Justin Khoury - University Penn

Justin Khoury
Are you Justin Khoury?

Claim your profile, edit publications, add additional information:

Contact Details

Name
Justin Khoury
Affiliation
University Penn
City
Philadelphia
Country
United States

Pubs By Year

Pub Categories

 
High Energy Physics - Theory (42)
 
Cosmology and Nongalactic Astrophysics (40)
 
General Relativity and Quantum Cosmology (29)
 
High Energy Physics - Phenomenology (12)
 
Physics - Atomic Physics (2)
 
Physics - Other (1)
 
Astrophysics of Galaxies (1)

Publications Authored By Justin Khoury

Gravity is the weakest fundamental interaction and the only one that has not been measured at the particle level. Traditional experimental methods, from astronomical observations to torsion balances, use macroscopic masses to both source and probe gravitational fields. Matter wave interferometers have used neutrons, atoms and molecular clusters as microscopic test particles, but initially probed the field sourced by the entire earth. Read More

Cosmic acceleration is widely believed to require either a source of negative pressure (i.e., dark energy), or a modification of gravity, which necessarily implies new degrees of freedom beyond those of Einstein gravity. Read More

It has recently been proposed, by assuming that dark matter is a superfluid, that MOND-like effects can be achieved on small scales whilst preserving the success of $\Lambda$CDM on large scales. Here we aim to provide the first set of spherical models of galaxy clusters in the context of superfluid dark matter. We first outline the theoretical structure of the superfluid core and the surrounding "normal phase" dark halo of quasi-particles in thermal equlibrium. Read More

We investigate the symmetry structure of inflation in 2+1 dimensions. In particular, we show that the asymptotic symmetries of three-dimensional de Sitter space are in one-to-one correspondence with cosmological adiabatic modes for the curvature perturbation. In 2+1 dimensions, the asymptotic symmetry algebra is infinite-dimensional, given by two copies of the Virasoro algebra, and can be traced to the conformal symmetries of the two-dimensional spatial slices of de Sitter. Read More

In this talk I summarize a novel framework that unifies the stunning success of MOND on galactic scales with the triumph of the $\Lambda$CDM model on cosmological scales. This is achieved through the rich and well-studied physics of superfluidity. The dark matter and MOND components have a common origin, representing different phases of a single underlying substance. Read More

Atom interferometry experiments are searching for evidence of chameleon scalar fields with ever-increasing precision. As experiments become more precise, so too must theoretical predictions. Previous work has made numerous approximations to simplify the calculation, which in general requires solving a 3-dimensional nonlinear partial differential equation (PDE). Read More

In recent work we proposed a novel theory of dark matter (DM) superfluidity that matches the successes of the LambdaCDM model on cosmological scales while simultaneously reproducing MOdified Newtonian Dynamics (MOND) phenomenology on galactic scales. The agents responsible for mediating the MONDian force law are superfluid phonons that couple to ordinary (baryonic) matter. In this paper we propose an alternative way for the MOND phenomenon to emerge from DM superfluidity. Read More

In this talk we present a novel framework that unifies the stunning success of MOND on galactic scales with the triumph of the LambdaCDM model on cosmological scales. This is achieved through the rich and well-studied physics of superfluidity. The dark matter and MOND components have a common origin, representing different phases of a single underlying substance. Read More

We propose a novel theory of dark matter (DM) superfluidity that matches the successes of the LambdaCDM model on cosmological scales while simultaneously reproducing the MOdified Newtonian Dynamics (MOND) phenomenology on galactic scales. The DM and MOND components have a common origin, representing different phases of a single underlying substance. DM consists of axion-like particles with mass of order eV and strong self-interactions. Read More

We propose a unified framework that reconciles the stunning success of MOND on galactic scales with the triumph of the LambdaCDM model on cosmological scales. This is achieved through the physics of superfluidity. Dark matter consists of self-interacting axion-like particles that thermalize and condense to form a superfluid in galaxies, with ~mK critical temperature. Read More

If dark energy --- which drives the accelerated expansion of the universe --- consists of a light scalar field, it might be detectable as a "fifth force" between normal-matter objects, in potential conflict with precision tests of gravity. Chameleon fields and other theories with screening mechanisms, however, can evade these tests by suppressing the forces in regions of high density, such as the laboratory. Using a cesium matter-wave interferometer near a spherical mass in an ultra-high vacuum chamber, we reduce the screening mechanism by probing the field with individual atoms rather than bulk matter. Read More

The cosmology of brane induced gravity in six infinite dimensions is investigated. It is shown that a brane with Friedmann-Robertson-Walker symmetries necessarily acts as a source of cylindrically symmetric gravitational waves, so called Einstein-Rosen waves. Their existence essentially distinguishes this model from its codimension-one counterpart and necessitates solving the nonlinear system of bulk and brane-matching equations. Read More

