buehler, A. Burov, R. Carcagno, R. M. Carey, R. Carosi, M. Cascella, D. Cauz, F. Cervelli, A. Chandra, J. K. Chang, C. Cheng, P. Ciambrone, R. N. Coleman, M. Cooper, M. C. Corcoran, M. Cordelli, Y. Davydov, A. L. de Gouvea, L. De Lorenzis, P. T. Debevec, F. DeJongh, C. Densham, G. Deuerling, J. Dey, S. Di Falco, S. Dixon, R. Djilkibaev, B. Drendel, E. C. Dukes, A. Dychkant, B. Echenard, R. Ehrlich, N. Evans, D. Evbota, I. Fang, J. E. Fast, S. Feher, M. Fischler, M. Frank, E. Frlez, S. S. Fung, G. Gallo, G. Galucci, A. Gaponenko, K. Genser, S. Giovannella, V. Glagolev, D. Glenzinski, D. Gnani, S. Goadhouse, G. D. Gollin, C. Grace, F. Grancagnolo, C. Group, J. Hanson, S. Hanson, F. Happacher, E. Heckmaier, D. Hedin, D. W. Hertzog, R. Hirosky, D. G. Hitlin, E. Ho, X. Huang, E. Huedem, P. Q. Hung, E. V. Hungerford, T. Ito, W. Jaskierny, R. Jedziniak, R. P. Johnson, C. Johnstone, J. A. Johnstone, S. A. Kahn, P. Kammel, T. I. Kang, V. S. Kashikhin, V. V. Kashikhin, P. Kasper, D. M. Kawall, V. Khalatian, M. Kim, A. Klebaner, D. Kocen, Y. Kolomensky, I. Kourbanis, J. Kowalkowski, J. Kozminski, K. Krempetz, K. S. Kumar, R. K. Kutschke, R. Kwarciany, T. Lackowski, M. Lamm, M. Larwill, K. Lau, M. J. Lee, A. L'Erario, T. Leveling, G. Lim, C. Lindenmeyer, V. Logashenko, T. Lontadze, M. Lopes, A. Luca, K. R. Lynch, T. Ma, A. Maffezzoli, W. J. Marciano, M. Martini, W. Masayoshi, V. Matushko, M. McAteer, R. McCrady, A. Moccoli, L. Michelotti, J. P. Miller, S. Miscetti, W. Molzon, J. Morgan, A. Mukherjee, S. Nagaitsev, V. Nagaslaev, J. Niehoff, D. V. Neuffer, T. Nicol, A. J. Norman, B. Norris, J. Odell, S. Oh, Y. Oksuzian, G. Onorato, J. Orduna, D. Orris, R. Ostojic, T. Page, K. D. Paschke, G. Pauletta, T. Peterson, G. M. Piacentino, G. Pileggi, A. Pla-Dalmau, D. Pocanic, C. C. Polly, V. Polychronakos, B. Ponzio, M. Popovic, J. L. Popp, F. Porter, E. Presbys, P. Prieto, V. Pronskikh, F. Puccinelli, R. Rabehl, J. Ramsey, R. E. Ray, R. Rechenmacher, S. Rella, L. Ristori, R. Rivera, B. L. Roberts, T. J. Roberts, P. Rubinov, V. L. Rusu, A. Saputi, I. Sarra, Y. Smertzidis, P. Shanahan, A. Simonenko, J. Steward, I. Suslov, C. Sylvester, Z. Tang, M. Tartaglia, G. Tassielli, V. Tereshchenko, J. Theilacker, J. Tompkins, R. Tschirhart, G. Van Zandbergen, C. Vannini, G. Venanzoni, H. von der Lippe, R. Wagner, J. P. Walder, R. Walton, S. Wands, S. Wang, G. Warren, S. Werkema, H. B. White Jr, R. Wielgos, L. S. Wood, M. Woodward, J. Wu, M. Xiao, R. Yamada, P. Yamin, K. Yarritu, K. Yonehara, C. Yoshikawa, Z. You, G. Yu, A. Yurkewicz, G. Zavarise, R. Y. Zhu

