# Jungpyo Lee

## Publications Authored By Jungpyo Lee

In this paper, a reduced model of quasilinear diffusion by a small Larmor radius approximation is derived to couple the Maxwell's equations and the Fokker-Planck equation self-consistently for ion cyclotron range of frequency waves in a tokamak. The reduced model ensures the important properties of the full model by Kennel-Engelmann diffusion, such as diffusion directions, wave polarizations, and H-theorem. The kinetic energy change (W-dot) is used to derive the reduced model diffusion coefficients for the fundamental damping and the second harmonic damping to the lowest order of the finite Larmor radius expansion. Read More

A highly elongated plasma is desirable in order to increase plasma pressure and energy confinement to maximize fusion power output. However, there is a limit to the maximum achievable elongation which is set by vertical instabilities driven by the $n=0$ MHD mode. This limit can be increased by optimizing several parameters characterizing the plasma and the wall. Read More

Tokamaks with up-down asymmetric poloidal cross-sections spontaneously rotate due to turbulent transport of momentum. In this work, we investigate the effect of the Shafranov shift on this intrinsic rotation, primarily by analyzing tokamaks with tilted elliptical flux surfaces. By expanding the Grad-Shafranov equation in the large aspect ratio limit we calculate the magnitude and direction of the Shafranov shift in tilted elliptical tokamaks. Read More

In this and the accompanying paper the problem of the maximally achievable elongation in a tokamak is investigated. The work represents an extension of many earlier studies, which were often focused on determining the elongation limits due to (1) natural elongation in a simple applied pure vertical field or (2) axisymmetric stability in the presence of a perfectly conducting wall. The extension investigated here includes the effect of the vertical stability feedback system which actually sets the maximum practical elongation limit in a real experiment. Read More

The analytic theory presented in Paper I is converted into a form convenient for numerical analysis. A fast and accurate code has been written using this numerical formulation. The results are presented by first defining a reference set of physical parameters based on experimental data from high performance discharges. Read More

Intrinsic toroidal rotation in a tokamak can be driven by turbulent momentum transport due to neoclassical flow effects breaking a symmetry of turbulence. In this paper we categorize the contributions due to neoclassical effects to the turbulent momentum transport, and evaluate each contribution using gyrokinetic simulations. We find that the relative importance of each contribution changes with collisionality. Read More

We present ECOM (Equilibrium solver via COnformal Mapping), a fast and accurate fixed boundary solver for toroidally axisymmetric magnetohydrodynamic equilibria with or without a toroidal flow. ECOM combines conformal mapping and Fourier and integral equation methods on the unit disk to achieve exponential convergence for the poloidal flux function as well as its first and second partial derivatives. As a consequence of its high order accuracy, for dense grids and tokamak-like elongations ECOM computes key quantities such as the safety factor and the magnetic shear with higher accuracy than the finite element based code CHEASE [H. Read More

The ion toroidal rotation in a tokamak consists of an $E\times B$ flow due to the radial electric field and a diamagnetic flow due to the radial pressure gradient. The turbulent pinch of toroidal angular momentum due to the Coriolis force studied in previous work is only applicable to the $E\times B$ flow. In this Letter, the momentum pinch for the rotation generated by the radial pressure gradient is calculated and is compared with the Coriolis pinch. Read More

The injection of lower hybrid waves for current drive into a tokamak affects the profile of intrinsic rotation. In this article, the momentum deposition by the lower hybrid wave on the electrons is studied. Due to the increase in the poloidal momentum of the wave as it propagates into the tokamak, the parallel momentum of the wave increases considerably. Read More