K. Iwasawa - ICREA and Institut de Ciencies del Cosmos

K. Iwasawa
Are you K. Iwasawa?

Claim your profile, edit publications, add additional information:

Contact Details

Name
K. Iwasawa
Affiliation
ICREA and Institut de Ciencies del Cosmos
Location

Pubs By Year

External Links

Pub Categories

 
Cosmology and Nongalactic Astrophysics (23)
 
High Energy Astrophysical Phenomena (22)
 
Astrophysics of Galaxies (21)
 
Instrumentation and Methods for Astrophysics (4)
 
Quantum Physics (2)
 
Earth and Planetary Astrophysics (1)
 
Solar and Stellar Astrophysics (1)

Publications Authored By K. Iwasawa

We construct a sample of X-ray bright optically faint active galactic nuclei by combining Subaru Hyper Suprime-Cam, XMM-Newton, and infrared source catalogs. 53 X-ray sources satisfying i band magnitude fainter than 23.5 mag and X-ray counts with EPIC-PN detector larger than 70 are selected from 9. Read More

2017Apr
Authors: H. Aihara1, N. Arimoto2, R. Armstrong3, S. Arnouts4, N. A. Bahcall5, S. Bickerton6, J. Bosch7, K. Bundy8, P. L. Capak9, J. H. H. Chan10, M. Chiba11, J. Coupon12, E. Egami13, M. Enoki14, F. Finet15, H. Fujimori16, S. Fujimoto17, H. Furusawa18, J. Furusawa19, T. Goto20, A. Goulding21, J. P. Greco22, J. E. Greene23, J. E. Gunn24, T. Hamana25, Y. Harikane26, Y. Hashimoto27, T. Hattori28, M. Hayashi29, Y. Hayashi30, K. G. Hełminiak31, R. Higuchi32, C. Hikage33, P. T. P. Ho34, B. -C. Hsieh35, K. Huang36, S. Huang37, H. Ikeda38, M. Imanishi39, A. K. Inoue40, K. Iwasawa41, I. Iwata42, A. T. Jaelani43, H. -Y. Jian44, Y. Kamata45, H. Karoji46, N. Kashikawa47, N. Katayama48, S. Kawanomoto49, I. Kayo50, J. Koda51, M. Koike52, T. Kojima53, Y. Komiyama54, A. Konno55, S. Koshida56, Y. Koyama57, H. Kusakabe58, A. Leauthaud59, C. -H. Lee60, L. Lin61, Y. -T. Lin62, R. H. Lupton63, R. Mandelbaum64, Y. Matsuoka65, E. Medezinski66, S. Mineo67, S. Miyama68, H. Miyatake69, S. Miyazaki70, R. Momose71, A. More72, S. More73, Y. Moritani74, T. J. Moriya75, T. Morokuma76, S. Mukae77, R. Murata78, H. Murayama79, T. Nagao80, F. Nakata81, M. Niida82, H. Niikura83, A. J. Nishizawa84, Y. Obuchi85, M. Oguri86, Y. Oishi87, N. Okabe88, Y. Okura89, Y. Ono90, M. Onodera91, M. Onoue92, K. Osato93, M. Ouchi94, P. A. Price95, T. -S. Pyo96, M. Sako97, S. Okamoto98, M. Sawicki99, T. Shibuya100, K. Shimasaku101, A. Shimono102, M. Shirasaki103, J. D. Silverman104, M. Simet105, J. Speagle106, D. N. Spergel107, M. A. Strauss108, Y. Sugahara109, N. Sugiyama110, Y. Suto111, S. H. Suyu112, N. Suzuki113, P. J. Tait114, T. Takata115, M. Takada116, N. Tamura117, M. M. Tanaka118, M. Tanaka119, M. Tanaka120, Y. Tanaka121, T. Terai122, Y. Terashima123, Y. Toba124, J. Toshikawa125, E. L. Turner126, T. Uchida127, H. Uchiyama128, K. Umetsu129, F. Uraguchi130, Y. Urata131, T. Usuda132, Y. Utsumi133, S. -Y. Wang134, W. -H. Wang135, K. C. Wong136, K. Yabe137, Y. Yamada138, H. Yamanoi139, N. Yasuda140, S. Yeh141, A. Yonehara142, S. Yuma143
Affiliations: 1HSC Collaboration, 2HSC Collaboration, 3HSC Collaboration, 4HSC Collaboration, 5HSC Collaboration, 6HSC Collaboration, 7HSC Collaboration, 8HSC Collaboration, 9HSC Collaboration, 10HSC Collaboration, 11HSC Collaboration, 12HSC Collaboration, 13HSC Collaboration, 14HSC Collaboration, 15HSC Collaboration, 16HSC Collaboration, 17HSC Collaboration, 18HSC Collaboration, 19HSC Collaboration, 20HSC Collaboration, 21HSC Collaboration, 22HSC Collaboration, 23HSC Collaboration, 24HSC Collaboration, 25HSC Collaboration, 26HSC Collaboration, 27HSC Collaboration, 28HSC Collaboration, 29HSC Collaboration, 30HSC Collaboration, 31HSC Collaboration, 32HSC Collaboration, 33HSC Collaboration, 34HSC Collaboration, 35HSC Collaboration, 36HSC Collaboration, 37HSC Collaboration, 38HSC Collaboration, 39HSC Collaboration, 40HSC Collaboration, 41HSC Collaboration, 42HSC Collaboration, 43HSC Collaboration, 44HSC Collaboration, 45HSC Collaboration, 46HSC Collaboration, 47HSC Collaboration, 48HSC Collaboration, 49HSC Collaboration, 50HSC Collaboration, 51HSC Collaboration, 52HSC Collaboration, 53HSC Collaboration, 54HSC Collaboration, 55HSC Collaboration, 56HSC Collaboration, 57HSC Collaboration, 58HSC Collaboration, 59HSC Collaboration, 60HSC Collaboration, 61HSC Collaboration, 62HSC Collaboration, 63HSC Collaboration, 64HSC Collaboration, 65HSC Collaboration, 66HSC Collaboration, 67HSC Collaboration, 68HSC Collaboration, 69HSC Collaboration, 70HSC Collaboration, 71HSC Collaboration, 72HSC Collaboration, 73HSC Collaboration, 74HSC Collaboration, 75HSC Collaboration, 76HSC Collaboration, 77HSC Collaboration, 78HSC Collaboration, 79HSC Collaboration, 80HSC Collaboration, 81HSC Collaboration, 82HSC Collaboration, 83HSC Collaboration, 84HSC Collaboration, 85HSC Collaboration, 86HSC Collaboration, 87HSC Collaboration, 88HSC Collaboration, 89HSC Collaboration, 90HSC Collaboration, 91HSC Collaboration, 92HSC Collaboration, 93HSC Collaboration, 94HSC Collaboration, 95HSC Collaboration, 96HSC Collaboration, 97HSC Collaboration, 98HSC Collaboration, 99HSC Collaboration, 100HSC Collaboration, 101HSC Collaboration, 102HSC Collaboration, 103HSC Collaboration, 104HSC Collaboration, 105HSC Collaboration, 106HSC Collaboration, 107HSC Collaboration, 108HSC Collaboration, 109HSC Collaboration, 110HSC Collaboration, 111HSC Collaboration, 112HSC Collaboration, 113HSC Collaboration, 114HSC Collaboration, 115HSC Collaboration, 116HSC Collaboration, 117HSC Collaboration, 118HSC Collaboration, 119HSC Collaboration, 120HSC Collaboration, 121HSC Collaboration, 122HSC Collaboration, 123HSC Collaboration, 124HSC Collaboration, 125HSC Collaboration, 126HSC Collaboration, 127HSC Collaboration, 128HSC Collaboration, 129HSC Collaboration, 130HSC Collaboration, 131HSC Collaboration, 132HSC Collaboration, 133HSC Collaboration, 134HSC Collaboration, 135HSC Collaboration, 136HSC Collaboration, 137HSC Collaboration, 138HSC Collaboration, 139HSC Collaboration, 140HSC Collaboration, 141HSC Collaboration, 142HSC Collaboration, 143HSC Collaboration

Hyper Suprime-Cam (HSC) is a wide-field imaging camera on the prime focus of the 8.2m Subaru telescope on the summit of Maunakea. A team of scientists from Japan, Taiwan and Princeton University is using HSC to carry out a 300-night multi-band imaging survey of the high-latitude sky. Read More

