# K. Hamilton - conveners

## Contact Details

NameK. Hamilton |
||

Affiliationconveners |
||

CityBrechin |
||

CountryUnited Kingdom |
||

## Pubs By Year |
||

## External Links |
||

## Pub CategoriesHigh Energy Physics - Phenomenology (30) High Energy Physics - Experiment (9) Mathematics - Mathematical Physics (5) Mathematical Physics (5) Physics - Disordered Systems and Neural Networks (2) Mathematics - Probability (1) Physics - Mesoscopic Systems and Quantum Hall Effect (1) Physics - Statistical Mechanics (1) Physics - Atomic Physics (1) Quantum Physics (1) Physics - Physics and Society (1) |

## Publications Authored By K. Hamilton

We report on calculations of harmonic generation by neon in a mixed (800-nm + time-delayed 400-nm) laser pulse scheme. In contrast with previous studies we employ a short (few-cycle) 400-nm pulse, finding that this affords control of the interference between electron trajectories contributing to the cutoff harmonics. The inclusion of the 400-nm pulse enhances the yield and cutoff energy, both of which exhibit a strong dependence on the time delay between the two pulses. Read More

Using quantum annealing to solve an optimization problem requires minor embeddings of a logic graph into a known hardware graph. In an effort to reduce the complexity of the minor embedding problem, we introduce the minor set cover (MSC) of a known graph G: a subset of graph minors which contain any remaining minor of the graph as a subgraph. Any graph that can be embedded into G will be embeddable into a member of the MSC. Read More

We give an upper bound for the uniqueness transition on an arbitrary locally finite graph ${\cal G}$ in terms of the limit of the spectral radii $\rho\left[ H({\cal G}_t)\right]$ of the non-backtracking (Hashimoto) matrices for an increasing sequence of subgraphs ${\cal G}_t\subset{\cal G}_{t+1}$ which converge to ${\cal G}$. With the added assumption of strong local connectivity for the oriented line graph (OLG) of ${\cal G}$, connectivity on any finite subgraph ${\cal G}'\subset{\cal G}$ decays exponentially for $p<(\rho\left[ H({\cal G}^{\prime})\right])^{-1}$. Read More

We present a simulation program for the production of a pair of W bosons in association with a jet, that can be used in conjunction with general-purpose shower Monte Carlo generators, according to the POWHEG method. We have further adapted and implemented the MINLO' method on top of the NLO calculation underlying our WW+jet generator. Thus, the resulting simulation achieves NLO accuracy not only for inclusive distributions in WW+jet production but also WW production, i. Read More

We consider improving POWHEG+MINLO simulations, so as to also render them NLO accurate in the description of observables receiving contributions from events with lower parton multiplicity than present in their underlying NLO calculation. On a conceptual level we follow the strategy of the so-called MINLO' programs. Whereas the existing MINLO' framework requires explicit analytic input from higher order resummation, here we derive an effective numerical approximation to these ingredients, by imposing unitarity. Read More

We analyze site percolation on directed and undirected graphs with site-dependent open-site probabilities. We construct upper bounds on cluster susceptibilities, vertex connectivity functions, and the expected number of simple open cycles through a chosen arc; separate bounds are given on finite and infinite (di)graphs. These produce lower bounds for percolation and uniqueness transitions in infinite (di)graphs, and for the formation of a giant component in finite (di)graphs. Read More

We give several algebraic bounds for percolation on directed and undirected graphs: proliferation of strongly-connected clusters, proliferation of in- and out-clusters, and the transition associated with the number of giant components. Read More

We include finite top- and bottom-mass effects in the next-to-next-to-leading order parton shower (NNLOPS) event generator for inclusive Higgs boson production in gluon fusion based upon the POWHEG+MiNLO approach. Since fixed-order results for quark-mass effects only reach NLO accuracy, we add them to the NNLOPS generator at that accuracy. We explore uncertainties related to the unknown all-order logarithmic structure of bottom-mass effects by comparing the assumption of full exponentiation to no exponentiation at all. Read More