Mu2e at Fermilab will search for charged lepton flavor violation via the coherent conversion process mu- N --> e- N with a sensitivity approximately four orders of magnitude better than the current world's best limits for this process. The experiment's sensitivity offers discovery potential over a wide array of new physics models and probes mass scales well beyond the reach of the LHC. We describe herein the conceptual design of the proposed Mu2e experiment. Read More

2012Oct
Authors: Daya Bay Collaboration, F. P. An, Q. An, J. Z. Bai, A. B. Balantekin, H. R. Band, W. Beriguete, M. Bishai, S. Blyth, R. L. Brown, G. F. Cao, J. Cao, R. Carr, W. T. Chan, J. F. Chang, Y. Chang, C. Chasman, H. S. Chen, H. Y. Chen, S. J. Chen, S. M. Chen, X. C. Chen, X. H. Chen, X. S. Chen, Y. Chen, Y. X. Chen, J. J. Cherwinka, M. C. Chu, J. P. Cummings, Z. Y. Deng, Y. Y. Ding, M. V. Diwan, E. Draeger, X. F. Du, D. Dwyer, W. R. Edwards, S. R. Ely, S. D. Fang, J. Y. Fu, Z. W. Fu, L. Q. Ge, R. L. Gill, M. Gonchar, G. H. Gong, H. Gong, Y. A. Gornushkin, W. Q. Gu, M. Y. Guan, X. H. Guo, R. W. Hackenburg, R. L. Hahn, S. Hans, H. F. Hao, M. He, Q. He, K. M. Heeger, Y. K. Heng, P. Hinrichs, Y. K. Hor, Y. B. Hsiung, B. Z. Hu, T. Hu, H. X. Huang, H. Z. Huang, X. T. Huang, P. Huber, V. Issakov, Z. Isvan, D. E. Jaffe, S. Jetter, X. L. Ji, X. P. Ji, H. J. Jiang, J. B. Jiao, R. A. Johnson, L. Kang, S. H. Kettell, M. Kramer, K. K. Kwan, M. W. Kwok, T. Kwok, C. Y. Lai, W. C. Lai, W. H. Lai, K. Lau, L. Lebanowski, J. Lee, R. T. Lei, R. Leitner, J. K. C. Leung, K. Y. Leung, C. A. Lewis, F. Li, G. S. Li, Q. J. Li, W. D. Li, X. B. Li, X. N. Li, X. Q. Li, Y. Li, Z. B. Li, H. Liang, C. J. Lin, G. L. Lin, S. K. Lin, Y. C. Lin, J. J. Ling, J. M. Link, L. Littenberg, B. R. Littlejohn, D. W. Liu, J. C. Liu, J. L. Liu, Y. B. Liu, C. Lu, H. Q. Lu, A. Luk, K. B. Luk, Q. M. Ma, X. B. Ma, X. Y. Ma, Y. Q. Ma, K. T. McDonald, M. C. McFarlane, R. D. McKeown, Y. Meng, D. Mohapatra, Y. Nakajima, J. Napolitano, D. Naumov, I. Nemchenok, H. Y. Ngai, W. K. Ngai, Y. B. Nie, Z. Ning, J. P. Ochoa-Ricoux, A. Olshevski, S. Patton, V. Pec, J. C. Peng, L. E. Piilonen, L. Pinsky, C. S. J. Pun, F. Z. Qi, M. Qi, X. Qian, N. Raper, J. Ren, R. Rosero, B. Roskovec, X. C. Ruan, B. B. Shao, K. Shih, H. Steiner, G. X. Sun, J. L. Sun, N. Tagg, Y. H. Tam, H. K. Tanaka, X. Tang, H. Themann, Y. Torun, S. Trentalange, O. Tsai, K. V. Tsang, R. H. M. Tsang, C. E. Tull, Y. C. Tung, B. Viren, V. Vorobel, C. H. Wang, L. S. Wang, L. Y. Wang, L. Z. Wang, M. Wang, N. Y. Wang, R. G. Wang, W. Wang, X. Wang, Y. F. Wang, Z. Wang, Z. Wang, Z. M. Wang, D. M. Webber, H. Y. Wei, Y. D. Wei, L. J. Wen, K. Whisnant, C. G. White, L. Whitehead, Y. Williamson, T. Wise, H. L. H. Wong, E. T. Worcester, F. F. Wu, Q. Wu, J. B. Xi, D. M. Xia, Z. Z. Xing, J. Xu, J. Xu, J. L. Xu, Y. Xu, T. Xue, C. G. Yang, L. Yang, M. Ye, M. Yeh, Y. S. Yeh, B. L. Young, Z. Y. Yu, L. Zhan, C. Zhang, F. H. Zhang, J. W. Zhang, Q. M. Zhang, S. H. Zhang, Y. C. Zhang, Y. H. Zhang, Y. X. Zhang, Z. J. Zhang, Z. P. Zhang, Z. Y. Zhang, J. Zhao, Q. W. Zhao, Y. B. Zhao, L. Zheng, W. L. Zhong, L. Zhou, Z. Y. Zhou, H. L. Zhuang, J. H. Zou

