Ju Jing - New Jersey Institute of Technology

Ju Jing
Are you Ju Jing?

Claim your profile, edit publications, add additional information:

Contact Details

Name
Ju Jing
Affiliation
New Jersey Institute of Technology
City
Newark
Country
United States

Pubs By Year

External Links

Pub Categories

 
Solar and Stellar Astrophysics (20)
 
Astrophysics (1)
 
Mathematics - Mathematical Physics (1)
 
Mathematics - Combinatorics (1)
 
Mathematical Physics (1)

Publications Authored By Ju Jing

In this study we synthesize the results of four previous studies on the global energetics of solar flares and associated coronal mass ejections (CMEs), which include magnetic, thermal, nonthermal, and CME energies in 399 solar M and X-class flare events observed during the first 3.5 years of the Solar Dynamics Observatory (SDO) mission. Our findings are: (1) The sum of the mean nonthermal energy of flare-accelerated particles ($E_{\mathrm{nt}}$), the energy of direct heating ($E_{\mathrm{dir}}$), and the energy in coronal mass ejections ($E_{\mathrm{CME}}$), which are the primary energy dissipation processes in a flare, is found to have a ratio of $(E_{\mathrm{nt}}+E_{\mathrm{dir}}+ E_{\mathrm{CME}})/E_{\mathrm{mag}} = 0. Read More

Sunspots are concentrations of magnetic field visible on the solar surface (photosphere). It was considered implausible that solar flares, as resulted from magnetic reconnection in the tenuous corona, would cause a direct perturbation of the dense photosphere involving bulk motion. Here we report the sudden flare-induced rotation of a sunspot using the unprecedented spatiotemporal resolution of the 1. Read More

Solar flares signify the sudden release of magnetic energy and are sources of so called space weather. The fine structures (below 500 km) of flares are rarely observed and are accessible to only a few instruments world-wide. Here we present observation of a solar flare using exceptionally high resolution images from the 1. Read More

Solar flares are sudden flashes of brightness on the Sun and are often associated with coronal mass ejections and solar energetic particles which have adverse effects in the near Earth environment. By definition, flares are usually referred to bright features resulting from excess emission. Using the newly commissioned 1. Read More

We present a set of tools for detecting small-scale solar magnetic cancellations and the disk counterpart of type II spicules (the so-called Rapid Blueshifted Excursions (RBEs)), using line-of-sight photospheric magnetograms and chromospheric spectroscopic observations, respectively. For tracking magnetic cancellation, we improve the Southwest Automatic Magnetic Identification Suite (SWAMIS) so that it is able to detect certain obscure cancellations that can be easily missed. For detecting RBEs, we use a normalized reference profile to reduce false-positive detections caused by the non-uniform background and seeing condition. Read More

Chromospheric rapid blueshifted excursions (RBEs) are suggested to be the disk counterparts of type II spicules at the limb and believed to contribute to the coronal heating process. Previous identification of RBEs was mainly based on feature detection using Dopplergrams. In this paper, we study RBEs on 2011 October 21 in a very quiet region at the disk center, which were observed with the high-cadence imaging spectroscopy of the Ca II 8542 A line from the Interferometric Bidimensional Spectrometer (IBIS). Read More

We present the first part of a project on the global energetics of solar flares and coronal mass ejections (CMEs) that includes about 400 M- and X-class flares observed with AIA and HMI onboard SDO. We calculate the potential energy, free energy, and the flare-dissipated magnetic energy. We calculate these magnetic parameters using two different NLFFF codes: The COR-NLFFF code uses the line-of-sight magnetic field component $B_z$ from HMI to define the potential field, and the 2D coordinates of automatically detected coronal loops in 6 coronal wavelengths from AIA to measure the helical twist of coronal loops caused by vertical currents, while the PHOT-NLFFF code extrapolates the photospheric 3D vector fields. Read More

Large, complex, active regions may produce multiple flares within a certain period of one or two days. These flares could occur in the same location with similar morphologies, commonly referred to as homologous flares. In 2011 September, active region NOAA 11283 produced a pair of homologous flares on the 6th and 7th, respectively. Read More

We present the observation of a major solar eruption that is associated with fast sunspot rotation. The event includes a sigmoidal filament eruption, a coronal mass ejection, and a GOES X2.1 flare from NOAA active region 11283. Read More