**Authors:**J. Butterworth

^{1}, G. Dissertori

^{2}, S. Dittmaier

^{3}, D. de Florian

^{4}, N. Glover

^{5}, K. Hamilton

^{6}, J. Huston

^{7}, M. Kado

^{8}, A. Korytov

^{9}, F. Krauss

^{10}, G. Soyez

^{11}, J. R. Andersen

^{12}, S. Badger

^{13}, L. Barzè

^{14}, J. Bellm

^{15}, F. U. Bernlochner

^{16}, A. Buckley

^{17}, J. Butterworth

^{18}, N. Chanon

^{19}, M. Chiesa

^{20}, A. Cooper-Sarkar

^{21}, L. Cieri

^{22}, G. Cullen

^{23}, H. van Deurzen

^{24}, G. Dissertori

^{25}, S. Dittmaier

^{26}, D. de Florian

^{27}, S. Forte

^{28}, R. Frederix

^{29}, B. Fuks

^{30}, J. Gao

^{31}, M. V. Garzelli

^{32}, T. Gehrmann

^{33}, E. Gerwick

^{34}, S. Gieseke

^{35}, D. Gillberg

^{36}, E. W. N. Glover

^{37}, N. Greiner

^{38}, K. Hamilton

^{39}, T. Hapola

^{40}, H. B. Hartanto

^{41}, G. Heinrich

^{42}, A. Huss

^{43}, J. Huston

^{44}, B. Jäger

^{45}, M. Kado

^{46}, A. Kardos

^{47}, U. Klein

^{48}, F. Krauss

^{49}, A. Kruse

^{50}, L. Lönnblad

^{51}, G. Luisoni

^{52}, Daniel Maître

^{53}, P. Mastrolia

^{54}, O. Mattelaer

^{55}, J. Mazzitelli

^{56}, E. Mirabella

^{57}, P. Monni

^{58}, G. Montagna

^{59}, M. Moretti

^{60}, P. Nadolsky

^{61}, P. Nason

^{62}, O. Nicrosini

^{63}, C. Oleari

^{64}, G. Ossola

^{65}, S. Padhi

^{66}, T. Peraro

^{67}, F. Piccinini

^{68}, S. Plätzer

^{69}, S. Prestel

^{70}, J. Pumplin

^{71}, K. Rabbertz

^{72}, Voica Radescu

^{73}, L. Reina

^{74}, C. Reuschle

^{75}, J. Rojo

^{76}, M. Schönherr

^{77}, J. M. Smillie

^{78}, J. F. von Soden-Fraunhofen

^{79}, G. Soyez

^{80}, R. Thorne, F. Tramontano, Z. Trocsanyi, D. Wackeroth, J. Winter, C-P. Yuan, V. Yundin, K. Zapp

**Affiliations:**

^{1}conveners,

^{2}conveners,

^{3}conveners,

^{4}conveners,

^{5}conveners,

^{6}conveners,

^{7}conveners,

^{8}conveners,

^{9}conveners,

^{10}conveners,

^{11}conveners,

^{12}conveners,

^{13}conveners,

^{14}conveners,

^{15}conveners,

^{16}conveners,

^{17}conveners,

^{18}conveners,

^{19}conveners,

^{20}conveners,

^{21}conveners,

^{22}conveners,

^{23}conveners,

^{24}conveners,

^{25}conveners,

^{26}conveners,

^{27}conveners,

^{28}conveners,

^{29}conveners,

^{30}conveners,

^{31}conveners,

^{32}conveners,

^{33}conveners,

^{34}conveners,

^{35}conveners,

^{36}conveners,

^{37}conveners,

^{38}conveners,

^{39}conveners,

^{40}conveners,

^{41}conveners,

^{42}conveners,

^{43}conveners,

^{44}conveners,

^{45}conveners,

^{46}conveners,

^{47}conveners,

^{48}conveners,

^{49}conveners,

^{50}conveners,

^{51}conveners,

^{52}conveners,

^{53}conveners,

^{54}conveners,

^{55}conveners,

^{56}conveners,

^{57}conveners,

^{58}conveners,

^{59}conveners,

^{60}conveners,

^{61}conveners,

^{62}conveners,

^{63}conveners,

^{64}conveners,

^{65}conveners,

^{66}conveners,

^{67}conveners,

^{68}conveners,

^{69}conveners,

^{70}conveners,

^{71}conveners,

^{72}conveners,

^{73}conveners,

^{74}conveners,

^{75}conveners,

^{76}conveners,

^{77}conveners,

^{78}conveners,

^{79}conveners,

^{80}conveners

**Category:**High Energy Physics - Phenomenology

This Report summarizes the proceedings of the 2013 Les Houches workshop on Physics at TeV Colliders. Session 1 dealt primarily with (1) the techniques for calculating standard model multi-leg NLO and NNLO QCD and NLO EW cross sections and (2) the comparison of those cross sections with LHC data from Run 1, and projections for future measurements in Run 2. Read More