We derive novel identities satisfied by inflationary correlation functions in the limit where two external momenta are taken to be small. We derive these statements in two ways: using background-wave arguments and as Ward identities following from the fixed-time path integral. Interestingly, these identities allow us to constrain some of the O(q^2) components of the soft limit, in contrast to their single-soft analogues. Read More

We propose an alternative to particle dark matter that borrows ingredients of MOdified Newtonian Dynamics (MOND) while adding new key components. The first new feature is a dark matter fluid, in the form of a scalar field with small equation of state and sound speed. This component is critical in reproducing the success of cold dark matter for the expansion history and the growth of linear perturbations, but does not cluster significantly on non-linear scales. Read More

After a decade and a half of research motivated by the accelerating universe, theory and experiment have a reached a certain level of maturity. The development of theoretical models beyond \Lambda, or smooth dark energy, often called modified gravity, has led to broader insights into a path forward, and a host of observational and experimental tests have been developed. In this review we present the current state of the field and describe a framework for anticipating developments in the next decade. Read More

We study the effect of the initial state on the consistency conditions for adiabatic perturbations. In order to be consistent with the constraints of General Relativity, the initial state must be diffeomorphism invariant. As a result, we show that initial wavefunctional/density matrix has to satisfy a Slavnov-Taylor identity similar to that of the action. Read More

We describe a positive energy theorem for Einstein gravity coupled to scalar fields with first-derivative interactions, so-called P(X,phi) theories. We offer two independent derivations of this result. The first method introduces an auxiliary field to map the theory to a lagrangian describing two canonical scalar fields, where one can apply a positive energy result of Boucher and Townsend. Read More

Traditional derivations of general relativity from the graviton degrees of freedom assume space-time Lorentz covariance as an axiom. In this essay, we survey recent evidence that general relativity is the unique spatially-covariant effective field theory of the transverse, traceless graviton degrees of freedom. The Lorentz covariance of general relativity, having not been assumed in our analysis, is thus plausibly interpreted as an accidental or emergent symmetry of the gravitational sector. Read More

We study a new screening mechanism which is present in Dirac-Born-Infeld (DBI)-like theories. A scalar field with a DBI-like Lagrangian is minimally coupled to matter. In the vicinity of sufficiently dense sources, non-linearities in the scalar dominate and result in an approximately constant acceleration on a test particle, thereby suppressing the scalar force relative to gravity. Read More

Single-field perturbations satisfy an infinite number of consistency relations constraining the squeezed limit of correlation functions at each order in the soft momentum. These can be understood as Ward identities for an infinite set of residual global symmetries, or equivalently as Slavnov-Taylor identities for spatial diffeomorphisms. In this paper, we perform a number of novel, non-trivial checks of the identities in the context of slow-roll single field inflationary models with arbitrary sound speed. Read More

In these Lectures, I review various extensions of the Lambda-Cold Dark Matter model, characterized by additional light degrees of freedom in the dark sector. In order to reproduce the successful phenomenology of GR in the solar system, these fields must effectively decouple from matter on solar system/laboratory scales. This is achieved through screening mechanisms, which rely on the interplay between self-interactions and coupling to matter to suppress deviations from standard gravity. Read More

We construct a theory which admits a time-dependent solution smoothly interpolating between a null energy condition (NEC)-satisfying phase at early times and a NEC-violating phase at late times. We first review earlier attempts to violate the NEC and an argument of Rubakov, presented in 1305.2614, which forbids the existence of such interpolating solutions in a single-field dilation-invariant theory. Read More

The discovery of cosmic acceleration has stimulated theorists to consider dark energy or modifications to Einstein's General Relativity as possible explanations. The last decade has seen advances in theories that go beyond smooth dark energy -- modified gravity and interactions of dark energy. While the theoretical terrain is being actively explored, the generic presence of fifth forces and dark sector couplings suggests a set of distinct observational signatures. Read More

Correlation functions of adiabatic modes in cosmology are constrained by an infinite number of consistency relations, which relate N+1-point correlation functions with a soft-momentum scalar or tensor mode to a symmetry transformation on N-point correlation functions of hard-momentum modes. They constrain, at each order n, the q^n behavior of the soft limits. In this paper we show that all consistency relations derive from a single, master identity, which follows from the Slavnov-Taylor identity for spatial diffeomorphisms. Read More

Chameleons are light scalar fields with remarkable properties. Through the interplay of self-interactions and coupling to matter, chameleon particles have a mass that depends on the ambient matter density. The manifestation of the fifth force mediated by chameleons therefore depends sensitively on their environment, which makes for a rich phenomenology. Read More

We provide evidence that general relativity is the unique spatially covariant effective field theory of the transverse, traceless graviton degrees of freedom. The Lorentz covariance of general relativity, having not been assumed in our analysis, is thus plausibly interpreted as an accidental or emergent symmetry of the gravitational sector. Read More