We report an improved measurement of the neutrino mixing angle $\theta_{13}$ from the Daya Bay Reactor Neutrino Experiment. We exclude a zero value for $\sin^22\theta_{13}$ with a significance of 7.7 standard deviations. Read More

In [9] Kaimanovich introduced the concept of augmented tree on the symbolic space of a self-similar set. It is hyperbolic in the sense of Gromov, and it was shown in [13] that under the open set condition, a self-similar set can be identified with the hyperbolic boundary of the tree. In the paper, we investigate in detail a class of simple augmented trees and the Lipschitz equivalence of such trees. Read More

2012Mar
Authors: F. P. An, J. Z. Bai, A. B. Balantekin, H. R. Band, D. Beavis, W. Beriguete, M. Bishai, S. Blyth, K. Boddy, R. L. Brown, B. Cai, G. F. Cao, J. Cao, R. Carr, W. T. Chan, J. F. Chang, Y. Chang, C. Chasman, H. S. Chen, H. Y. Chen, S. J. Chen, S. M. Chen, X. C. Chen, X. H. Chen, X. S. Chen, Y. Chen, Y. X. Chen, J. J. Cherwinka, M. C. Chu, J. P. Cummings, Z. Y. Deng, Y. Y. Ding, M. V. Diwan, L. Dong, E. Draeger, X. F. Du, D. A. Dwyer, W. R. Edwards, S. R. Ely, S. D. Fang, J. Y. Fu, Z. W. Fu, L. Q. Ge, V. Ghazikhanian, R. L. Gill, J. Goett, M. Gonchar, G. H. Gong, H. Gong, Y. A. Gornushkin, L. S. Greenler, W. Q. Gu, M. Y. Guan, X. H. Guo, R. W. Hackenburg, R. L. Hahn, S. Hans, M. He, Q. He, W. S. He, K. M. Heeger, Y. K. Heng, P. Hinrichs, T. H. Ho, Y. K. Hor, Y. B. Hsiung, B. Z. Hu, T. Hu, T. Hu, H. X. Huang, H. Z. Huang, P. W. Huang, X. Huang, X. T. Huang, P. Huber, Z. Isvan, D. E. Jaffe, S. Jetter, X. L. Ji, X. P. Ji, H. J. Jiang, W. Q. Jiang, J. B. Jiao, R. A. Johnson, L. Kang, S. H. Kettell, M. Kramer, K. K. Kwan, M. W. Kwok, T. Kwok, C. Y. Lai, W. C. Lai, W. H. Lai, K. Lau, L. Lebanowski, J. Lee, M. K. P. Lee, R. Leitner, J. K. C. Leung, K. Y. Leung, C. A. Lewis, B. Li, F. Li, G. S. Li, J. Li, Q. J. Li, S. F. Li, W. D. Li, X. B. Li, X. N. Li, X. Q. Li, Y. Li, Z. B. Li, H. Liang, J. Liang, C. J. Lin, G. L. Lin, S. K. Lin, S. X. Lin, Y. C. Lin, J. J. Ling, J. M. Link, L. Littenberg, B. R. Littlejohn, B. J. Liu, C. Liu, D. W. Liu, H. Liu, J. C. Liu, J. L. Liu, S. Liu, X. Liu, Y. B. Liu, C. Lu, H. Q. Lu, A. Luk, K. B. Luk, T. Luo, X. L. Luo, L. H. Ma, Q. M. Ma, X. B. Ma, X. Y. Ma, Y. Q. Ma, B. Mayes, K. T. McDonald, M. C. McFarlane, R. D. McKeown, Y. Meng, D. Mohapatra, J. E. Morgan, Y. Nakajima, J. Napolitano, D. Naumov, I. Nemchenok, C. Newsom, H. Y. Ngai, W. K. Ngai, Y. B. Nie, Z. Ning, J. P. Ochoa-Ricoux, D. Oh, A. Olshevski, A. Pagac, S. Patton, C. Pearson, V. Pec, J. C. Peng, L. E. Piilonen, L. Pinsky, C. S. J. Pun, F. Z. Qi, M. Qi, X. Qian, N. Raper, R. Rosero, B. Roskovec, X. C. Ruan, B. Seilhan, B. B. Shao, K. Shih, H. Steiner, P. Stoler, G. X. Sun, J. L. Sun, Y. H. Tam, H. K. Tanaka, X. Tang, H. Themann, Y. Torun, S. Trentalange, O. Tsai, K. V. Tsang, R. H. M. Tsang, C. Tull, B. Viren, S. Virostek, V. Vorobel, C. H. Wang, L. S. Wang, L. Y. Wang, L. Z. Wang, M. Wang, N. Y. Wang, R. G. Wang, T. Wang, W. Wang, X. Wang, X. Wang, Y. F. Wang, Z. Wang, Z. Wang, Z. M. Wang, D. M. Webber, Y. D. Wei, L. J. Wen, D. L. Wenman, K. Whisnant, C. G. White, L. Whitehead, C. A. Whitten Jr., J. Wilhelmi, T. Wise, H. C. Wong, H. L. H. Wong, J. Wong, E. T. Worcester, F. F. Wu, Q. Wu, D. M. Xia, S. T. Xiang, Q. Xiao, Z. Z. Xing, G. Xu, J. Xu, J. Xu, J. L. Xu, W. Xu, Y. Xu, T. Xue, C. G. Yang, L. Yang, M. Ye, M. Yeh, Y. S. Yeh, K. Yip, B. L. Young, Z. Y. Yu, L. Zhan, C. Zhang, F. H. Zhang, J. W. Zhang, Q. M. Zhang, K. Zhang, Q. X. Zhang, S. H. Zhang, Y. C. Zhang, Y. H. Zhang, Y. X. Zhang, Z. J. Zhang, Z. P. Zhang, Z. Y. Zhang, J. Zhao, Q. W. Zhao, Y. B. Zhao, L. Zheng, W. L. Zhong, L. Zhou, Z. Y. Zhou, H. L. Zhuang, J. H. Zou