We construct an exact expression for the site percolation threshold p_c on a quasi-regular tree, and a related exact lower bound for a quasi-regular graph. Both are given by the inverse spectral radius of the appropriate Hashimoto matrix used to count non-backtracking walks. The obtained bound always exceeds the inverse spectral radius of the original graph, and it is also generally tighter than the existing bound in terms of the maximum degree. Read More

We detail a simulation of Higgs boson production via gluon fusion, accurate at next-to-next-to-leading order in the strong coupling, including matching to a parton shower, yielding a fully exclusive, hadron-level description of the final-state. The approach relies on the POWHEG method for merging the NLO Higgs plus jet cross-section with the parton shower, and on the MINLO method to simultaneously achieve NLO accuracy for inclusive Higgs boson production. The NNLO accuracy is reached by a reweighting procedure making use of the HNNLO program. Read More

We consider the possibility of observing continuous third-harmonic generation using a strongly driven, single-band one-dimensional metal. In the absence of scattering, the quantum efficiency of frequency tripling for such a system can be as high as 93%. Combining the Floquet quasi-energy spectrum with the Keldysh Green's function technique, we derive the semiclassical master equation for a one-dimensional band of strongly and rapidly driven electrons in the presence of weak scattering by phonons. Read More

We consider the POWHEG generator for a H/W/Z boson plus one jet, augmented with the recently proposed MiNLO method for the choice of scales and the inclusion of Sudakov form factors. Within this framework, the generator covers all the transverse-momentum region of the H/W/Z boson, i.e. Read More

In the present work we consider the assignment of the factorization and renormalization scales in hadron collider processes with associated jet production, at next-to-leading order (NLO) in perturbation theory. We propose a simple, definite prescription to this end, including Sudakov form factors to consistently account for the distinct kinematic scales occuring in such collisions. The scheme yields results that are accurate at NLO and, for a large class of observables, it resums to all orders the large logarithms that arise from kinematic configurations involving disparate scales. Read More

A new release of the Monte Carlo event generator Herwig++ (version 2.6) is now available. This version comes with a number of improvements including: a new structure for the implementation of next-to-leading order matrix elements; an improved treatment of wide-angle gluon radiation; new hard-coded next-to-leading order matrix elements for deep inelastic scattering and weak vector boson fusion; additional models of physics beyond the Standard Model, including the production of colour sextet particles; a statistical colour reconnection model; automated energy scaling of underlying-event tunes. Read More

**Authors:**LHC Higgs Cross Section Working Group, S. Dittmaier

^{1}, C. Mariotti

^{2}, G. Passarino

^{3}, R. Tanaka

^{4}, S. Alekhin, J. Alwall, E. A. Bagnaschi, A. Banfi, J. Blumlein, S. Bolognesi, N. Chanon, T. Cheng, L. Cieri, A. M. Cooper-Sarkar, M. Cutajar, S. Dawson, G. Davies, N. De Filippis, G. Degrassi, A. Denner, D. D'Enterria, S. Diglio, B. Di Micco, R. Di Nardo, R. K. Ellis, A. Farilla, S. Farrington, M. Felcini, G. Ferrera, M. Flechl, D. de Florian, S. Forte, S. Ganjour, M. V. Garzelli, S. Gascon-Shotkin, S. Glazov, S. Goria, M. Grazzini, J. -Ph. Guillet, C. Hackstein, K. Hamilton, R. Harlander, M. Hauru, S. Heinemeyer, S. Hoche, J. Huston, C. Jackson, P. Jimenez-Delgado, M. D. Jorgensen, M. Kado, S. Kallweit, A. Kardos, N. Kauer, H. Kim, M. Kovac, M. Kramer, F. Krauss, C. -M. Kuo, S. Lehti, Q. Li, N. Lorenzo, F. Maltoni, B. Mellado, S. O. Moch, A. Muck, M. Muhlleitner, P. Nadolsky, P. Nason, C. Neu, A. Nikitenko, C. Oleari, J. Olsen, S. Palmer, S. Paganis, C. G. Papadopoulos, T . C. Petersen, F. Petriello, F. Petrucci, G. Piacquadio, E. Pilon, C. T. Potter, J. Price, I. Puljak, W. Quayle, V. Radescu, D. Rebuzzi, L. Reina, J. Rojo, D. Rosco, G. P. Salam, A. Sapronov, J. Schaarschmidt, M. Schonherr, M. Schumacher, F. Siegert, P. Slavich, M. Spira, I. W. Stewart, W. J. Stirling, F. Stockli, C. Sturm, F. J. Tackmann, R. S. Thorne, D. Tommasini, P. Torrielli, F. Tramontano, Z. Trocsanyi, M. Ubiali, S. Uccirati, M. Vazquez Acosta, T. Vickey, A. Vicini, W. J. Waalewijn, D. Wackeroth, M. Warsinsky, M. Weber, M. Wiesemann, G. Weiglein, J. Yu, G. Zanderighi