We show that the correlation functions of any single-field cosmological model with constant growing-modes are constrained by an infinite number of novel consistency relations, which relate (N+1)-point correlation functions with a soft-momentum scalar or tensor mode to a symmetry transformation on N-point correlation functions of hard-momentum modes. We derive these consistency relations from Ward identities for an infinite tower of non-linearly realized global symmetries governing scalar and tensor perturbations. These symmetries can be labeled by an integer n. Read More

We attempt to incorporate inflation into a string theory realization of the chameleon mechanism. Previously, it was found that the volume modulus, stabilized by the supersymmetric potential used by Kachru, Kallosh, Linde and Trivedi (KKLT) and with the right choice of parameters, can generically work as a chameleon. In this paper, we ask whether inflation can be realized in the same model. Read More

We show that the DBI conformal galileons, derived from the world-volume theory of a 3-brane moving in an AdS bulk, admit a background, stable under quantum corrections, which violates the Null Energy Condition (NEC). The perturbations around this background are stable and propagate subluminally. Unlike other known examples of NEC violation, such as ghost condensation and conformal galileons, this theory also admits a stable, Poincare-invariant vacuum, with a Lorentz-invariant S-matrix satisfying standard analyticity conditions. Read More

We systematically derive the consistency relations associated to the non-linearly realized symmetries of theories with spontaneously broken conformal symmetry but with a linearly-realized de Sitter subalgebra. These identities relate (N+1)-point correlation functions with a soft external Goldstone to N-point functions. These relations have direct implications for the recently proposed conformal mechanism for generating density perturbations in the early universe. Read More

The pseudo-conformal universe is an alternative to inflation in which the early universe is described by a conformal field theory on approximately flat space-time. The fields develop time-dependent expectation values, spontaneously breaking the conformal symmetries to a de Sitter subalgebra, and fields of conformal weight zero acquire a scale invariant spectrum of perturbations. In this paper, we show that the pseudo-conformal scenario can be naturally realized within theories that would ordinarily be of interest for DBI inflation, such as the world-volume theory of a probe brane in an AdS bulk space-time. Read More

We put forward an improved version of the Galilean Genesis model that addresses the problem of superluminality. We demote the full conformal group to Poincare symmetry plus dilations, supplemented with approximate galilean shift invariance in the UV and at small field values. In this way fluctuations around the NEC-violating cosmological background are made substantially subluminal, and superluminality cannot be reached by any small change of the solution, in contrast with the original model. Read More

Coupling the galileons to a curved background has been a tradeoff between maintaining second order equations of motion, maintaining the galilean shift symmetries, and allowing the background metric to be dynamical. We propose a construction which can achieve all three for a novel class of galilean invariant models, by coupling a scalar with the galilean symmetry to a massive graviton. This generalizes the brane construction for galileons, by adding to the brane a dynamical metric, (non-universally) interacting with the galileon field. Read More

The chameleon, or generalizations thereof, is a light scalar that couple to matter with gravitational strength, but whose manifestation depends on the ambient matter density. A key feature is that the screening mechanism suppressing its effects in high-density environments is determined by the local scalar field value. Under very general conditions, we prove two theorems limiting its cosmological impact: i) the Compton wavelength of such a scalar can be at most Mpc at present cosmic density, which restricts its impact to non-linear scales; ii) the conformal factor relating Einstein- and Jordan-frame scale factors is essentially constant over the last Hubble time, which precludes the possibility of self-acceleration. Read More

Chameleon scalar fields are dark energy candidates which suppress fifth forces in high density regions of the universe by becoming massive. We consider chameleon models as effective field theories and estimate quantum corrections to their potentials. Requiring that quantum corrections be small, so as to allow reliable predictions of fifth forces, leads to an upper bound $m < 0. Read More

We remark on the existence of non-linearly realized conformal symmetries for scalar adiabatic perturbations in cosmology. These conformal symmetries are present for any cosmological background, beyond any slow-roll or quasi-de Sitter approximation. The dilatation transformation shifts the curvature perturbation by a constant, and corresponds to the well-known symmetry under spatial rescaling. Read More

A formalism is presented for computing the higher-order corrections to the worldvolume action of co-dimension one solitons. By modifying its potential, an explicit "kink" solution of a real scalar field in AdS spacetime is found. The formalism is then applied to explicitly compute the kink worldvolume action to quadratic order in two expansion parameters--associated with the hypersurface fluctuation length and the radius of AdS spacetime respectively. Read More

The pseudo-conformal scenario is an alternative to inflation in which the early universe is described by an approximate conformal field theory on flat, Minkowski space. Some fields acquire a time-dependent expectation value, which breaks the flat space so(4,2) conformal algebra to its so(4,1) de Sitter subalgebra. As a result, weight-0 fields acquire a scale invariant spectrum of perturbations. Read More

