K. Dow - Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA and the Bates Research and Engineering Center, Middleton MA

K. Dow
Are you K. Dow?

Claim your profile, edit publications, add additional information:

Contact Details

Name
K. Dow
Affiliation
Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA and the Bates Research and Engineering Center, Middleton MA
City
Middleton
Country
United States

Pubs By Year

External Links

Pub Categories

 
Nuclear Experiment (15)
 
Physics - Instrumentation and Detectors (4)
 
Nuclear Theory (1)
 
Physics - Accelerator Physics (1)
 
High Energy Physics - Experiment (1)

Publications Authored By K. Dow

2014Sep
Authors: Qweak Collaboration, T. Allison, M. Anderson, D. Androic, D. S. Armstrong, A. Asaturyan, T. D. Averett, R. Averill, J. Balewski, J. Beaufait, R. S. Beminiwattha, J. Benesch, F. Benmokhtar, J. Bessuille, J. Birchall, E. Bonnell, J. Bowman, P. Brindza, D. B. Brown, R. D. Carlini, G. D. Cates, B. Cavness, G. Clark, J. C. Cornejo, S. Covrig Dusa, M. M. Dalton, C. A. Davis, D. C. Dean, W. Deconinck, J. Diefenbach, K. Dow, J. F. Dowd, J. A. Dunne, D. Dutta, W. S. Duvall, J. R. Echols, M. Elaasar, W. R. Falk, K. D. Finelli, J. M. Finn, D. Gaskell, M. T. W. Gericke, J. Grames, V. M. Gray, K. Grimm, F. Guo, J. Hansknecht, D. J. Harrison, E. Henderson, J. R. Hoskins, E. Ihloff, K. Johnston, D. Jones, M. Jones, R. Jones, M. Kargiantoulakis, J. Kelsey, N. Khan, P. M. King, E. Korkmaz, S. Kowalski, A. Kubera, J. Leacock, J. P. Leckey, A. R. Lee, J. H. Lee, L. Lee, Y. Liang, S. MacEwan, D. Mack, J. A. Magee, R. Mahurin, J. Mammei, J. W. Martin, A. McCreary, M. H. McDonald, M. J. McHugh, P. Medeiros, D. Meekins, J. Mei, R. Michaels, A. Micherdzinska, A. Mkrtchyan, H. Mkrtchyan, N. Morgan, J. Musson, K. E. Mesick, A. Narayan, L. Z. Ndukum, V. Nelyubin, Nuruzzaman, W. T. H. van Oers, A. K. Opper, S. A. Page, J. Pan, K. D. Paschke, S. K. Phillips, M. L. Pitt, M. Poelker, J. F. Rajotte, W. D. Ramsay, W. R. Roberts, J. Roche, P. W. Rose, B. Sawatzky, T. Seva, M. H. Shabestari, R. Silwal, N. Simicevic, G. R. Smith, S. Sobczynski, P. Solvignon, D. T. Spayde, B. Stokes, D. W. Storey, A. Subedi, R. Subedi, R. Suleiman, V. Tadevosyan, W. A. Tobias, V. Tvaskis, E. Urban, B. Waidyawansa, P. Wang, S. P. Wells, S. A. Wood, S. Yang, S. Zhamkochyan, R. B. Zielinski

The Jefferson Lab Q_weak experiment determined the weak charge of the proton by measuring the parity-violating elastic scattering asymmetry of longitudinally polarized electrons from an unpolarized liquid hydrogen target at small momentum transfer. A custom apparatus was designed for this experiment to meet the technical challenges presented by the smallest and most precise ${\vec{e}}$p asymmetry ever measured. Technical milestones were achieved at Jefferson Lab in target power, beam current, beam helicity reversal rate, polarimetry, detected rates, and control of helicity-correlated beam properties. Read More

The OLYMPUS experiment was designed to measure the ratio between the positron-proton and electron-proton elastic scattering cross sections, with the goal of determining the contribution of two-photon exchange to the elastic cross section. Two-photon exchange might resolve the discrepancy between measurements of the proton form factor ratio, $\mu_p G^p_E/G^p_M$, made using polarization techniques and those made in unpolarized experiments. OLYMPUS operated on the DORIS storage ring at DESY, alternating between 2. Read More