We describe a Herschel Space Observatory 194-671 micron spectroscopic survey of a sample of 121 local luminous infrared galaxies and report the fluxes of the CO $J$ to $J$-1 rotational transitions for $4 \leqslant J \leqslant 13$, the [NII] 205 um line, the [CI] lines at 609 and 370 um, as well as additional and usually fainter lines. The CO spectral line energy distributions (SLEDs) presented here are consistent with our earlier work, which was based on a smaller sample, that calls for two distinct molecular gas components in general: (i) a cold component, which emits CO lines primarily at $J \lesssim 4$ and likely represents the same gas phase traced by CO (1-0), and (ii) a warm component, which dominates over the mid-$J$ regime ($4 < J < 10$) and is intimately related to current star formation. We present evidence that the CO line emission associated with an active galactic nucleus is significant only at $J > 10$. Read More

2017Jan
Affiliations: 1Universitat de Barcelona, 2INAF/IAPS-Roma, 3Universitat de Barcelona, 4Joint Institute for VLBI ERIC, 5ICREA and Universitat de Barcelona, 6Jodrell Bank Center for Astrophysics and University of Manchester, 7Instituto de Astrofísica de Canarias, 8European Space Astronomy Centre, 9Universitat de Barcelona

MWC 656 is the first known Be/black hole (BH) binary system. Be/BH binaries are important in the context of binary system evolution and sources of detectable gravitational waves because they are possible precursors of coalescing neutron star/BH binaries. X-ray observations conducted in 2013 revealed that MWC 656 is a quiescent high-mass X-ray binary (HMXB), opening the possibility to explore X-ray/radio correlations and the accretion/ejection coupling down to low luminosities for BH HMXBs. Read More

Mergers of galaxies are thought to cause significant gas inflows to the inner parsecs, which can activate rapid accretion onto supermassive black holes (SMBHs), giving rise to Active Galactic Nuclei (AGN). During a significant fraction of this process, SMBHs are predicted to be enshrouded by gas and dust. Studying 52 galactic nuclei in infrared-selected local Luminous and Ultra-luminous infrared galaxies in different merger stages in the hard X-ray band, where radiation is less affected by absorption, we find that the amount of material around SMBHs increases during the last phases of the merger. Read More

The Chandra Deep Field South (CDF-S) was observed by XMM-Newton for a total of about 3 Ms in many periods over the past decade (2001-2002 and 2008-2009). The main goal of the survey was to obtain good quality X-ray spectroscopy of the AGN responsible for the bulk of the X-ray background. We will present the scientific highlights of the XMM-Newton survey and briefly discuss the perspectives of future observations to pursue XMM deep survey science with current and forthcoming X-ray facilities. Read More

Aims. We aim to contribute to the identification of unassociated gamma-ray sources in the galactic plane in order to enlarge the currently known population of gamma-ray binaries and related systems, such as radio emitting X-ray binaries and microquasars. These objects are currently regarded as excellent test beds for the understanding of high energy phenomena in stellar systems. Read More

We present the X-ray spectral analysis of the 1855 extragalactic sources in the Chandra COSMOS-Legacy survey catalog having more than 30 net counts in the 0.5-7 keV band. 38% of the sources are optically classified Type 1 active galactic nuclei (AGN), 60% are Type 2 AGN and 2% are passive, low-redshift galaxies. Read More

Hyper-luminous infrared galaxies (HyLIRGs) lie at the extreme luminosity end of the IR galaxy population with $L_{\rm IR}>10^{13}$L$_\odot$. They are thought to be closer counterparts of the more distant sub-mm galaxies, and should therefore be optimal targets to study the most massive systems in formation. We present deep $Chandra$ observations of IRAS~F15307+3252 (100ks), a classical HyLIRG located at $z=$0. Read More

We report on strong X-ray variability and the Fe K band spectrum of the Seyfert galaxy IRAS 18325-5926 obtained from the 2001 XMM-Newton EPIC pn observation of a 120 ks duration. While the X-ray source is highly variable, the 8-10 keV band shows larger variability than that of the lower energies. Amplified 8-10 keV flux variations are associated with two prominent flares of the X-ray source during the observation. Read More

We report the detection of a heavily obscured Active Galactic Nucleus (AGN) in the luminous infrared galaxy (LIRG) NGC 6286, identified in a 17.5 ks NuSTAR observation. The source is in an early merging stage, and was targeted as part of our ongoing NuSTAR campaign observing local luminous and ultra-luminous infrared galaxies in different merger stages. Read More

The XMM-LSS, XMM-COSMOS, and XMM-CDFS surveys are complementary in terms of sky coverage and depth. Together, they form a clean sample with the least possible variance in instrument effective areas and PSF. Therefore this is one of the best samples available to determine the 2-10 keV luminosity function of AGN and its evolution. Read More

We present a NuSTAR and XMM-Newton monitoring campaign in 2014/2015 of the Compton-thick Seyfert 2 galaxy, NGC 1068. During the August 2014 observation, we detect with NuSTAR a flux excess above 20 keV ($32\pm6 \%$) with respect to the December 2012 observation and to a later observation performed in February 2015. We do not detect any spectral variation below 10 keV in the XMM-Newton data. Read More

We present new IRAM 30m spectroscopic observations of the $\sim88$ GHz band, including emission from the CCH (n=1-0) multiplet, HCN (1-0), HCO+ (1-0), and HNC (1-0), for a sample of 58 local luminous and ultraluminous infrared galaxies from the Great Observatories All-sky LIRG Survey (GOALS). By combining our new IRAM data with literature data and Spitzer/IRS spectroscopy, we study the correspondence between these putative tracers of dense gas and the relative contribution of active galactic nuclei (AGN) and star formation to the mid-infrared luminosity of each system. We find the HCN (1-0) emission to be enhanced in AGN-dominated systems ($\langle$L'$_{HCN (1-0)}$/L'$_{HCO^+ (1-0)}\rangle=1. Read More

2015Sep
Affiliations: 1Dipartimento di Fisica e Astronomia, Bologna, 2ICREA and ICC, Universitat de Barcelona, 3INAF-Osservatorio Astronomico di Bologna, 4INAF-Osservatorio Astronomico di Bologna, 5INAF-Osservatorio Astronomico di Bologna, 6Institute for Astronomy & Astrophysics, National Observatory of Athens, 7INAF-Osservatorio Astronomico di Bologna, 8ESO, Garching, 9Institute for Astronomy & Astrophysics, National Observatory of Athens, 10Instituto de Fisica de Cantabria, Santander, 11Sterrenkundig Observatorium, Universiteit Gent, 12Dipartimento di Fisica e Astronomia, Bologna, 13Department of Astronomy & Astrophysics, The Pennsylvania State University, 14Instituto de Astrofisica, Pontificia Universidad Catolica de Chile, 15INAF-Osservatorio Astronomico di Roma, Monteporzio, Roma, 16Department of Astronomy, University of Maryland

In active galactic nuclei (AGN)-galaxy co-evolution models, AGN winds and outflows are often invoked to explain why super-massive black holes and galaxies stop growing efficiently at a certain phase of their lives. They are commonly referred to as the leading actors of feedback processes. Evidence of ultra-fast (v>0. Read More

We present results from the deep XMM-Newton observations of the two brightest X-ray sources in the Chandra Deep Field South (CDFS), PID 203 (z=0.544) and PID 319 (z=0.742). Read More

We present the hard-band ($2-10\,\mathrm{keV}$) X-ray luminosity function (HXLF) of $0.5-2\,\mathrm{keV}$ band selected AGN at high redshift. We have assembled a sample of 141 AGN at $3Read More

2014Sep
Affiliations: 1Dipartimento di Fisica e Astronomia, Universita' degli Studi di Bologna, Italy, 2INAF - Osservatorio Astronomico di Bologna, Italy, 3INAF - Osservatorio Astronomico di Bologna, Italy, 4INAF - Osservatorio Astronomico di Bologna, Italy, 5ICREA and Institut de Ciencies del Cosmos, 6INAF - Osservatorio Astronomico di Bologna, Italy, 7European Southern Observatory, Garching, Germany, 8INAF - Osservatorio Astronomico di Roma, Italy

The obscured accretion phase in BH growth is a key ingredient in many models linking the AGN activity with the evolution of their host galaxy. At present, a complete census of obscured AGN is still missing. The purpose of this work is to assess the reliability of the [NeV] emission line at 3426 A to pick up obscured AGN up to z~1 by assuming that [NeV] is a reliable proxy of the intrinsic AGN luminosity and using moderately deep X-ray data to characterize the amount of obscuration. Read More