We offer predictions of symmetron modified gravity in the neighborhood of realistic dark matter halos. The predictions for the fifth force are obtained by solving the nonlinear symmetron equation of motion in the spherical NFW approximation. In addition, we compare the three major known screening mechanisms: Vainshtein, Chameleon, and Symmetron around such dark matter sources, emphasizing the significant differences between them and highlighting observational tests which exploit these differences. Read More

General relativity is a covariant theory of two transverse, traceless graviton degrees of freedom. According to a theorem of Hojman, Kuchar, and Teitelboim, modifications of general relativity must either introduce new degrees of freedom or violate the principle of general covariance. In this paper, we explore modifications of general relativity that retain the same number of gravitational degrees of freedom, and therefore explicitly break general covariance. Read More

For a single scalar field with unit sound speed minimally coupled to Einstein gravity, there are exactly three distinct cosmological solutions which produce a scale invariant spectrum of curvature perturbations in a dynamical attractor background, assuming vacuum initial conditions: slow-roll inflation; a slowly contracting adiabatic ekpyrotic phase, described by a rapidly-varying equation of state; and an adiabatic ekpyrotic phase on a slowly expanding background. Of these three, only inflation remains weakly coupled over a wide range of modes, the other scenarios can produce at most 12 e-folds of scale invariant and gaussian modes. In this paper, we investigate how allowing the speed of sound of fluctuations to evolve in time affects this classification. Read More

The symmetron is a scalar field associated with the dark sector whose coupling to matter depends on the ambient matter density. The symmetron is decoupled and screened in regions of high density, thereby satisfying local constraints from tests of gravity, but couples with gravitational strength in regions of low density, such as the cosmos. In this paper we derive the cosmological expansion history in the presence of a symmetron field, tracking the evolution through the inflationary, radiation- and matter-dominated epochs, using a combination of analytical approximations and numerical integration. Read More

We present a novel theory of the very early universe which addresses the traditional horizon and flatness problems of big bang cosmology and predicts a scale invariant spectrum of perturbations. Unlike inflation, this scenario requires no exponential accelerated expansion of space-time. Instead, the early universe is described by a conformal field theory minimally coupled to gravity. Read More

We consider a cosmological scenario in which a scale-invariant spectrum of curvature perturbations is generated by a rapidly-evolving equation of state on a slowly expanding background. This scenario generalizes the "adiabatic ekpyrotic" mechanism proposed recently in arXiv:0910.2230. Read More

Galileon theories are of considerable interest since they allow for stable violations of the null energy condition. Since such violations could have occurred during a high-energy regime in the history of our universe, we are motivated to study supersymmetric extensions of these theories. This is carried out in this paper, where we construct generic classes of N=1 supersymmetric Galileon Lagrangians. Read More

We study a flat brane solution in an effective 5D action for cascading gravity and propose a mechanism to screen extrinsic curvature in the presence of a large tension on the brane. The screening mechanism leaves the bulk Riemann-flat, thus making it simpler to generalize large extra dimension dark energy models to higher codimensions. By studying an action with cubic interactions for the brane-bending scalar mode, we find that the perturbed action suffers from ghostlike instabilities for positive tension, whereas it can be made ghost-free for sufficiently small negative tension. Read More

Recently, we introduced an ekpyrotic model based on a single, canonical scalar field that generates nearly scale invariant curvature fluctuations through a purely "adiabatic mechanism" in which the background evolution is a dynamical attractor. Despite the starkly different physical mechanism for generating fluctuations, the two-point function is identical to inflation. In this paper, we further explore this concept, focusing in particular on issues of non-gaussianity and quantum corrections. Read More

Chameleons are scalar fields that couple directly to ordinary matter with gravitational strength, but which nevertheless evade the stringent constraints on tests of gravity because of properties they acquire in the presence of high ambient matter density. Chameleon theories were originally constructed in a bottom-up, phenomenological fashion, with potentials and matter couplings designed to hide the scalar from experiments. In this paper, we attempt to embed the chameleon scenario within string compactifications, thus UV completing the scenario. Read More

We show how to construct supersymmetric actions for higher-derivative scalar field theories of the form P(X,phi), within the context of d=4, N=1 supersymmetry. This construction is of general use, and is applied to write supersymmetric versions of the Dirac-Born-Infeld action. Our principal application of this formalism is to construct the supersymmetric extension of the ghost condensate. Read More

We derive all single-field cosmologies with unit sound speed that generate scale invariant curvature perturbations on a dynamical attractor background. We identify three distinct phases: slow-roll inflation; a slowly contracting adiabatic ekpyrotic phase, described by a rapidly-varying equation of state; and a novel adiabatic ekpyrotic phase on a slowly expanding background. All of these yield identical power spectra. Read More