**Affiliations:**

^{1}eds.,

^{2}eds.,

^{3}eds.,

^{4}eds.

This Report summarises the results of the second year's activities of the LHC Higgs Cross Section Working Group. The main goal of the working group was to present the state of the art of Higgs Physics at the LHC, integrating all new results that have appeared in the last few years. The first working group report Handbook of LHC Higgs Cross Sections: 1. Read More

In this article we generalise POWHEG next-to-leading order parton shower (NLOPS) simulations of vector boson production and vector boson production in association with a single jet, to give matrix element corrected MENLOPS simulations. In so doing we extend and provide, for the first time, an exact and faithful implementation of the MENLOPS formalism in hadronic collisions. We also consider merging the resulting event samples according to a phase space partition defined in terms of an effective jet clustering scale. Read More

A new release of the Monte Carlo program Herwig++ (version 2.5) is now available. This version comes with a number of improvements including: new next-to-leading order matrix elements, including weak boson pair production; a colour reconnection model; diffractive processes; additional models of physics beyond the Standard Model and new leading-order matrix elements for hadron--hadron and lepton--lepton collisions as well as photon-initiated processes. Read More

**Authors:**A. Abdesselam, E. Bergeaas Kuutmann, U. Bitenc, G. Brooijmans, J. Butterworth, P. Bruckman de Renstrom, D. Buarque Franzosi, R. Buckingham, B. Chapleau, M. Dasgupta, A. Davison, J. Dolen, S. Ellis, F. Fassi, J. Ferrando M. T. Frandsen, J. Frost, T. Gadfort, N. Glover, A. Haas, E. Halkiadakis, K. Hamilton, C. Hays, C. Hill, J. Jackson, C. Issever, M. Karagoz, A. Katz, L. Kreczko, D. Krohn, A. Lewis, S. Livermore, P. Loch, P. Maksimovic, J. March-Russell, A. Martin, N. McCubbin, D. Newbold, J. Ott, G. Perez, A. Policchio, S. Rappoccio, A. R. Raklev, P. Richardson, G. P. Salam, F. Sannino, J. Santiago, A. Schwartzman, C. Shepherd-Themistocleous, P. Sinervo, J. Sjoelin, M. Son, M. Spannowsky, E. Strauss, M. Takeuchi, J. Tseng, B. Tweedie, C. Vermilion, J. Voigt, M. Vos, J. Wacker, J. Wagner-Kuhr, M. G. Wilson

We present the report of the hadronic working group of the BOOST2010 workshop held at the University of Oxford in June 2010. The first part contains a review of the potential of hadronic decays of highly boosted particles as an aid for discovery at the LHC and a discussion of the status of tools developed to meet the challenge of reconstructing and isolating these topologies. In the second part, we present new results comparing the performance of jet grooming techniques and top tagging algorithms on a common set of benchmark channels. Read More

We present an implementation of the next-to-leading order dijet production process in hadronic collisions in the framework of POWHEG, which is a method to implement NLO calculations within a shower Monte Carlo context. In constructing the simulation, we have made use of the POWHEG BOX toolkit, which makes light of many of the most technical steps. The majority of this article is concerned with the study of the predictions of the Monte Carlo simulation. Read More

In this article we describe simulations of ZZ, WZ and WW production based on the positive weight next-to-leading-order matching scheme, Powheg, in the Herwig++ event generator. Building on earlier efforts within the Herwig++ framework, the simulation includes a full description of truncated showering effects, required to correctly model soft, wide angle, emissions in angular-ordered parton showers. We utilize simple relations among each of the diboson cross sections, holding to order alpha_S, in constructing the simulation. Read More