2013Jul
Affiliations: 1Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA and the Bates Research and Engineering Center, Middleton MA, 2Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA and the Bates Research and Engineering Center, Middleton MA, 3Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA and the Bates Research and Engineering Center, Middleton MA, 4Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA and the Bates Research and Engineering Center, Middleton MA, 5Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA and the Bates Research and Engineering Center, Middleton MA, 6Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA and the Bates Research and Engineering Center, Middleton MA, 7Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA and the Bates Research and Engineering Center, Middleton MA, 8Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA and the Bates Research and Engineering Center, Middleton MA, 9Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA and the Bates Research and Engineering Center, Middleton MA, 10Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA and the Bates Research and Engineering Center, Middleton MA, 11Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA and the Bates Research and Engineering Center, Middleton MA, 12Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA and the Bates Research and Engineering Center, Middleton MA, 13Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA and the Bates Research and Engineering Center, Middleton MA, 14Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA and the Bates Research and Engineering Center, Middleton MA, 15Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA and the Bates Research and Engineering Center, Middleton MA, 16Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA and the Bates Research and Engineering Center, Middleton MA, 17Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA and the Bates Research and Engineering Center, Middleton MA, 18Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA and the Bates Research and Engineering Center, Middleton MA, 19Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA and the Bates Research and Engineering Center, Middleton MA, 20Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA and the Bates Research and Engineering Center, Middleton MA, 21Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA and the Bates Research and Engineering Center, Middleton MA, 22Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA and the Bates Research and Engineering Center, Middleton MA, 23Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA, USA and the Bates Research and Engineering Center, Middleton MA, 24Jefferson Lab, Newport News, VA USA, 25Jefferson Lab, Newport News, VA USA, 26Jefferson Lab, Newport News, VA USA, 27Jefferson Lab, Newport News, VA USA, 28Jefferson Lab, Newport News, VA USA, 29Jefferson Lab, Newport News, VA USA, 30Jefferson Lab, Newport News, VA USA, 31Jefferson Lab, Newport News, VA USA, 32Jefferson Lab, Newport News, VA USA, 33Jefferson Lab, Newport News, VA USA, 34Jefferson Lab, Newport News, VA USA, 35Jefferson Lab, Newport News, VA USA, 36Jefferson Lab, Newport News, VA USA, 37Jefferson Lab, Newport News, VA USA, 38Jefferson Lab, Newport News, VA USA, 39Jefferson Lab, Newport News, VA USA, 40Jefferson Lab, Newport News, VA USA, 41Jefferson Lab, Newport News, VA USA, 42Jefferson Lab, Newport News, VA USA, 43Jefferson Lab, Newport News, VA USA, 44Jefferson Lab, Newport News, VA USA, 45Jefferson Lab, Newport News, VA USA, 46Physics Dept. U.C. Berkeley, Berkeley, CA USA, 47Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD USA, 48Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD USA, 49Physics Department, Arizona State University, Tempe, 50Physics Department, Arizona State University, Tempe, 51Los Alamos National Laboratory, Los Alamos NM USA, 52Physics Dept., Hampton University, Hampton, VA and Jefferson Lab, Newport News, VA USA, 53Physics Dept., Hampton University, Hampton, VA and Jefferson Lab, Newport News, VA USA, 54Physics Dept., Hampton University, Hampton, VA and Jefferson Lab, Newport News, VA USA, 55Physics Dept., Catholic University of America, Washington, DC USA, 56Physics Dept., Catholic University of America, Washington, DC USA, 57Physics Dept., Catholic University of America, Washington, DC USA, 58Temple University, Philadelphia PA USA, 59Temple University, Philadelphia PA USA, 60Temple University, Philadelphia PA USA, 61Temple University, Philadelphia PA USA, 62Temple University, Philadelphia PA USA, 63University Bonn, Bonn Germany, 64University Bonn, Bonn Germany, 65University Bonn, Bonn Germany, 66Physikalisches Institut Justus-Liebig-Universitt Giessen, Giessen Germany, 67Physikalisches Institut Justus-Liebig-Universitt Giessen, Giessen Germany

We give a short overview of the DarkLight detector concept which is designed to search for a heavy photon A' with a mass in the range 10 MeV/c^2 < m(A') < 90 MeV/c^2 and which decays to lepton pairs. We describe the intended operating environment, the Jefferson Laboratory free electon laser, and a way to extend DarkLight's reach using A' --> invisible decays. Read More

We propose a new precision measurement of parity-violating electron scattering on the proton at very low Q^2 and forward angles to challenge predictions of the Standard Model and search for new physics. A unique opportunity exists to carry out the first precision measurement of the proton's weak charge, $Q_W =1 - 4\sin^2\theta_W$. A 2200 hour measurement of the parity violating asymmetry in elastic ep scattering at Q^2=0. Read More

The roles played by mesons in the electromagnetic form factors of the nucleon are explored using as a basis a model containing vector mesons with coupling to the continuum together with the asymptotic $Q^2$ behavior of perturbative QCD. Specifically, the vector dominance model (GKex) developed by Lomon is employed, as it is known to be very successful in representing the existing high-quality data published to date. An analysis is made of the experimental uncertainties present when the differences between the GKex model and the data are expanded in orthonormal basis functions. Read More