Heavily obscured, Compton Thick (CT, NH>10^24 cm^-2) AGN may represent an important phase in AGN/galaxy co-evolution and are expected to provide a significant contribution to the cosmic X-ray background (CXB). Through direct X-ray spectra analysis, we selected 39 heavily obscured AGN (NH>3x10^23 cm^-2) in the 2 deg^2 XMM-COSMOS survey. After selecting CT AGN based on the fit of a simple absorbed two power law model to the XMM data, the presence of CT AGN was confirmed in 80% of the sources using deeper Chandra data and more complex models. Read More

2014Aug
Authors: M. Feroci1, J. W. den Herder2, E. Bozzo3, D. Barret4, S. Brandt5, M. Hernanz6, M. van der Klis7, M. Pohl8, A. Santangelo9, L. Stella10, A. Watts11, J. Wilms12, S. Zane13, M. Ahangarianabhari14, C. Albertus15, M. Alford16, A. Alpar17, D. Altamirano18, L. Alvarez19, L. Amati20, C. Amoros21, N. Andersson22, A. Antonelli23, A. Argan24, R. Artigue25, B. Artigues26, J. -L. Atteia27, P. Azzarello28, P. Bakala29, G. Baldazzi30, S. Balman31, M. Barbera32, C. van Baren33, S. Bhattacharyya34, A. Baykal35, T. Belloni36, F. Bernardini37, G. Bertuccio38, S. Bianchi39, A. Bianchini40, P. Binko41, P. Blay42, F. Bocchino43, P. Bodin44, I. Bombaci45, J. -M. Bonnet Bidaud46, S. Boutloukos47, L. Bradley48, J. Braga49, E. Brown50, N. Bucciantini51, L. Burderi52, M. Burgay53, M. Bursa54, C. Budtz-Jørgensen55, E. Cackett56, F. R. Cadoux57, P. Cais58, G. A. Caliandro59, R. Campana60, S. Campana61, F. Capitanio62, J. Casares63, P. Casella64, A. J. Castro-Tirado65, E. Cavazzuti66, P. Cerda-Duran67, D. Chakrabarty68, F. Château69, J. Chenevez70, J. Coker71, R. Cole72, A. Collura73, R. Cornelisse74, T. Courvoisier75, A. Cros76, A. Cumming77, G. Cusumano78, A. D'Aì79, V. D'Elia80, E. Del Monte81, A. De Luca82, D. De Martino83, J. P. C. Dercksen84, M. De Pasquale85, A. De Rosa86, M. Del Santo87, S. Di Cosimo88, S. Diebold89, T. Di Salvo90, I. Donnarumma91, A. Drago92, M. Durant93, D. Emmanoulopoulos94, M. H. Erkut95, P. Esposito96, Y. Evangelista97, A. Fabian98, M. Falanga99, Y. Favre100, C. Feldman101, V. Ferrari102, C. Ferrigno103, M. Finger104, M. H. Finger105, G. W. Fraser106, M. Frericks107, F. Fuschino108, M. Gabler109, D. K. Galloway110, J. L. Galvez Sanchez111, E. Garcia-Berro112, B. Gendre113, S. Gezari114, A. B. Giles115, M. Gilfanov116, P. Giommi117, G. Giovannini118, M. Giroletti119, E. Gogus120, A. Goldwurm121, K. Goluchová122, D. Götz123, C. Gouiffes124, M. Grassi125, P. Groot126, M. Gschwender127, L. Gualtieri128, C. Guidorzi129, L. Guy130, D. Haas131, P. Haensel132, M. Hailey133, F. Hansen134, D. H. Hartmann135, C. A. Haswell136, K. Hebeler137, A. Heger138, W. Hermsen139, J. Homan140, A. Hornstrup141, R. Hudec142, J. Huovelin143, A. Ingram144, J. J. M. in't Zand145, G. Israel146, K. Iwasawa147, L. Izzo148, H. M. Jacobs149, F. Jetter150, T. Johannsen151, H. M. Jacobs152, P. Jonker153, J. Josè154, P. Kaaret155, G. Kanbach156, V. Karas157, D. Karelin158, D. Kataria159, L. Keek160, T. Kennedy161, D. Klochkov162, W. Kluzniak163, K. Kokkotas164, S. Korpela165, C. Kouveliotou166, I. Kreykenbohm167, L. M. Kuiper168, I. Kuvvetli169, C. Labanti170, D. Lai171, F. K. Lamb172, P. P. Laubert173, F. Lebrun174, D. Lin175, D. Linder176, G. Lodato177, F. Longo178, N. Lund179, T. J. Maccarone180, D. Macera181, S. Maestre182, S. Mahmoodifar183, D. Maier184, P. Malcovati185, I. Mandel186, V. Mangano187, A. Manousakis188, M. Marisaldi189, A. Markowitz190, A. Martindale191, G. Matt192, I. M. McHardy193, A. Melatos194, M. Mendez195, S. Mereghetti196, M. Michalska197, S. Migliari198, R. Mignani199, M. C. Miller200, J. M. Miller201, T. Mineo202, G. Miniutti203, S. Morsink204, C. Motch205, S. Motta206, M. Mouchet207, G. Mouret208, J. Mulačová209, F. Muleri210, T. Muñoz-Darias211, I. Negueruela212, J. Neilsen213, A. J. Norton214, M. Nowak215, P. O'Brien216, P. E. H. Olsen217, M. Orienti218, M. Orio219, M. Orlandini220, P. Orleanski221, J. P. Osborne222, R. Osten223, F. Ozel224, L. Pacciani225, M. Paolillo226, A. Papitto227, J. M. Paredes228, A. Patruno229, B. Paul230, E. Perinati231, A. Pellizzoni232, A. V. Penacchioni233, M. A. Perez234, V. Petracek235, C. Pittori236, J. Pons237, J. Portell238, A. Possenti239, J. Poutanen240, M. Prakash241, P. Le Provost242, D. Psaltis243, D. Rambaud244, P. Ramon245, G. Ramsay246, M. Rapisarda247, A. Rachevski248, I. Rashevskaya249, P. S. Ray250, N. Rea251, S. Reddy252, P. Reig253, M. Reina Aranda254, R. Remillard255, C. Reynolds256, L. Rezzolla257, M. Ribo258, R. de la Rie259, A. Riggio260, A. Rios261, P. Rodríguez- Gil262, J. Rodriguez263, R. Rohlfs264, P. Romano265, E. M. R. Rossi266, A. Rozanska267, A. Rousseau268, F. Ryde269, L. Sabau-Graziati270, G. Sala271, R. Salvaterra272, A. Sanna273, J. Sandberg274, S. Scaringi275, S. Schanne276, J. Schee277, C. Schmid278, S. Shore279, R. Schneider280, A. Schwenk281, A. D. Schwope282, J. -Y. Seyler283, A. Shearer284, A. Smith285, D. M. Smith286, P. J. Smith287, V. Sochora288, P. Soffitta289, P. Soleri290, A. Spencer291, B. Stappers292, A. W. Steiner293, N. Stergioulas294, G. Stratta295, T. E. Strohmayer296, Z. Stuchlik297, S. Suchy298, V. Sulemainov299, T. Takahashi300, F. Tamburini301, T. Tauris302, C. Tenzer303, L. Tolos304, F. Tombesi305, J. Tomsick306, G. Torok307, J. M. Torrejon308, D. F. Torres309, A. Tramacere310, A. Trois311, R. Turolla312, S. Turriziani313, P. Uter314, P. Uttley315, A. Vacchi316, P. Varniere317, S. Vaughan318, S. Vercellone319, V. Vrba320, D. Walton321, S. Watanabe322, R. Wawrzaszek323, N. Webb324, N. Weinberg325, H. Wende326, P. Wheatley327, R. Wijers328, R. Wijnands329, M. Wille330, C. A. Wilson-Hodge331, B. Winter332, K. Wood333, G. Zampa334, N. Zampa335, L. Zampieri336, L. Zdunik337, A. Zdziarski338, B. Zhang339, F. Zwart340, M. Ayre341, T. Boenke342, C. Corral van Damme343, E. Kuulkers344, D. Lumb345