In recent times the algorithms for the simulation of hadronic collisions have been subject to two substantial improvements: the inclusion, within parton showering, of exact higher order tree level matrix elements (MEPS) and, separately, next-to-leading order corrections (NLOPS). In this work we examine the key criteria to be met in merging the two approaches in such a way that the accuracy of both is preserved, in the framework of the POWHEG approach to NLOPS. We then ask to what extent these requirements may be fulfilled using existing simulations, without modifications. Read More

**Authors:**J. M. Butterworth, F. Maltoni, F. Moortgat, P. Richardson, S. Schumann, P. Skands, J. Alwall, A. Arbey, L. Basso, S. Belov, A. Bharucha, F. Braam, A. Buckley, M. Campanelli, R. Chierici, A. Djouadi, L. Dudko, C. Duhr, F. Febres Cordero, P. Francavilla, B. Fuks, L. Garren, T. Goto, M. Grazzini, T. Hahn, U. Haisch, K. Hamilton, S. Heinemeyer, G. Hesketh, S. Hoeche, H. Hoeth, J. Huston, J. Kalinowski, D. Kekelidze, S. Kraml, H. Lacker, P. Lenzi, P. Loch, L. Lonnblad, F. Mahmoudi, E. Maina, D. Majumder, M. Mangano, K. Mazumdar, A. Martin, J. Monk, M. Muhlleitner, C. Oleari, S. Ovyn, R. Pittau, S. Plaetzer, G. Piacquadio, L. Reina, J. Reuter, X. Rouby, C. Robinson, T. Roy, M. D. Schwartz, H. Schulz, E. von Seggern, A. Sherstnev, F. Siegert, T. Sjostrand, P. Slavich, M. Spira, C. Taylor, M. Vesterinen, S. de Visscher, D. Wackeroth, S. Weinzierl, J. Winter, T. R. Wyatt

This is the summary and introduction to the proceedings contributions for the Les Houches 2009 "Tools and Monte Carlo" working group. Read More

A modified version of the CKKW matrix element merging algorithm is presented, suitable for use in an angular-ordered parton shower, using truncated showers and forced splittings. The algorithm is implemented in the Herwig++ Monte Carlo event generator for the benchmark process e+e- -> hadrons. Results are presented at parton and hadron levels, demonstrating a smooth merging between the matrix elements and parton shower and an improved description of LEP data. Read More

In this article we describe simulations of Higgs boson production via the gluon fusion and Higgs-strahlung processes, using the positive weight next-to-leading-order (NLO) matching scheme, POWHEG, in the Herwig++ 2.3 event generator. This formalism consistently incorporates the full NLO corrections to these processes within the parton shower simulation, without the production of negative weight events. Read More