2008Mar
Affiliations: 1corresponding author, 2corresponding author, 3corresponding author, 4corresponding author, 5corresponding author, 6corresponding author, 7corresponding author, 8corresponding author, 9corresponding author, 10corresponding author, 11corresponding author, 12corresponding author, 13corresponding author, 14corresponding author, 15corresponding author, 16corresponding author, 17corresponding author, 18corresponding author, 19corresponding author, 20corresponding author, 21corresponding author, 22corresponding author, 23corresponding author

We report new measurements of the neutron charge form factor at low momentum transfer using quasielastic electrodisintegration of the deuteron. Longitudinally polarized electrons at an energy of 850 MeV were scattered from an isotopically pure, highly polarized deuterium gas target. The scattered electrons and coincident neutrons were measured by the Bates Large Acceptance Spectrometer Toroid (BLAST) detector. Read More

We report the first precision measurement of the proton electric to magnetic form factor ratio from spin-dependent elastic scattering of longitudinally polarized electrons from a polarized hydrogen internal gas target. The measurement was performed at the MIT-Bates South Hall Ring over a range of four-momentum transfer squared $Q^2$ from 0.15 to 0. Read More

The mean square polarizability radii of the proton have been measured for the first time in a virtual Compton scattering experiment performed at the MIT-Bates out-of-plane scattering facility. Response functions and polarizabilities obtained from a dispersion analysis of the data at Q2=0.06 GeV2/c2 are in agreement with O(p3) heavy baryon chiral perturbation theory. Read More

2002Dec
Affiliations: 1OOPS Collaboration, 2OOPS Collaboration, 3OOPS Collaboration, 4OOPS Collaboration, 5OOPS Collaboration, 6OOPS Collaboration, 7OOPS Collaboration, 8OOPS Collaboration, 9OOPS Collaboration, 10OOPS Collaboration, 11OOPS Collaboration, 12OOPS Collaboration, 13OOPS Collaboration, 14OOPS Collaboration, 15OOPS Collaboration, 16OOPS Collaboration, 17OOPS Collaboration, 18OOPS Collaboration, 19OOPS Collaboration, 20OOPS Collaboration, 21OOPS Collaboration, 22OOPS Collaboration, 23OOPS Collaboration, 24OOPS Collaboration, 25OOPS Collaboration, 26OOPS Collaboration, 27OOPS Collaboration, 28OOPS Collaboration, 29OOPS Collaboration, 30OOPS Collaboration, 31OOPS Collaboration, 32OOPS Collaboration, 33OOPS Collaboration, 34OOPS Collaboration, 35OOPS Collaboration, 36OOPS Collaboration, 37OOPS Collaboration, 38OOPS Collaboration, 39OOPS Collaboration, 40OOPS Collaboration, 41OOPS Collaboration, 42OOPS Collaboration, 43OOPS Collaboration, 44OOPS Collaboration, 45OOPS Collaboration, 46OOPS Collaboration, 47OOPS Collaboration

Quadrupole amplitudes in the $\gamma^{*}N\to\Delta$ transition are associated with the issue of nucleon deformation. A search for these small amplitudes has been the focus of a series of measurements undertaken at Bates/MIT by the OOPS collaboration. We report on results from H$(e,e^\prime p)\pi^0$ data obtained at $Q^2= 0. Read More

The first measurements of the induced proton polarization, P_n, for the 12C (e,e'\vec{p}) reaction are reported. The experiment was performed at quasifree kinematics for energy and momentum transfer (\omega,q) \approx (294 MeV, 756 MeV/c) and sampled a recoil momentum range of 0-250 MeV/c. The induced polarization arises from final-state interactions and for these kinematics is dominated by the real part of the spin-orbit optical potential. Read More

The coincidence cross-section and the interference structure function, R_LT, were measured for the 12C(e,e'p) 11B reaction at quasielastic kinematics and central momentum transfer of q=400 MeV/c. The measurement was at an opening angle of theta_pq=11 degrees, covering a range in missing energy of E_m = 0 to 65 MeV. The R_LT structure function is found to be consistent with zero for E_m > 50 MeV, confirming an earlier study which indicated that R_L vanishes in this region. Read More

We report the first measurement of the parity-violating asymmetry in elastic electron scattering from the proton. The asymmetry depends on the neutral weak magnetic form factor of the proton which contains new information on the contribution of strange quark-antiquark pairs to the magnetic moment of the proton. We obtain the value $G_M^Z= 0. Read More

Recently, there has been considerable theoretical interest in determining strange quark contributions to hadronic matrix elements. Such matrix elements can be accessed through the nucleon's neutral weak form factors as determined in parity violating electron scattering. The SAMPLE experiment will measure the strange magnetic form factor $G_M^s$ at low momentum transfer. Read More