Affiliations: 11,1b, 2SRON, The Netherlands, 3ISDC, Geneve University, Switzerland, 4IRAP, Toulouse, France, 5National Space Institute, Lyngby, Denmark, 6IEEC-CSIC-UPC-UB, Barcelona, Spain, 7Astronomical Institute Anton Pannekoek, University of Amsterdam, The Netherlands, 8DPNC, Geneve University, Switzerland, 9IAAT Tuebingen, Germany, 10INAF-OA Rome, Italy, 11Astronomical Institute Anton Pannekoek, University of Amsterdam, The Netherlands, 12University of Erlangen-Nuremberg, Germany, 13MSSL, Surrey, United Kingdom, 14Politecnico Milano, Italy, 15Universidad de Granada, Spain, 16Washington University, United States, 17Sabanci University, Istanbul, Turkey, 18Astronomical Institute Anton Pannekoek, University of Amsterdam, The Netherlands, 19IEEC-CSIC-UPC-UB, Barcelona, Spain, 20INAF-IASF-Bologna, Italy, 21IRAP, Toulouse, France, 22Faculty of Physical and Applied Sciences, University of Southampton, United Kingdom, 23ASDC, Rome, Italy, 24IAPS-INAF, Rome, Italy, 25IRAP, Toulouse, France, 26IEEC-CSIC-UPC-UB, Barcelona, Spain, 27IRAP, Toulouse, France, 28ISDC, Geneve University, Switzerland, 29Silesian University in Opava, Czech Republic, 30University of Bologna, Italy, 31Middle East Technical University, Ankara, Turkey, 32Dipartimento di Chimica e Fisica, Palermo University, Italy, 33SRON, The Netherlands, 34Tata Institute of Fundamental Research, Mumbai, India, 35Middle East Technical University, Ankara, Turkey, 36INAF-OA Brera, Italy, 37Wayne State University, Detroit, United States, 38Politecnico Milano, Italy, 39University of Rome III, Italy, 40Dept. of Physics and Astronomy University of Padua, Italy, 41ISDC, Geneve University, Switzerland, 42University of Valencia, Spain, 43INAF-OA Padova, Padova, Italy, 44CNES, Toulouse, France, 45University of Pisa, Italy, 46CEA Saclay, DSM/IRFU/SAp, France, 47IAAT Tuebingen, Germany, 48MSSL, Surrey, United Kingdom, 49INPE, São José dos Campos, Brazil, 50Michigan state University, United States, 51Arcetri Observatory, INAF, Firenze, Italy, 52Cagliari University, Italy, 53INAF-OA Cagliari, Italy, 54Astronomical Institute of the Academy of Sciences of the Czech Republic, Czech Republic, 55National Space Institute, Lyngby, Denmark, 56Wayne State University, Detroit, United States, 57DPNC, Geneve University, Switzerland, 58Laboratoire d'Astrophysique de Bordeaux, France, 59IEEC-CSIC-UPC-UB, Barcelona, Spain, 601,1b, 61INAF-OA Brera, Italy, 62IAPS-INAF, Rome, Italy, 63Instituto de Astrofisica de Canarias, Tenerife, Spain, 64INAF-OA Rome, Italy, 65Instituto Astrofisica de Andalucia, Granada, Spain, 66ASDC, Rome, Italy, 67University of Valencia, Spain, 68MIT, Cambridge, United States, 69CEA Saclay, DSM/IRFU/SAp, France, 70National Space Institute, Lyngby, Denmark, 71MSSL, Surrey, United Kingdom, 72MSSL, Surrey, United Kingdom, 73INAF- Osservatorio Astronomico di Palermo, Italy, 74Instituto de Astrofisica de Canarias, Tenerife, Spain, 75ISDC, Geneve University, Switzerland, 76IRAP, Toulouse, France, 77INAF-OA Capodimonte, Napoli, Italy, 78INAF IFC, Palermo, Italy, 79Dipartimento di Chimica e Fisica, Palermo University, Italy, 80ASDC, Rome, Italy, 811,1b, 82INAF-IASF-Milano, Italy, 83INAF-OA Capodimonte, Napoli, Italy, 84SRON, The Netherlands, 85MSSL, Surrey, United Kingdom, 86IAPS-INAF, Rome, Italy, 87IAPS-INAF, Rome, Italy, 88IAPS-INAF, Rome, Italy, 89IAAT Tuebingen, Germany, 90Dipartimento di Chimica e Fisica, Palermo University, Italy, 91IAPS-INAF, Rome, Italy, 92Ferrara University, Ferrara, Italy, 93Department of Medical Biophysics, University of Toronto, Canada, 94School of Physics and Astronomy, University of Southampton, United Kingdom, 95Istanbul Kültür University, Turkey, 96INAF-IASF-Milano, Italy, 971,1b, 98Cambridge University, Cambridge, United Kingdom, 99ISSI Bern, Switzerland, 100DPNC, Geneve University, Switzerland, 101Leicester University, United Kingdom, 102Sapienza University, Rome, Italy, 103ISDC, Geneve University, Switzerland, 104Charles University in Prague, Czech Republic, 105Universities Space Research Association, Huntsville, United States, 106Leicester University, United Kingdom, 107SRON, The Netherlands, 108INAF-IASF-Bologna, Italy, 109University of Valencia, Spain, 110Monash Centre for Astrophysics, School of Physics and School of Mathematical Sciences, Monash University, Australia, 111IEEC-CSIC-UPC-UB, Barcelona, Spain, 112IEEC-CSIC-UPC-UB, Barcelona, Spain, 113ASDC, Rome, Italy, 114University of Maryland, United States, 115University of Tasmania, Australia, 116MPA Garching, Germany, 117ASDC, Rome, Italy, 118INAF-IRA-Bologna, Italy, 119INAF-IRA-Bologna, Italy, 120Sabanci University, Istanbul, Turkey, 121APC, Université Paris Diderot, CEA/Irfu, Observatoire de Paris, France, 122Silesian University in Opava, Czech Republic, 123CEA Saclay, DSM/IRFU/SAp, France, 124CEA Saclay, DSM/IRFU/SAp, France, 125Pavia University, Italy, 126Clemson University, United States, 127IAAT Tuebingen, Germany, 128Sapienza University, Rome, Italy, 129Ferrara University, Ferrara, Italy, 130ISDC, Geneve University, Switzerland, 131SRON, The Netherlands, 132Copernicus Astronomical Center, Warsaw, Poland, 133MSSL, Surrey, United Kingdom, 134National Space Institute, Lyngby, Denmark, 135Clemson University, United States, 136Open University, United Kingdom, 137Institut für Kernphysik, Technische Universität Darmstadt and ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany, 138Monash Centre for Astrophysics, School of Physics and School of Mathematical Sciences, Monash University, Australia, 139SRON, The Netherlands, 140MIT, Cambridge, United States, 141National Space Institute, Lyngby, Denmark, 142Astronomical Institute of the Academy of Sciences of the Czech Republic, Czech Republic, 143University of Helsinki, Finland, 144Astronomical Institute Anton Pannekoek, University of Amsterdam, The Netherlands, 145SRON, The Netherlands, 146INAF-OA Rome, Italy, 147DAM and ICC-UB, Universitat de Barcelona, Spain, 148Sapienza University and ICRA, Rome, Italy, 149SRON, The Netherlands, 150IAAT Tuebingen, Germany, 151Perimeter Institute for Theoretical Physics, Waterloo, Canada, 152SRON, The Netherlands, 153SRON, The Netherlands, 154Technical University of Catalonia, Barcelona, Spain, 155Michigan state University, United States, 156Max-Planck-Institut fuer extraterrestrische Physik, Garching, Germany, 157Astronomical Institute of the Academy of Sciences of the Czech Republic, Czech Republic, 158IEEC-CSIC-UPC-UB, Barcelona, Spain, 159MSSL, Surrey, United Kingdom, 160Michigan state University, United States, 161MSSL, Surrey, United Kingdom, 162IAAT Tuebingen, Germany, 163Copernicus Astronomical Center, Warsaw, Poland, 164IAAT Tuebingen, Germany, 165University of Helsinki, Finland, 166NASA/Marshall Space Flight Center, United States, 167University of Erlangen-Nuremberg, Germany, 168SRON, The Netherlands, 169National Space Institute, Lyngby, Denmark, 170INAF-IASF-Bologna, Italy, 171Cornell University, Ithaca, United States, 172University of Illinois, United States, 173SRON, The Netherlands, 174APC, Université Paris Diderot, CEA/Irfu, Observatoire de Paris, France, 175IRAP, Toulouse, France, 176MSSL, Surrey, United Kingdom, 177Dipartimento di Fisica, Università degli Studi di Milano, Italy, 178University of Trieste, Italy, 179National Space Institute, Lyngby, Denmark, 180Texas Tech. University, United States, 181Politecnico Milano, Italy, 182IRAP, Toulouse, France, 183University of Maryland, United States, 184IAAT Tuebingen, Germany, 185Pavia University, Italy, 186School of Physics and Astronomy, University of Birmingham, United Kingdom, 187The Pennsylvania State