The Daya Bay Reactor Neutrino Experiment has measured a non-zero value for the neutrino mixing angle $\theta_{13}$ with a significance of 5.2 standard deviations. Antineutrinos from six 2. Read More

2012Feb
Authors: Daya Bay Collaboration, F. P. An, Q. An, J. Z. Bai, A. B. Balantekin, H. R. Band, W. Beriguete, M. Bishai, S. Blyth, R. L. Brown, G. F. Cao, J. Cao, R. Carr, J. F. Chang, Y. Chang, C. Chasman, H. S. Chen, S. J. Chen, S. M. Chen, X. C. Chen, X. H. Chen, X. S. Chen, Y. Chen, J. J. Cherwinka, M. C. Chu, J. P. Cummings, Z. Y. Deng, Y. Y. Ding, M. V. Diwan, E. Draeger, X. F. Du, D. Dwyer, W. R. Edwards, S. R. Ely, S. D. Fang, J. Y. Fu, Z. W. Fu, L. Q. Ge, R. L. Gill, M. Gonchar, G. H. Gong, H. Gong, Y. A. Gornushkin, L. S. Greenler, W. Q. Gu, M. Y. Guan, X. H. Guo, R. W. Hackenburg, R. L. Hahn, S. Hans, H. F. Hao, M. He, Q. He, W. S. He, K. M. Heeger, Y. K. Heng, P. Hinrichs, T. H. Ho, Y. K. Hor, Y. B. Hsiung, B. Z. Hu, T. Hu, T. Hu, H. X. Huang, H. Z. Huang, P. W. Huang, X. Huang, X. T. Huang, P. Huber, D. E. Jaffe, S. Jetter, X. L. Ji, X. P. Ji, H. J. Jiang, W. Q. Jiang, J. B. Jiao, R. A. Johnson, L. Kang, S. H. Kettell, M. Kramer, K. K. Kwan, M. W. Kwok, T. Kwok, C. Y. Lai, W. C. Lai, W. H. Lai, K. Lau, L. Lebanowski, M. K. P. Lee, R. Leitner, J. K. C. Leung, K. Y. Leung, C. A. Lewis, F. Li, G. S. Li, J. Li, Q. J. Li, S. F. Li, W. D. Li, X. B. Li, X. N. Li, X. Q. Li, Y. Li, Z. B. Li, H. Liang, C. J. Lin, G. L. Lin, S. K. Lin, S. X. Lin, Y. C. Lin, J. J. Ling, J. M. Link, L. Littenberg, B. R. Littlejohn, B. J. Liu, D. W. Liu, J. C. Liu, J. L. Liu, S. Liu, X. Liu, Y. B. Liu, C. Lu, H. Q. Lu, A. Luk, K. B. Luk, X. L. Luo, L. H. Ma, Q. M. Ma, X. Y. Ma, Y. Q. Ma, B. Mayes, K. T. McDonald, M. C. McFarlane, R. D. McKeown, Y. Meng, D. Mohapatra, Y. Nakajima, J. Napolitano, D. Naumov, I. Nemchenok, C. Newsom, H. Y. Ngai, W. K. Ngai, Y. B. Nie, Z. Ning, J. P. Ochoa-Ricoux, A. Olshevski, A. Pagac, S. Patton, V. Pec, J. C. Peng, L. E. Piilonen, L. Pinsky, C. S. J. Pun, F. Z. Qi, M. Qi, X. Qian, R. Rosero, B. Roskovec, X. C. Ruan, B. Seilhan, B. B. Shao, K. Shih, H. Steiner, P. Stoler, G. X. Sun, J. L. Sun, Y. H. Tam, H. K. Tanaka, X. Tang, Y. Torun, S. Trentalange, O. Tsai, K. V. Tsang, R. H. M. Tsang, C. Tull, B. Viren, V. Vorobel, C. H. Wang, L. S. Wang, L. Y. Wang, M. Wang, N. Y. Wang, R. G. Wang, W. Wang, X. Wang, Y. F. Wang, Z. Wang, Z. Wang, Z. M. Wang, D. M. Webber, Y. D. Wei, L. J. Wen, D. L. Wenman, K. Whisnant, C. G. White, L. Whitehead, J. Wilhelmi, T. Wise, H. L. H. Wong, J. Wong, F. F. Wu, Q. Wu, J. B. Xi, D. M. Xia, Q. Xiao, Z. Z. Xing, G. Xu, J. Xu, J. Xu, J. L. Xu, Y. Xu, T. Xue, C. G. Yang, L. Yang, M. Ye, M. Yeh, Y. S. Yeh, B. L. Young, Z. Y. Yu, L. Zhan, C. Zhang, F. H. Zhang, J. W. Zhang, Q. M. Zhang, S. H. Zhang, Y. C. Zhang, Y. H. Zhang, Y. X. Zhang, Z. J. Zhang, Z. P. Zhang, Z. Y. Zhang, H. Zhao, J. Zhao, Q. W. Zhao, Y. B. Zhao, L. Zheng, W. L. Zhong, L. Zhou, Y. Z. Zhou, Z. Y. Zhou, H. L. Zhuang, J. H. Zou

The Daya Bay Reactor Neutrino Experiment is designed to determine precisely the neutrino mixing angle $\theta_{13}$ with a sensitivity better than 0.01 in the parameter sin$^22\theta_{13}$ at the 90% confidence level. To achieve this goal, the collaboration will build eight functionally identical antineutrino detectors. Read More

We study the structure of the digit sets ${\mathcal D}$ for the integral self-similar tiles $T(b,{\mathcal{D}})$ (we call such ${\mathcal D}$ a {\it tile digit set} with respect to $b$). So far the only available classes of such tile digit sets are the complete residue sets and the product-forms. Our investigation here is based on the spectrum of the mask polynomial $P_{\mathcal D}$, i. Read More

Let $\mu$ be a Borel probability measure with compact support. We consider exponential type orthonormal bases, Riesz bases and frames in $L^2(\mu)$. We show that if $L^2(\mu)$ admits an exponential frame, then $\mu$ must be of pure type. Read More