**Authors:**H. Jung

^{1}, A. De Roeck

^{2}, Z. J. Ajaltouni

^{3}, S. Albino

^{4}, G. Altarelli

^{5}, F. Ambroglini

^{6}, J. Anderson

^{7}, G. Antchev

^{8}, M. Arneodo

^{9}, P. Aspell

^{10}, V. Avati

^{11}, M. Bahr

^{12}, A. Bacchetta

^{13}, M. G. Bagliesi

^{14}, R. D. Ball

^{15}, A. Banfi

^{16}, S. Baranov

^{17}, P. Bartalini

^{18}, J. Bartels

^{19}, F. Bechtel

^{20}, V. Berardi

^{21}, M. Berretti

^{22}, G. Beuf

^{23}, M. Biasini

^{24}, I. Bierenbaum

^{25}, J. Blumlein

^{26}, R. E. Blair

^{27}, C. Bombonati

^{28}, M. Boonekamp

^{29}, U. Bottigli

^{30}, S. Boutle

^{31}, M. Bozzo

^{32}, E. Brucken

^{33}, J. Bracinik

^{34}, A. Bruni

^{35}, G. E. Bruno

^{36}, A. Buckley

^{37}, A. Bunyatyan

^{38}, H. Burkhardt

^{39}, P. Bussey

^{40}, A. Buzzo

^{41}, M. Cacciari

^{42}, F. Cafagna

^{43}, M. Calicchio

^{44}, F. Caola

^{45}, M. G. Catanesi

^{46}, P. L. Catastini

^{47}, R. Cecchi

^{48}, F. A. Ceccopieri

^{49}, S. Cerci

^{50}, S. Chekanov

^{51}, R. Chierici

^{52}, M. Ciafaloni

^{53}, M. A. Ciocci

^{54}, V. Coco

^{55}, D. Colferai

^{56}, A. Cooper-Sarkar

^{57}, G. Corcella

^{58}, M. Czakon

^{59}, A. Dainese

^{60}, M. Dasgupta

^{61}, M. Deak

^{62}, M. Deile

^{63}, P. A. Delsart

^{64}, L. Del Debbio

^{65}, A. de Roeck

^{66}, C. Diaconu

^{67}, M. Diehl

^{68}, E. Dimovasili

^{69}, M. Dittmar

^{70}, I. M. Dremin

^{71}, K. Eggert

^{72}, R. Engel

^{73}, V. Eremin

^{74}, S. Erhan

^{75}, C. Ewerz

^{76}, L. Fano

^{77}, J. Feltesse

^{78}, G. Ferrera

^{79}, F. Ferro

^{80}, R. Field

^{81}, S. Forte

^{82}, F. Garcia

^{83}, A. Geiser

^{84}, F. Gelis

^{85}, S. Giani

^{86}, S. Gieseke

^{87}, M. A. Gigg

^{88}, A. Glazov

^{89}, K. Golec-Biernat

^{90}, K. Goulianos

^{91}, J. Grebenyuk

^{92}, V. Greco

^{93}, D. Grellscheid

^{94}, G. Grindhammer

^{95}, M. Grothe

^{96}, A. Guffanti

^{97}, C. Gwenlan

^{98}, V. Halyo

^{99}, K. Hamilton

^{100}, F. Hautmann

^{101}, J. Heino

^{102}, G. Heinrich

^{103}, T. Hilden

^{104}, K. Hiller

^{105}, J. Hollar

^{106}, X. Janssen

^{107}, S. Joseph

^{108}, A. W. Jung

^{109}, H. Jung

^{110}, V. Juranek, J. Kaspar, O. Kepka, V. A. Khoze, Ch. Kiesling, M. Klasen, S. Klein, B. A. Kniehl, A. Knutsson, J. Kopal, G. Kramer, F. Krauss, V. Kundrat, K. Kurvinen, K. Kutak, L. Lonnblad, S. Lami, G. Latino, J. I. Latorre, O. Latunde-Dada, R. Lauhakangas, V. Lendermann, P. Lenzi, G. Li, A. Likhoded, A. Lipatov, E. Lippmaa, M. Lokajicek, M. Lo Vetere, F. Lucas Rodriguez, G. Luisoni, E. Lytken, K. Muller, M. Macri, G. Magazzu, A. Majhi, S. Majhi, P. Marage, L. Marti, A. D. Martin, M. Meucci, D. A. Milstead, S. Minutoli, A. Nischke, A. Moares, S. Moch, L. Motyka, T. Namsoo, P. Newman, H. Niewiadomski, C. Nockles, E. Noschis, G. Notarnicola, J. Nystrand, E. Oliveri, F. Oljemark, K. Osterberg, R. Orava, M. Oriunno, S. Osman, S. Ostapchenko, P. Palazzi, E. Pedreschi, A. V. Pereira, H. Perrey, J. Petajajarvi, T. Petersen, A. Piccione, T. Pierog, J. L. Pinfold, O. I. Piskounova, S. Platzer, M. Quinto, Z. Rurikova, E. Radermacher, V. Radescu, E. Radicioni, F. Ravotti, G. Rella, P. Richardson, E. Robutti, G. Rodrigo, E. Rodrigues, M. Rogal, T. C. Rogers, J. Rojo, P. Roloff, L. Ropelewski, C. Rosemann, Ch. Royon, G. Ruggiero, A. Rummel, M. Ruspa, M. G. Ryskin, D. Salek, W. Slominski, H. Saarikko, A. Sabio Vera, T. Sako, G. P. Salam, V. A. Saleev, C. Sander, G. Sanguinetti, A. Santroni, Th. Schorner-Sadenius, R. Schicker, I. Schienbein, W. B. Schmidke, F. Schwennsen, A. Scribano, G. Sette, M. H. Seymour, A. Sherstnev, T. Sjostrand, W. Snoeys, G. Somogyi, L. Sonnenschein, G. Soyez, H. Spiesberger, F. Spinella, P. Squillacioti, A. M. Stasto, A. Starodumov, H. Stenzel, Ph. Stephens, A. Ster, D. Stocco, M. Strikman, C. Taylor, T. Teubner, R. S. Thorne, Z. Trocsanyi, M. Treccani, D. Treleani, L. Trentadue, A. Trummal, J. Tully, W. K. Tung, M. Turcato, N. Turini, M. Ubiali, A. Valkarova, A. van Hameren, P. Van Mechelen, J. A. M. Vermaseren, A. Vogt, B. F. L. Ward, G. Watt, B. R. Webber, Ch. Weiss, Ch. White, J. Whitmore, R. Wolf, J. Wu, A. Yagues-Molina, S. A. Yost, G. Zanderighi, N. Zotov, M. zur Nedden