University, United States, 188Copernicus Astronomical Center, Warsaw, Poland, 189INAF-IASF-Bologna, Italy, 190University of California, San Diego, United States, 191Leicester University, United Kingdom, 192University of Rome III, Italy, 193School of Physics and Astronomy, University of Southampton, United Kingdom, 194University of Melbourne, Australia, 195Kapteyn Astronomical Institute, University of Groningen, The Netherlands, 196INAF-IASF-Milano, Italy, 197Space Research Centre, Warsaw, Poland, 198DAM and ICC-UB, Universitat de Barcelona, Spain, 199INAF-IASF-Milano, Italy, 200University of Maryland, United States, 201Michigan state University, United States, 202INAF IFC, Palermo, Italy, 203Centro de Astrobiologia, 204University of Alberta, Canada, 205Observatoire Astronomique de Strasbourg, France, 206INAF-OA Brera, Italy, 207Université Paris Diderot France, 208IRAP, Toulouse, France, 209National Space Institute, Lyngby, Denmark, 2101,1b, 211Oxford University, United Kingdom, 212University of Alicante, Spain, 213MIT, Cambridge, United States, 214Open University, United Kingdom, 215MIT, Cambridge, United States, 216Leicester University, United Kingdom, 217National Space Institute, Lyngby, Denmark, 218INAF-IRA-Bologna, Italy, 219INAF-OA Padova, Padova, Italy, 220INAF-IASF-Bologna, Italy, 221Space Research Centre, Warsaw, Poland, 222Leicester University, United Kingdom, 223Space Telescope Institute, United States, 224University of Arizona, United States, 2251,1b, 226Università di Napoli Fedelico II, Italy, 227IEEC-CSIC-UPC-UB, Barcelona, Spain, 228DAM and ICC-UB, Universitat de Barcelona, Spain, 229Leiden Observatory, The Netherlands, 230Raman Research Institute, India, 231IAAT Tuebingen, Germany, 232INAF-OA Cagliari, Italy, 233Sapienza University and ICRA, Rome, Italy, 234Facultad de Ciencias-Trilingüe University of Salamanca, Spain, 235Czech Technical University in Prague, Czech Republic, 236ASDC, Rome, Italy, 237University of Alicante, Spain, 238IEEC-CSIC-UPC-UB, Barcelona, Spain, 239INAF-OA Cagliari, Italy, 240Tuorla Observatory, University of Turku, Finland, 241Ohio University, United States, 242CEA Saclay, DSM/IRFU/SAp, France, 243University of Arizona, United States, 244IRAP, Toulouse, France, 245IRAP, Toulouse, France, 246Armagh Observatory, United Kingdom, 2471,1b, 248INFN, Trieste, Italy, 249INFN, Trieste, Italy, 250NRL, Washington, United States, 251IEEC-CSIC-UPC-UB, Barcelona, Spain, 252Institute for Nuclear Theory, University of Washington, United States, 253Foundation for Research and Technology, Heraklion, Greece, 254National Institute of Aerospace Technology, 255MIT, Cambridge, United States, 256University of Maryland, United States, 257Max Planck Institute for Gravitational Physics, Germany, 258DAM and ICC-UB, Universitat de Barcelona, Spain, 259SRON, The Netherlands, 260INAF-OA Cagliari, Italy, 261University of Surrey, United Kingdom, 262Instituto de Astrofisica de Canarias, Tenerife, Spain, 263CEA Saclay, DSM/IRFU/SAp, France, 264ISDC, Geneve University, Switzerland, 265INAF IFC, Palermo, Italy, 266Leiden Observatory, The Netherlands, 267Copernicus Astronomical Center, Warsaw, Poland, 268MSSL, Surrey, United Kingdom, 269KTH Royal Institute of Technology, Stockholm, Sweden, 270National Institute of Aerospace Technology, 271IEEC-CSIC-UPC-UB, Barcelona, Spain, 272INAF-IASF-Milano, Italy, 273Kapteyn Astronomical Institute, University of Groningen, The Netherlands, 274Jorgen Sandberg Consulting, Denmark, 275Institute for Astronomy K.U. Leuven, Leuven, Belgium, 276CEA Saclay, DSM/IRFU/SAp, France, 277Silesian University in Opava, Czech Republic, 278University of Erlangen-Nuremberg, Germany, 279University of Pisa, Italy, 280INAF-OA Rome, Italy, 281Institut für Kernphysik, Technische Universität Darmstadt and ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany, 282Leibniz-Institut fuer Astrophysik Potsdam, Germany, 283CNES, Toulouse, France, 284National University of Ireland, Ireland, 285MSSL, Surrey, United Kingdom, 286University of California, United States, 287MSSL, Surrey, United Kingdom, 288Astronomical Institute of the Academy of Sciences of the Czech Republic, Czech Republic, 289IAPS-INAF, Rome, Italy, 290Kapteyn Astronomical Institute, University of Groningen, The Netherlands, 291MSSL, Surrey, United Kingdom, 292University of Manchester, United Kingdom, 293Institute for Nuclear Theory, University of Washington, United States, 294Aristotle University of Thessaloniki, Greece, 295ASDC, Rome, Italy, 296Goddard Space Flight Center, Greenbelt, United States, 297Silesian University in Opava, Czech Republic, 298IAAT Tuebingen, Germany, 299IAAT Tuebingen, Germany, 300ISAS, Kanagawa, Japan, 301Dept. of Physics and Astronomy University of Padua, Italy, 302Argelander-Institut für Astronomie, Bonn, Germany, 303IAAT Tuebingen, Germany, 304IEEC-CSIC-UPC-UB, Barcelona, Spain, 305University of Maryland, United States, 306University of California, Berkeley, Space Sciences Laboratory, United States, 307Silesian University in Opava, Czech Republic, 308University of Alicante, Spain, 309ICREA, Barcelona, Spain, 310ISDC, Geneve University, Switzerland, 311IAPS-INAF, Rome, Italy, 312Dept. of Physics and Astronomy University of Padua, Italy, 313University of Rome Tor Vergata, Italy, 314IAAT Tuebingen, Germany, 315Astronomical Institute Anton Pannekoek, University of Amsterdam, The Netherlands, 316INFN, Trieste, Italy, 317APC, Université Paris Diderot, CEA/Irfu, Observatoire de Paris, France, 318Leicester University, United Kingdom, 319INAF IFC, Palermo, Italy, 320Physical Institute of the Academy of Sciences of the Czech Republic, Czech Republic, 321MSSL, Surrey, United Kingdom, 322ISAS, Kanagawa, Japan, 323Space Research Centre, Warsaw, Poland, 324IRAP, Toulouse, France, 325MIT, Cambridge, United States, 326IAAT Tuebingen, Germany, 327University of Warwick, United Kingdom, 328Astronomical Institute Anton Pannekoek, University of Amsterdam, The Netherlands, 329Astronomical Institute Anton Pannekoek, University of Amsterdam, The Netherlands, 330University of Erlangen-Nuremberg, Germany, 331NASA/Marshall Space Flight Center, Huntsville, United States, 332MSSL, Surrey, United Kingdom, 333NRL, Washington, United States, 334INFN, Trieste, Italy, 335INFN, Trieste, Italy, 336INAF-OA Padova, Padova, Italy, 337Copernicus Astronomical Center, Warsaw, Poland, 338Copernicus Astronomical Center, Warsaw, Poland, 339University of Nevada, Las Vegas, United States, 340SRON, The Netherlands, 341European Space Agency, ESTEC, The Netherlands, 342European Space Agency, ESTEC, The Netherlands, 343European Space Agency, ESTEC, The Netherlands, 344European Space Astronomy Centre, Madrid, Spain, 345European Space Agency, ESTEC, The Netherlands