2007Aug
Affiliations: 1INFN, Sezione di Catania, Italy, 2NSCL, Michigan State University, USA, 3NSCL, Michigan State University, USA, 4NSCL, Michigan State University, USA, 5NSCL, Michigan State University, USA, 6NSCL, Michigan State University, USA, 7NSCL, Michigan State University, USA, 8NSCL, Michigan State University, USA, 9NSCL, Michigan State University, USA, 10NSCL, Michigan State University, USA, 11NSCL, Michigan State University, USA, 12NSCL, Michigan State University, USA, 13NSCL, Michigan State University, USA, 14NSCL, Michigan State University, USA, 15LLNL, USA, 16Dep. of Chemistry and IUCF, Indiana University, USA, 17Dep. of Chemistry and IUCF, Indiana University, USA, 18Dep. of Chemistry and IUCF, Indiana University, USA, 19Dep. of Chemistry, WU, 20Dep. of Chemistry, WU

The interplay of the effects of geometry and collective motion on d-$\alpha$ correlation functions is investigated for central Xe+Au collisions at E/A=50 MeV. The data cannot be explained without collective motion, which could be partly along the beam axis. A semi-quantitative description of the data can be obtained using a Monte-Carlo model, where thermal emission is superimposed on collective motion. Read More

We develop a general method to explore how the function performed by a biological network can constrain both its structural and dynamical network properties. This approach is orthogonal to prior studies which examine the functional consequences of a given structural feature, for example a scale free architecture. A key step is to construct an algorithm that allows us to efficiently sample from a maximum entropy distribution on the space of boolean dynamical networks constrained to perform a specific function, or cascade of gene expression. Read More

The first--principles density functional molecular dynamics simulations have been carried out to investigate the geometric, the electronic, and the finite temperature properties of pure Li clusters (Li$_{10}$, Li$_{12}$) and Al--doped Li clusters (Li$_{10}$Al, Li$_{10}$Al$_2$). We find that addition of two Al impurities in Li$_{10}$ results in a substantial structural change, while the addition of one Al impurity causes a rearrangement of atoms. Introduction of Al--impurities in Li$_{10}$ establishes a polar bond between Li and nearby Al atom(s), leading to a multicentered bonding, which weakens the Li--Li metallic bonds in the system. Read More

2003Jul

Flavor changing neutral currents (FCNCs) in the charm system are highly suppressed in the standard model (SM). The theoretical strategies used to suppress FCNCs induced by supersymmetry in the strange and beauty systems need not apply to the charm system. The charm changing neutral current decay D^0-> mu^+ mu^- is studied phenomenologically in the framework of supersymmetric extensions of the standard model. Read More

This paper considers the problem of matching fragment to organism using its complete genome. Our method is based on the probability measure representation of a genome. We first demonstrate that these probability measures can be modelled as recurrent iterated function systems (RIFS) consisting of four contractive similarities. Read More

Let $(\Sigma_A, \sigma)$ be a subshift of finite type and let $M(x)$ be a continuous function on $\Sigma_A$ taking values in the set of non-negative matrices. We extend the classical scalar pressure function to this new setting and prove the existence of the Gibbs measure and the differentiability of the pressure function. We are especially interested on the case where $M(x)$ takes finite values $M_1, . Read More

The coding and noncoding length sequences constructed from a complete genome are characterised by multifractal analysis. The dimension spectrum $D_{q}$ and its derivative, the 'analogous' specific heat $C_{q}$, are calculated for the coding and noncoding length sequences of bacteria, where $q$ is the moment order of the partition sum of the sequences. From the shape of the $% D_{q}$ and $C_{q}$ curves, it is seen that there exists a clear difference between the coding/noncoding length sequences of all organisms considered and a completely random sequence. Read More

This paper develops a theory for characterisation of DNA sequences based on their measure representation. The measures are shown to be random cascades generated by an infinitely divisible distribution. This probability distribution is uniquely determined by the exponent function in the multifractal theory of random cascades. Read More

This paper introduces the notion of measure representation of DNA sequences. Spectral analysis and multifractal analysis are then performed on the measure representations of a large number of complete genomes. The main aim of this paper is to discuss the multifractal property of the measure representation and the classification of bacteria. Read More