**Affiliations:**

^{1}DESY, U. Antwerp,

^{2}CERN, U. Antwerp,

^{3}DESY, U. Antwerp,

^{4}DESY, U. Antwerp,

^{5}DESY, U. Antwerp,

^{6}DESY, U. Antwerp,

^{7}DESY, U. Antwerp,

^{8}DESY, U. Antwerp,

^{9}DESY, U. Antwerp,

^{10}DESY, U. Antwerp,

^{11}DESY, U. Antwerp,

^{12}DESY, U. Antwerp,

^{13}DESY, U. Antwerp,

^{14}DESY, U. Antwerp,

^{15}DESY, U. Antwerp,

^{16}DESY, U. Antwerp,

^{17}DESY, U. Antwerp,

^{18}DESY, U. Antwerp,

^{19}DESY, U. Antwerp,

^{20}DESY, U. Antwerp,

^{21}DESY, U. Antwerp,

^{22}DESY, U. Antwerp,

^{23}DESY, U. Antwerp,

^{24}DESY, U. Antwerp,

^{25}DESY, U. Antwerp,

^{26}DESY, U. Antwerp,

^{27}DESY, U. Antwerp,

^{28}DESY, U. Antwerp,

^{29}DESY, U. Antwerp,

^{30}DESY, U. Antwerp,

^{31}DESY, U. Antwerp,

^{32}DESY, U. Antwerp,

^{33}DESY, U. Antwerp,

^{34}DESY, U. Antwerp,

^{35}DESY, U. Antwerp,

^{36}DESY, U. Antwerp,

^{37}DESY, U. Antwerp,

^{38}DESY, U. Antwerp,

^{39}DESY, U. Antwerp,

^{40}DESY, U. Antwerp,

^{41}DESY, U. Antwerp,

^{42}DESY, U. Antwerp,

^{43}DESY, U. Antwerp,

^{44}DESY, U. Antwerp,

^{45}DESY, U. Antwerp,

^{46}DESY, U. Antwerp,

^{47}DESY, U. Antwerp,

^{48}DESY, U. Antwerp,

^{49}DESY, U. Antwerp,

^{50}DESY, U. Antwerp,

^{51}DESY, U. Antwerp,

^{52}DESY, U. Antwerp,

^{53}DESY, U. Antwerp,

^{54}DESY, U. Antwerp,

^{55}DESY, U. Antwerp,

^{56}DESY, U. Antwerp,

^{57}DESY, U. Antwerp,

^{58}DESY, U. Antwerp,

^{59}DESY, U. Antwerp,

^{60}DESY, U. Antwerp,

^{61}DESY, U. Antwerp,

^{62}DESY, U. Antwerp,

^{63}DESY, U. Antwerp,

^{64}DESY, U. Antwerp,

^{65}DESY, U. Antwerp,

^{66}DESY, U. Antwerp,

^{67}DESY, U. Antwerp,

^{68}DESY, U. Antwerp,

^{69}DESY, U. Antwerp,

^{70}DESY, U. Antwerp,

^{71}DESY, U. Antwerp,

^{72}DESY, U. Antwerp,

^{73}DESY, U. Antwerp,

^{74}DESY, U. Antwerp,

^{75}DESY, U. Antwerp,

^{76}DESY, U. Antwerp,

^{77}DESY, U. Antwerp,

^{78}DESY, U. Antwerp,

^{79}DESY, U. Antwerp,

^{80}DESY, U. Antwerp,

^{81}DESY, U. Antwerp,

^{82}DESY, U. Antwerp,

^{83}DESY, U. Antwerp,

^{84}DESY, U. Antwerp,

^{85}DESY, U. Antwerp,

^{86}DESY, U. Antwerp,

^{87}DESY, U. Antwerp,

^{88}DESY, U. Antwerp,

^{89}DESY, U. Antwerp,

^{90}DESY, U. Antwerp,

^{91}DESY, U. Antwerp,

^{92}DESY, U. Antwerp,

^{93}DESY, U. Antwerp,

^{94}DESY, U. Antwerp,

^{95}DESY, U. Antwerp,

^{96}DESY, U. Antwerp,

^{97}DESY, U. Antwerp,

^{98}DESY, U. Antwerp,

^{99}DESY, U. Antwerp,

^{100}DESY, U. Antwerp,

^{101}DESY, U. Antwerp,

^{102}DESY, U. Antwerp,

^{103}DESY, U. Antwerp,

^{104}DESY, U. Antwerp,

^{105}DESY, U. Antwerp,

^{106}DESY, U. Antwerp,

^{107}DESY, U. Antwerp,

^{108}DESY, U. Antwerp,

^{109}DESY, U. Antwerp,

^{110}DESY, U. Antwerp

**Category:**High Energy Physics - Phenomenology

2nd workshop on the implications of HERA for LHC physics. Working groups: Parton Density Functions Multi-jet final states and energy flows Heavy quarks (charm and beauty) Diffraction Cosmic Rays Monte Carlos and Tools Read More

A new release of the Monte Carlo program Herwig++ (version 2.3) is now available. This version includes a number of improvements including: the extension of the program to lepton-hadron collisions; the inclusion of several processes accurate at next-to-leading order in the POsitive Weight Hardest Emission Generator (POWHEG) scheme; the inclusion of three-body decays and finite-width effects in Beyond the Standard Model (BSM) physics processes; a new procedure for reconstructing the kinematics of the parton shower based on the colour structure of the hard scattering process; a new model for baryon decays including excited baryon multiplets; the addition of a soft component to the multiple scattering model of the underlying event; new matrix elements for Deep Inelastic Scattering (DIS) and e+e- processes. Read More