The Large Observatory For x-ray Timing (LOFT) was studied within ESA M3 Cosmic Vision framework and participated in the final down-selection for a launch slot in 2022-2024. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument, LOFT will study the behaviour of matter under extreme conditions, such as the strong gravitational field in the innermost regions of accretion flows close to black holes and neutron stars, and the supra-nuclear densities in the interior of neutron stars. The science payload is based on a Large Area Detector (LAD, 10 m 2 effective area, 2-30 keV, 240 eV spectral resolution, 1 deg collimated field of view) and a WideField Monitor (WFM, 2-50 keV, 4 steradian field of view, 1 arcmin source location accuracy, 300 eV spectral resolution). Read More

The Great Observatories All-Sky LIRG Survey (GOALS) is a comprehensive, multiwavelength study of luminous infrared galaxies (LIRGs) in the local universe. Here we present the results of a multi-component, spectral decomposition analysis of the low resolution mid-IR Spitzer IRS spectra from 5-38um of 244 LIRG nuclei. The detailed fits and high quality spectra allow for characterization of the individual PAH features, warm molecular hydrogen emission, and optical depths for silicate dust grains and water ices. Read More

We present our initial results on the CO rotational spectral line energy distribution (SLED) of the $J$ to $J$$-$1 transitions from $J=4$ up to $13$ from Herschel SPIRE spectroscopic observations of 65 luminous infrared galaxies (LIRGs) in the Great Observatories All-Sky LIRG Survey (GOALS). The observed SLEDs change on average from one peaking at $J \le 4$ to a broad distribution peaking around $J \sim\,$6$-$7 as the IRAS 60-to-100 um color, $C(60/100)$, increases. However, the ratios of a CO line luminosity to the total infrared luminosity, $L_{\rm IR}$, show the smallest variation for $J$ around 6 or 7. Read More

MWC 656 (= HD 215227) was recently discovered to be the first binary system composed of a Be star and a black hole (BH). We observed it with \textit{XMM-Newton}, and detected a faint X-ray source compatible with the position of the optical star, thus proving it to be the first Be/BH X-ray binary. The spectrum analysis requires a model fit with two components, a black body plus a power law, with $k_{\rm B}T = 0. Read More

There are a number of very high energy sources in the Galaxy that remain unidentified. Multi-wavelength and variability studies, and catalogue searches, are powerful tools to identify the physical counterpart, given the uncertainty in the source location and extension. This work carries out a thorough multi-wavelength study of the unidentified, very high energy source HESS J1858+020 and its environs. Read More

We study the incidence of nuclear obscuration on a complete sample of 1310 AGN selected on the basis of their rest-frame 2-10 keV X-ray flux from the XMM-COSMOS survey, in the redshift range 0.3Read More

In the recent years massive protostars have been suggested to be high-energy emitters. Among the best candidates is IRAS 16547-4247, a protostar that presents a powerful outflow with clear signatures of interaction with its environment. This source has been revealed to be a potential high-energy source because it displays non-thermal radio emission of synchrotron origin, which is evidence of relativistic particles. Read More

2013Jul
Affiliations: 1IfA, University of Hawaii, 2Dept. of Astronomy and Astrophysics, UC Santa Cruz, 3IfA, University of Hawaii, 4Dept. of Astronomy and Astrophysics, UC Santa Cruz, 5Spitzer Science Center, Caltech, 6ICREA and ICC, Universitat de Barcelona, 7Dept. of Astronomy, University of Virginia, 8IfA, University of Hawaii, 9Harvard-Smithsonian CfA

There is X-ray, optical, and mid-infrared imaging and spectroscopic evidence that the late-stage ultraluminous infrared galaxy merger Mrk 273 hosts a powerful active galactic nucleus (AGN). However, the exact location of the AGN and the nature of the nuclei have been difficult to determine due to dust obscuration and the limited wavelength coverage of available high-resolution data. Here we present near-infrared integral-field spectra and images of the nuclear region of Mrk 273 taken with OSIRIS and NIRC2 on the Keck II Telescope with laser guide star adaptive optics. Read More

2013Jul
Affiliations: 1SSC/Caltech, 2SSC/Caltech, 3IESL/FORTH and Observatoire de Paris, 4University of Virginia, 5Carnegie, 6CSIRO, 7NOAO, 8Arizona State University, 9University of Groningen, 10Cornell University, 11Astronomy, Caltech, 12University of Virginia, 13University of Meryland, 14Leiden University, 15NHSC/Caltech, 16NRAO, Charlottesville, 17SSC/Caltech, 18NHSC/Caltech, 19University of Virginia, 20SSC/Caltech, 21NHSC/Caltech, 22NRAO, Charlottesville, 23University of Hawaii, 24NRAO, Charlottesville, 25NRAO, Charlottesville, 26NRAO, Green Bank, 27Universitat de Barcelona, 28Physics & Mathematics, Caltech, 29Max Planck

We present the first results of a survey of the [CII]158um emission line in 241 luminous infrared galaxies (LIRGs) comprising the Great Observatories All-sky Survey (GOALS) sample, obtained with the PACS instrument on board Herschel. The [CII] luminosities of the LIRGs in GOALS range from ~10^7 to 2x10^9 Lsun. We find that LIRGs show a tight correlation of [CII]/FIR with far-IR flux density ratios, with a strong negative trend spanning from ~10^-2 to 10^-4, as the average temperature of dust increases. Read More

