K. I. Koljonen

K. I. Koljonen
Are you K. I. Koljonen?

Claim your profile, edit publications, add additional information:

Contact Details

K. I. Koljonen

Pubs By Year

Pub Categories

High Energy Astrophysical Phenomena (19)
Cosmology and Nongalactic Astrophysics (2)
Solar and Stellar Astrophysics (1)
Astrophysics of Galaxies (1)
Instrumentation and Methods for Astrophysics (1)

Publications Authored By K. I. Koljonen

When a neutron star accretes matter from a companion star in a low-mass X-ray binary, the accreted gas settles onto the stellar surface through a boundary/spreading layer. On rare occasions the accumulated gas undergoes a powerful thermonuclear superburst powered by carbon burning deep below the neutron star atmosphere. In this paper, we apply the non-negative matrix factorization spectral decomposition technique to show that the spectral variations during a superburst from 4U 1636-536 can be explained by two distinct components: 1) the superburst emission characterized by a variable temperature black body radiation component, and 2) a quasi-Planckian component with a constant, $\sim$2. Read More

Low mass X-ray binaries (LMXBs) show evidence of a global correlation of debated origin between X-ray and optical luminosity. We study for the first time this correlation in two transient LMXBs, the black hole V404 Cyg and the neutron star Cen X-4, over 6 orders of magnitude in X-ray luminosity, from outburst to quiescence. After subtracting the contribution from the companion star, the Cen X-4 data can be described by a single power law correlation of the form $L_{opt}\propto\,L_{X}^{0. Read More

We study in detail the evolution of the 2015 outburst of GS 1354-64 (BW Cir) at optical, UV and X-ray wavelengths using Faulkes Telescope South/LCOGT, SMARTS and Swift. The outburst was found to stay in the hard X-ray state, albeit being anomalously luminous with a peak luminosity of L$_{X} >$ 0.15 L$_{Edd}$, which could be the most luminous hard state observed in a black hole X-ray binary. Read More

On 2015 June 15 the burst alert telescope (BAT) on board {\em Swift} detected an X-ray outburst from the black hole transient V404 Cyg. We monitored V404 Cyg for the last 10 years with the 2-m Faulkes Telescope North in three optical bands (V, R, and i$^{'}$). We found that, one week prior to this outburst, the optical flux was 0. Read More

Observational evidence has been accumulating that thermonuclear X-ray bursts ignited on the surface of neutron stars influence the surrounding accretion flow. Here, we exploit the excellent sensitivity of NuSTAR up to 79 keV to analyze the impact of an X-ray burst on the accretion emission of the neutron star LMXB 4U 1608-52. The ~200 s long X-ray burst occurred during a hard X-ray spectral state, and had a peak intensity of ~30-50 per cent of the Eddington limit with no signs of photospheric radius expansion. Read More

Accreting black holes are responsible for producing the fastest, most powerful outflows of matter in the Universe. The formation process of powerful jets close to black holes is poorly understood, and the conditions leading to jet formation are currently hotly debated. In this paper, we report an unambiguous empirical correlation between the properties of the plasma close to the black hole and the particle acceleration properties within jets launched from the central regions of accreting stellar-mass and supermassive black holes. Read More

In this paper we explore unsupervised spectral decomposition methods for distinguishing the effect of different spectral components for a set of consecutive spectra from an X-ray binary. We use well-established linear methods for the decomposition, namely principal component analysis, independent component analysis and non-negative matrix factorisation (NMF). Applying these methods to a simulated dataset consisting of a variable multicolour disc black body and a cutoff power law, we find that NMF outperforms the other two methods in distinguishing the spectral components. Read More

We analyse a sample of 26 active galactic nuclei with deep XMM-Newton observations, using principal component analysis (PCA) to find model independent spectra of the different variable components. In total, we identify at least 12 qualitatively different patterns of spectral variability, involving several different mechanisms, including five sources which show evidence of variable relativistic reflection (MCG-6-30-15, NGC 4051, 1H 0707-495, NGC 3516 and Mrk 766) and three which show evidence of varying partial covering neutral absorption (NGC 4395, NGC 1365, and NGC 4151). In over half of the sources studied, the variability is dominated by changes in a power law continuum, both in terms of changes in flux and power law index, which could be produced by propagating fluctuations within the corona. Read More

We have performed a principal component analysis on the X-ray spectra of the microquasar Cygnus X-3 from RXTE, INTEGRAL and Swift during a major flare ejection event in 2006 May-July. The analysis showed that there are two main variability components in play, i.e. Read More

We analyse in detail the X-ray data of the microquasar Cygnus X-3 obtained during major radio flaring episodes in 2006 with multiple observatories. The analysis consists of two parts: probing the fast (~ 1 minute) X-ray spectral evolution with Principal Component Analysis followed by subsequent spectral fits to the time-averaged spectra (~ 3 ks). Based on the analysis we find that the overall X-ray variability during major flaring episodes can be attributed to two principal components whose evolution based on spectral fits is best reproduced by a hybrid Comptonization component and a bremsstrahlung or saturated thermal Comptonization component. Read More

The Arcminute Microkelvin Imager (AMI) is a telescope specifically designed for high sensitivity measurements of low-surface-brightness features at cm-wavelength and has unique, important capabilities. It consists of two interferometer arrays operating over 13.5-18 GHz that image structures on scales of 0. Read More

We present the AGILE-GRID monitoring of Cygnus X-3, during the period between November 2007 and July 2009. We report here the whole AGILE-GRID monitoring of Cygnus X-3 in the AGILE "pointing" mode data-taking, to confirm that the gamma-ray activity coincides with the same repetitive pattern of multiwavelength emission and to analyze in depth the overall gamma-ray spectrum by assuming both leptonic and hadronic scenarios. Seven intense gamma-ray events were detected in this period, with a typical event lasting one or two days. Read More

We have re-analyzed archival RXTE data of the X-ray binary Cygnus X-3 with a view to investigate the timing properties of the source. As compared to previous studies, we use an extensive sample of observations that include all the radio/X-ray spectral states that have been categorized in the source recently. In this study we identify two additional instances of Quasi-Periodic Oscillations that have centroid frequencies in the mHz regime. Read More

Cygnus X-3 is a unique microquasar which shows X-ray state changes, strong radio emission, and relativistic jets. It is also an unusual X-ray binary with the mass-donating companion being a high mass star Wolf-Rayet but the orbital modulation (as inferred from X-ray emission) is only 4.8 hours, a value more common in low-mass systems. Read More

Cygnus X-3 is one of the brightest X-ray and radio sources in the Galaxy, and is well known for its erratic behaviour in X-rays as well as in the radio, occasionally producing major radio flares associated with relativistic ejections. However, even after many years of observations in various wavelength bands Cyg X-3 still eludes clear physical understanding. Studying different emission bands simultaneously in microquasars has proved to be a fruitful approach towards understanding these systems, especially by shedding light on the accretion disc/jet connection. Read More

Cygnus X-3 is a unique microquasar. Its X-ray emission shows a very strong 4.8-hour orbital modulation. Read More

The study of relativistic particle acceleration is a major topic of high-energy astrophysics. It is well known that massive black holes in active galaxies can release a substantial fraction of their accretion power into energetic particles, producing gamma-rays and relativistic jets. Galactic microquasars (hosting a compact star of 1-10 solar masses which accretes matter from a binary companion) also produce relativistic jets. Read More

We address the problem where the X-ray emission lines are formed and investigate orbital dynamics using Chandra HETG observations, photoionizing calculations and numerical wind-particle simulations.The observed Si XIV (6.185 A) and S XVI (4. Read More