This Letter reports two rarely observed three-ribbon flares (M1.9 and C9.2) on 2012 July 6 in NOAA AR 11515, which we found with Halpha observations of 0. Read More

Rapid, irreversible changes of magnetic topology and sunspot structure associated with flares have been systematically observed in recent years. The most striking features include the increase of horizontal field at the polarity inversion line (PIL) and the co-spatial penumbral darkening. A likely explanation of the above phenomenon is the back reaction to the coronal restructuring after eruptions: a coronal mass ejection carries the upward momentum while the downward momentum compresses the field lines near the PIL. Read More

We present an unprecedented high-resolution \ha\ imaging spectroscopic observation of a C4.1 flare taken with IBIS on 2011 October 22. The flare consists of a main circular ribbon that occurred in a parasitic magnetic configuration and a remote ribbon that was observed by the IBIS. Read More

Numerical simulations suggest that kink and torus instabilities are two potential contributors to the initiation and prorogation of eruptive events. A magnetic parameter named decay index (i.e. Read More

The rapid, irreversible change of the photospheric magnetic field has been recognized as an important element of the solar flare process. This Letter reports such a rapid change of magnetic fields during the 2011 February 13 M6.6 flare in NOAA AR 11158 that we found from the vector magnetograms of the Helioseismic and Magnetic Imager with 12-min cadence. Read More

We use rotation stereoscopy to estimate the height of a steady-state solar feature relative to the photosphere, based on its apparent motion in the image plane recorded over several days of observation. The stereoscopy algorithm is adapted to work with either one- or two-dimensional data (i.e. Read More

2011May
Affiliations: 1University of Virginia, 2National Radio Astronomy Observatory, 3New Jersey Institute of Technology, 4New Jersey Institute of Technology

We present the first interferometric observation of a zebra-pattern radio burst with simultaneous high spectral (~ 1 MHz) and high time (20 ms) resolution. The Frequency-Agile Solar Radiotelescope (FASR) Subsystem Testbed (FST) and the Owens Valley Solar Array (OVSA) were used in parallel to observe the X1.5 flare on 14 December 2006. Read More

The recurrence properties of random walks can be characterized by P\'{o}lya number, i.e., the probability that the walker has returned to the origin at least once. Read More

Filament eruptions and hard X-ray (HXR) source motions are commonly observed in solar flares, which provides critical information on the coronal magnetic reconnection. This Letter reports an event on 2005 January 15, in which we found an asymmetric filament eruption and a subsequent coronal mass ejection together with complicated motions of HXR sources during the GOES-class X2.6 flare. Read More

To study the three-dimensional (3D) magnetic field topology and its long-term evolution associated with the X3.4 flare of 2006 December 13, we investigate the coronal relative magnetic helicity in the flaring active region (AR) NOAA 10930 during the time period of December 8-14. The coronal helicity is calculated based on the 3D nonlinear force-free magnetic fields reconstructed by the weighted optimization method of Wiegelmann, and is compared with the amount of helicity injected through the photospheric surface of the AR. Read More

A magnetic channel - a series of polarity reversals separating elongated flux threads with opposite polarities - may be a manifestation of a highly non-potential magnetic configuration in active regions. To understand its formation we have carried out a detailed analysis of the magnetic channel in AR 10930 using data taken by the Solar Optical Telescope/Hinode. As a result, we found upflows (-0. Read More

We have investigated the variation of magnetic helicity over a span of several days around the times of 11 X-class flares which occurred in seven active regions (NOAA 9672, 10030, 10314, 10486, 10564, 10696, and 10720) using the magnetograms taken by the Michelson Doppler Imager (MDI) on board the Solar and Heliospheric Observatory (SOHO). As a major result we found that each of these major flares was preceded by a significant helicity accumulation over a long period (0.5 to a few days). Read More

The rare phenomenon of ribbon-like hard X-ray (HXR) sources up to 100 keV found in the 2005 May 13 M8.0 flare observed with the \textit{Reuven Ramaty High Energy Solar Spectroscopic Imager} provides detailed information on the spatial distribution of flare HXR emission. In this Letter, we further investigate the characteristics of HXR emission in this event using imaging spectroscopy, from which we obtain spatially resolved HXR spectral maps during the flare impulsive phase. Read More