2013Jun
Authors: Kirpal Nandra1, Didier Barret2, Xavier Barcons3, Andy Fabian4, Jan-Willem den Herder5, Luigi Piro6, Mike Watson7, Christophe Adami8, James Aird9, Jose Manuel Afonso10, Dave Alexander11, Costanza Argiroffi12, Lorenzo Amati13, Monique Arnaud14, Jean-Luc Atteia15, Marc Audard16, Carles Badenes17, Jean Ballet18, Lucia Ballo19, Aya Bamba20, Anil Bhardwaj21, Elia Stefano Battistelli22, Werner Becker23, Michaël De Becker24, Ehud Behar25, Stefano Bianchi26, Veronica Biffi27, Laura Bîrzan28, Fabrizio Bocchino29, Slavko Bogdanov30, Laurence Boirin31, Thomas Boller32, Stefano Borgani33, Katharina Borm34, Nicolas Bouché35, Hervé Bourdin36, Richard Bower37, Valentina Braito38, Enzo Branchini39, Graziella Branduardi-Raymont40, Joel Bregman41, Laura Brenneman42, Murray Brightman43, Marcus Brüggen44, Johannes Buchner45, Esra Bulbul46, Marcella Brusa47, Michal Bursa48, Alessandro Caccianiga49, Ed Cackett50, Sergio Campana51, Nico Cappelluti52, Massimo Cappi53, Francisco Carrera54, Maite Ceballos55, Finn Christensen56, You-Hua Chu57, Eugene Churazov58, Nicolas Clerc59, Stephane Corbel60, Amalia Corral61, Andrea Comastri62, Elisa Costantini63, Judith Croston64, Mauro Dadina65, Antonino D'Ai66, Anne Decourchelle67, Roberto Della Ceca68, Konrad Dennerl69, Klaus Dolag70, Chris Done71, Michal Dovciak72, Jeremy Drake73, Dominique Eckert74, Alastair Edge75, Stefano Ettori76, Yuichiro Ezoe77, Eric Feigelson78, Rob Fender79, Chiara Feruglio80, Alexis Finoguenov81, Fabrizio Fiore82, Massimiliano Galeazzi83, Sarah Gallagher84, Poshak Gandhi85, Massimo Gaspari86, Fabio Gastaldello87, Antonis Georgakakis88, Ioannis Georgantopoulos89, Marat Gilfanov90, Myriam Gitti91, Randy Gladstone92, Rene Goosmann93, Eric Gosset94, Nicolas Grosso95, Manuel Guedel96, Martin Guerrero97, Frank Haberl98, Martin Hardcastle99, Sebastian Heinz100, Almudena Alonso Herrero101, Anthony Hervé102, Mats Holmstrom103, Kazushi Iwasawa104, Peter Jonker105, Jelle Kaastra106, Erin Kara107, Vladimir Karas108, Joel Kastner109, Andrew King110, Daria Kosenko111, Dimita Koutroumpa112, Ralph Kraft113, Ingo Kreykenbohm114, Rosine Lallement115, Giorgio Lanzuisi116, J. Lee117, Marianne Lemoine-Goumard118, Andrew Lobban119, Giuseppe Lodato120, Lorenzo Lovisari121, Simone Lotti122, Ian McCharthy123, Brian McNamara124, Antonio Maggio125, Roberto Maiolino126, Barbara De Marco127, Domitilla de Martino128, Silvia Mateos129, Giorgio Matt130, Ben Maughan131, Pasquale Mazzotta132, Mariano Mendez133, Andrea Merloni134, Giuseppina Micela135, Marco Miceli136, Robert Mignani137, Jon Miller138, Giovanni Miniutti139, Silvano Molendi140, Rodolfo Montez141, Alberto Moretti142, Christian Motch143, Yaël Nazé144, Jukka Nevalainen145, Fabrizio Nicastro146, Paul Nulsen147, Takaya Ohashi148, Paul O'Brien149, Julian Osborne150, Lida Oskinova151, Florian Pacaud152, Frederik Paerels153, Mat Page154, Iossif Papadakis155, Giovanni Pareschi156, Robert Petre157, Pierre-Olivier Petrucci158, Enrico Piconcelli159, Ignazio Pillitteri160, C. Pinto161, Jelle de Plaa162, Etienne Pointecouteau163, Trevor Ponman164, Gabriele Ponti165, Delphine Porquet166, Ken Pounds167, Gabriel Pratt168, Peter Predehl169, Daniel Proga170, Dimitrios Psaltis171, David Rafferty172, Miriam Ramos-Ceja173, Piero Ranalli174, Elena Rasia175, Arne Rau176, Gregor Rauw177, Nanda Rea178, Andy Read179, James Reeves180, Thomas Reiprich181, Matthieu Renaud182, Chris Reynolds183, Guido Risaliti184, Jerome Rodriguez185, Paola Rodriguez Hidalgo186, Mauro Roncarelli187, David Rosario188, Mariachiara Rossetti189, Agata Rozanska190, Emmanouil Rovilos191, Ruben Salvaterra192, Mara Salvato193, Tiziana Di Salvo194, Jeremy Sanders195, Jorge Sanz-Forcada196, Kevin Schawinski197, Joop Schaye198, Axel Schwope199, Salvatore Sciortino200, Paola Severgnini201, Francesco Shankar202, Debora Sijacki203, Stuart Sim204, Christian Schmid205, Randall Smith206, Andrew Steiner207, Beate Stelzer208, Gordon Stewart209, Tod Strohmayer210, Lothar Strüder211, Ming Sun212, Yoh Takei213, V. Tatischeff214, Andreas Tiengo215, Francesco Tombesi216, Ginevra Trinchieri217, T. G. Tsuru218, Asif Ud-Doula219, Eugenio Ursino220, Lynne Valencic221, Eros Vanzella222, Simon Vaughan223, Cristian Vignali224, Jacco Vink225, Fabio Vito226, Marta Volonteri227, Daniel Wang228, Natalie Webb229, Richard Willingale230, Joern Wilms231, Michael Wise232, Diana Worrall233, Andrew Young234, Luca Zampieri235, Jean In't Zand236, Silvia Zane237, Andreas Zezas238, Yuying Zhang239, Irina Zhuravleva240
Affiliations: 1DE, 2FR, 3ES, 4UK, 5NL, 6IT, 7UK, 8FR, 9UK, 10PT, 11UK, 12IT, 13IT, 14FR, 15FR, 16CH, 17US, 18FR, 19IT, 20JP, 21IN, 22IT, 23DE, 24BE, 25IL, 26IT, 27IT, 28NL, 29IT, 30US, 31FR, 32DE, 33IT, 34DE, 35FR, 36IT, 37UK, 38IT, 39IT, 40UK, 41US, 42US, 43DE, 44DE, 45DE, 46US, 47IT, 48CZ, 49IT, 50US, 51IT, 52IT, 53IT, 54ES, 55ES, 56DK, 57US, 58DE, 59DE, 60FR, 61GR, 62IT, 63NL, 64UK, 65IT, 66IT, 67FR, 68IT, 69DE, 70DE, 71UK, 72CZ, 73US, 74CH, 75UK, 76IT, 77JP, 78US, 79UK, 80FR, 81FI, 82IT, 83IT, 84CA, 85UK, 86IT, 87IT, 88DE, 89GR, 90DE, 91IT, 92US, 93FR, 94BE, 95FR, 96AT, 97ES, 98DE, 99UK, 100US, 101ES, 102FR, 103SE, 104ES, 105NL, 106NL, 107UK, 108CZ, 109US, 110UK, 111FR, 112FR, 113US, 114D, 115FR, 116GR, 117US, 118FR, 119UK, 120IT, 121DE, 122IT, 123UK, 124CA, 125IT, 126UK, 127DE, 128IT, 129ES, 130IT, 131UK, 132IT, 133NL, 134DE, 135IT, 136IT, 137IT, 138US, 139ES, 140IT, 141ES, 142IT, 143FR, 144BE, 145FI, 146IT, 147US, 148JP, 149UK, 150UK, 151DE, 152DE, 153US, 154UK, 155GR, 156IT, 157US, 158FR, 159IT, 160IT, 161UK, 162NL, 163FR, 164UK, 165DE, 166FR, 167UK, 168FR, 169DE, 170US, 171US, 172NL, 173DE, 174IT, 175US, 176DE, 177BE, 178IT, 179UK, 180UK, 181DE, 182FR, 183US, 184IT, 185FR, 186CA, 187IT, 188DE, 189IT, 190PL, 191UK, 192IT, 193DE, 194IT, 195DE, 196ES, 197CH, 198NL, 199D, 200IT, 201IT, 202FR, 203UK, 204IE, 205DE, 206US, 207US, 208IT, 209UK, 210US, 211DE, 212US, 213JP, 214FR, 215IT, 216US, 217IT, 218JP, 219US, 220NL, 221US, 222IT, 223UK, 224IT, 225NL, 226IT, 227FR, 228US, 229FR, 230UK, 231DE, 232NL, 233UK, 234UK, 235IT, 236NL, 237UK, 238GR, 239DE, 240US

This White Paper, submitted to the recent ESA call for science themes to define its future large missions, advocates the need for a transformational leap in our understanding of two key questions in astrophysics: 1) How does ordinary matter assemble into the large scale structures that we see today? 2) How do black holes grow and shape the Universe? Hot gas in clusters, groups and the intergalactic medium dominates the baryonic content of the local Universe. To understand the astrophysical processes responsible for the formation and assembly of these large structures, it is necessary to measure their physical properties and evolution. This requires spatially resolved X-ray spectroscopy with a factor 10 increase in both telescope throughput and spatial resolving power compared to currently planned facilities. Read More

A crucial challenge in astrophysics over the coming decades will be to understand the origins of supermassive black holes (SMBHs) that lie at the centres of most, if not all, galaxies. The processes responsible for the initial formation of these SMBHs and their early growth via accretion - when they are seen as Active Galactic Nuclei (AGN) - remain unknown. To address this challenge, we must identify low luminosity and obscured z>6 AGNs, which represent the bulk of early SMBH growth. Read More

Most of the action in Active Galactic Nuclei (AGN) occurs within a few tens of gravitational radii from the supermassive black hole, where matter in the accretion disk may lose up to almost half of its energy with a copious production of X-rays, emitted via Comptonization of the disk photons by hot electrons in a corona and partly reflected by the accretion disk. Thanks to its large effective area and excellent energy resolution, Athena+ contributions in the understanding of the physics of accretion in AGN will be fundamental - and unique - in many respects. It will allow us to map the disk-corona system - which is crucial to understand the mechanism of energy extraction and the relation of the corona with winds and jets - by studying the time lags between reflected and primary photons. Read More

We experimentally demonstrate optomechanical motion and force measurements near the quantum precision limits set by the quantum Cram\'er-Rao bounds (QCRBs). Optical beams in coherent and phase-squeezed states are used to measure the motion of a mirror under an external stochastic force. Utilizing optical phase tracking and quantum smoothing techniques, we achieve position, momentum, and force estimation accuracies close to the QCRBs with the coherent state, while estimation using squeezed states shows clear quantum enhancements beyond the coherent-state bounds. Read More

2013Apr
Affiliations: 1Instituto de Física de Cantabria, 2Instituto de Física de Cantabria, 3Institute of Astronomy and Astrophysics National Observatory of Athens Greece, 4Instituto de Física de Cantabria, 5INAF-Osservatorio Astronomico di Bologna Italy, 6INAF-Osservatorio Astronomico di Bologna Italy, 7Institute of Astronomy and Astrophysics National Observatory of Athens Greece, 8Dipartimento di Fisica ed Astronomia Università di Bologna Italy, 9ICREA and Institut de Ciències del Cosmos, 10INAF-Osservatorio Astronomico di Bologna Italy, 11Department of Physics University of Durham UK, 12Institute of Astronomy and Astrophysics National Observatory of Athens Greece, 13Dipartimento di Fisica ed Astronomia Università di Bologna Italy, 14Dipartimento di Fisica ed Astronomia Università di Bologna Italy

X-ray spectroscopy of active galactic nuclei (AGN) offers the opportunity to directly probe the inner regions of the accretion disk. We present the results of our analysis of average AGN XMM-Newton X-ray spectra in the Chandra Deep Field South observation (XMM CDFS). We computed the average spectrum of a sample of 54 AGN with spectroscopic redshifts and signal-to-noise ratio S/N > 15 in the 2-12 keV rest-frame band in at least one EPIC camera. Read More