Herwig++ is the successor of the event generator HERWIG. In its present version 2.2. Read More

The positive weight next-to-leading-order (NLO) matching scheme (POWHEG) is applied to Drell-Yan vector boson production in the Herwig++ Monte Carlo event generator. This approach consistently combines the NLO calculation and parton shower simulation, without the production of negative weight events. The simulation includes a full implementation of the truncated shower required to correctly describe soft emissions in an angular-ordered parton shower, for the first time. Read More

A new release of the Monte Carlo program Herwig++ (version 2.2) is now available. This version includes a number of improvements including: matrix elements for the production of an electroweak gauge boson, W and Z, in association with a jet; several new processes for Higgs production in association with an electroweak gauge boson; and the matrix element correction for QCD radiation in Higgs production via gluon fusion. Read More

In this paper we describe Herwig++ version 2.3, a general-purpose Monte Carlo event generator for the simulation of hard lepton-lepton, lepton-hadron and hadron-hadron collisions. A number of important hard scattering processes are available, together with an interface via the Les Houches Accord to specialized matrix element generators for additional processes. Read More

A new release of the Monte Carlo program Herwig++ (version 2.1) is now available. This version includes a number of significant improvements including: an eikonal multiple parton-parton scattering model of the underlying event; the inclusion of Beyond the Standard Model physics; and a new hadronic decay model tuned to LEP data. Read More

In this paper we describe a theoretical framework and algorithms for implementing QCD corrections to top quark decays in the Herwig++ event generator. The dominant corrections, due to soft and collinear emissions, are summed to all orders through the coherent parton branching formalism. In addition, unenhanced first-order matrix-element corrections are included to account for large transverse momentum emissions. Read More

A new release of the Monte Carlo program Herwig++ (version 2.0) is now available. This is the first version of the program which can be used for hadron-hadron physics and includes the full simulation of both initial- and final-state QCD radiation. Read More

In this paper we describe a program (SOPHTY) implementing QED corrections to decays in the HERWIG++ event generator. In order to resum the dominant soft emissions to all orders, the program is based on the YFS formalism. In addition, universal large collinear logarithms are included and the approach can be systematically extended to incorporate exact, process specific, higher order corrections to decays. Read More

This document reviews the general approach to correcting the process e+e-->X->ffbar for radiative effects, where X represents an exchanged gauge boson arising from some new physics. The validity of current methods is discussed in the context of the differential cross section. To this end the universality of the dominant QED radiative corrections to such a process is discussed and an attempt is made to quantify it. Read More

**Category:**High Energy Physics - Phenomenology

This document contains notes from the graduate lecture course, "Symmetries in QFT" given by J.F.Wheater at Oxford University in Hilary term. Read More