(abridged) The XMM-Newton survey in the Chandra Deep Field South (XMM-CDFS) aims at detecting and studying the spectral properties of a significant number of obscured and Compton-thick AGN. The large effective area of XMMin the 2--10 and 5--10 keV bands, coupled with a 3.45 Ms nominal exposure time, allows us to build clean samples in both bands, and makes the XMM-CDFS the deepest XMM survey currently published in the 5--10 keV band. Read More

2013Mar
Affiliations: 1INAF/OABO, NOA, 2INAF/OABO, 3BolognaU, 4NOA, 5Dureham U., 6INAF/OABO, 7INAF/OABO, 8INAF/OABO, 9IFCA, 10Gent U., INAF/Padova, 11Bologna U., INAF/OABO, MPE, 12CEA-Saclay, 13CEA-Saclay, 14IFCA, 15IFCA, 16INAF/Trieste, 17MPE, 18IFCA

The Chandra Deep Field is the region of the sky with the highest concentration of X-ray data available: 4Ms of Chandra and 3Ms of XMM data, allowing excellent quality spectra to be extracted even for faint sources. We take advantage of this in order to compile a sample of heavily obscured Active Galactic Nuclei (AGN) using X-ray spectroscopy. We select our sample among the 176 brightest XMM sources, searching for either a) flat X-ray spectra (Photon index<1. Read More

A {\it Hubble Space Telescope} ({\it HST}) / Advanced Camera for Surveys (ACS) study of the structural properties of 85 luminous and ultraluminous ($L_{\rm IR} > 10^{11.4}$ L$_\odot$) infrared galaxies (LIRGs and ULIRGs) in the Great Observatories All-sky LIRG Survey (GOALS) sample is presented. Two-dimensional GALFIT analysis has been performed on F814W "{\it I}-band" images to decompose each galaxy, as appropriate, into bulge, disk, central PSF and stellar bar components. Read More

The Great Observatories All-Sky LIRG Survey (GOALS) is a multiwavelength study of luminous infrared galaxies (LIRGs) in the local universe. Here we present low resolution Spitzer spectra covering 5-38um and provide a basic analysis of the mid-IR spectral properties for nearby LIRGs. In a companion paper, we discuss detailed fits to the spectra. Read More

We present, for the first time, a statistical study of [N II] 205 mciron line emission for a large sample of local luminous infrared galaxies using Herschel Spectral and Photometric Imaging Receiver Fourier Transform Spectrometer (SPIRE FTS) data. For our sample of galaxies, we investigate the correlation between the [N II] luminosity (LNII) and the total infrared luminosity (LIR), as well as the dependence of LNII/LIR ratio on LIR, far infrared colors (IRAS $f_{60}/f_{100}$) and the [O III] 88 micron to [N II] luminosity ratio. We find that LNII correlates almost linearly with LIR for non AGN galaxies (all having $L_{IR} < 10^{12} L_solar$) in our sample, which implies that LNII can serve as a SFR tracer which is particularly useful for high redshift galaxies which will be observed with forthcoming submm spectroscopic facilities such as the Atacama Large Millimeter/submillimeter Array. Read More

Tracking a randomly varying optical phase is a key task in metrology, with applications in optical communication. The best precision for optical phase tracking has till now been limited by the quantum vacuum fluctuations of coherent light. Here we surpass this coherent-state limit by using a continuous-wave beam in a phase-squeezed quantum state. Read More

2012Sep
Affiliations: 1Dipartimento di Astronomia, Universitá di Bologna, Italy, 2Dipartimento di Astronomia, Universitá di Bologna, Italy, 3INAF-OABo, Italy, 4INAF-OABo, Italy, 5ICREA and ICC, Universitat de Barcelona, Spain, 6Department of Astronomy and Astrophysics, The Pennsylvania State University, USA, 7Department of Physics, University of Durham, UK, 8Max Planck Institut für Extraterrestische Physik, Garching, Germany, 9The Johns Hopkins University, Baltimore, USA, 10Pontificia Universidad Católica de Chile, Santiago, Chile, 11Department of Astronomy and Astrophysics, The Pennsylvania State University, USA, 12Department of Astronomy, University of Science and Technology of China, China, 13Department of Astronomy and Astrophysics, The Pennsylvania State University, USA

We present results from a spectral analysis of a sample of high-redshift (z>3) X-ray selected AGN in the 4 Ms Chandra Deep Field South (CDF-S), the deepest X-ray survey to date. The sample is selected using the most recent spectroscopic and photometric information available in this field. It consists of 34 sources with median redshift z=3. Read More

Luminous and ultraluminous infrared galaxies ((U)LIRGs) are the most extreme star forming galaxies in the universe. The local (U)LIRGs provide a unique opportunity to study their multi-wavelength properties in detail for comparison to their more numerous counterparts at high redshifts. We present common large aperture photometry at radio through X-ray wavelengths, and spectral energy distributions (SEDs) for a sample of 53 nearby LIRGs and 11 ULIRGs spanning log (LIR/Lsun) = 11. Read More

We present results on a search of heavily obscured active galaxies z>1.7 using the rest-frame 9-20 keV excess for X-ray sources detected in the deep XMM-CDFS survey. Out of 176 sources selected with the conservative detection criteria (>8 sigma) in the first source catalogue of Ranalli et al. Read More

2012Aug
Affiliations: 1IPAC, Caltech, 2ICREA and ICC, Universitat de Barcelona, 3Dept. of Physics and Astronomy, Stony Brook University, 4Spitzer Science Center, Caltech, 5Dept. of Astronomy, University of Virginia, 6Physics Dept., University of Oregon, 7Dept. of Astronomy, University of Virginia, 8Dept. of Astronomy, Cornell University, 9Spitzer Science Center, Caltech, 10Spitzer Science Center, Caltech, 11NASA Herschel Science Center, Caltech, 12Spitzer Science Center, Caltech, 13Subaru Telescope, National Astronomical Observatory of Japan, 14NASA Herschel Science Center, Caltech, 15Spitzer Science Center, Caltech, 16IfA, University of Hawaii, 17Spitzer Science Center, Caltech, 18NASA Herschel Science Center, Caltech, 19IPAC, Caltech, 20NRAO, 21Spitzer Science Center, Caltech, 22Byurakan Astrophysical Observatory, 23The Observatories, Carnegie Institution of Washington, 24Dept. of Astronomy, University of Virginia, 25Max-Planck-Institut fur extraterrestrische Physik, 26IfA, University of Hawaii, 27Dept. of Astronomy, University of Maryland

Results of observations with the Spitzer, Hubble, GALEX, Chandra, and XMM-Newton space telescopes are presented for the Luminous Infrared Galaxy (LIRG) merger Mrk 266. The SW (Seyfert 2) and NE (LINER) nuclei reside in galaxies with Hubble types SBb (pec) and S0/a (pec), respectively. Both galaxies have L > L*, and they are inferred to each contain a ~2. Read More

New optical HST, Spitzer, GALEX, and Chandra observations of the single-nucleus, luminous infrared galaxy (LIRG) merger IC 883 are presented. The galaxy is a member of the Great Observatories All-sky LIRG Survey (GOALS), and is of particular interest for a detailed examination of a luminous late-stage merger due to the richness of the optically-visible star clusters and the extended nature of the nuclear X-ray, mid-IR, CO and radio emission. In the HST ACS images, the galaxy is shown to contain 156 optically visible star clusters distributed throughout the nuclear regions and tidal tails of the merger, with a majority of visible clusters residing in an arc ~ 3-7 kpc from the position of the mid-infrared core of the galaxy. Read More

We present a rest-frame spectral stacking analysis of ~1000 X-ray sources detected in the XMM-COSMOS field in order to investigate the iron K line properties of active galaxies beyond redshift z~1. In Type I AGN that have a typical X-ray luminosity of Lx~1.5e44 erg/s and z~1. Read More

We explore the connection between black hole growth at the center of obscured quasars selected from the XMM-COSMOS survey and the physical properties of their host galaxies. We study a bolometric regime ( 8 x 10^45 erg/s) where several theoretical models invoke major galaxy mergers as the main fueling channel for black hole accretion. We confirm that obscured quasars mainly reside in massive galaxies (Mstar>10^10 Msun) and that the fraction of galaxies hosting such powerful quasars monotonically increases with the stellar mass. Read More