Jitendra Malik

Jitendra Malik
Are you Jitendra Malik?

Claim your profile, edit publications, add additional information:

Contact Details

Jitendra Malik

Pubs By Year

Pub Categories

Computer Science - Computer Vision and Pattern Recognition (41)
Computer Science - Learning (10)
Computer Science - Artificial Intelligence (6)
Statistics - Machine Learning (5)
Computer Science - Robotics (5)
Computer Science - Neural and Evolutionary Computing (4)
Computer Science - Information Retrieval (2)
Mathematics - Optimization and Control (2)
Computer Science - Data Structures and Algorithms (2)
Quantitative Biology - Neurons and Cognition (1)

Publications Authored By Jitendra Malik

This paper introduces a video dataset of spatio-temporally localized Atomic Visual Actions (AVA). The AVA dataset densely annotates 80 atomic visual actions in 64k movie clips with actions localized in space and time, resulting in 197k action labels with multiple labels per human occurring frequently. The main differences with existing video datasets are: (1) the definition of atomic visual actions, which avoids collecting data for each and every complex action; (2) precise spatio-temporal annotations with possibly multiple annotations for each human; (3) the use of diverse, realistic video material (movies). Read More

We study the notion of consistency between a 3D shape and a 2D observation and propose a differentiable formulation which allows computing gradients of the 3D shape given an observation from an arbitrary view. We do so by reformulating view consistency using a differentiable ray consistency (DRC) term. We show that this formulation can be incorporated in a learning framework to leverage different types of multi-view observations e. Read More

Recently, Convolutional Neural Networks have shown promising results for 3D geometry prediction. They can make predictions from very little input data such as for example a single color image, depth map or a partial 3D volume. A major limitation of such approaches is that they only predict a coarse resolution voxel grid, which does not capture the surface of the objects well. Read More

Manipulation of deformable objects, such as ropes and cloth, is an important but challenging problem in robotics. We present a learning-based system where a robot takes as input a sequence of images of a human manipulating a rope from an initial to goal configuration, and outputs a sequence of actions that can reproduce the human demonstration, using only monocular images as input. To perform this task, the robot learns a pixel-level inverse dynamics model of rope manipulation directly from images in a self-supervised manner, using about 60K interactions with the rope collected autonomously by the robot. Read More

Most exact methods for k-nearest neighbour search suffer from the curse of dimensionality; that is, their query times exhibit exponential dependence on either the ambient or the intrinsic dimensionality. Dynamic Continuous Indexing (DCI) offers a promising way of circumventing the curse by avoiding space partitioning and achieves a query time that grows sublinearly in the intrinsic dimensionality. In this paper, we develop a variant of DCI, which we call Prioritized DCI, and show a further improvement in the dependence on the intrinsic dimensionality compared to standard DCI, thereby improving the performance of DCI on datasets with high intrinsic dimensionality. Read More

Learning to Optimize is a recently proposed framework for learning optimization algorithms using reinforcement learning. In this paper, we explore learning an optimization algorithm for training shallow neural nets. Such high-dimensional stochastic optimization problems present interesting challenges for existing reinforcement learning algorithms. Read More

We introduce a neural architecture for navigation in novel environments. Our proposed architecture learns to map from first-person views and plans a sequence of actions towards goals in the environment. The Cognitive Mapper and Planner (CMP) is based on two key ideas: a) a unified joint architecture for mapping and planning, such that the mapping is driven by the needs of the planner, and b) a spatial memory with the ability to plan given an incomplete set of observations about the world. Read More

Currently, the most successful learning models in computer vision are based on learning successive representations followed by a decision layer. This is usually actualized through feedforward multilayer neural networks, e.g. Read More

In recent years, we have seen tremendous progress in the field of object detection. Most of the recent improvements have been achieved by targeting deeper feedforward networks. However, many hard object categories, such as bottle and remote, require representation of fine details and not coarse, semantic representations. Read More

We present a learning framework for abstracting complex shapes by learning to assemble objects using 3D volumetric primitives. In addition to generating simple and geometrically interpretable explanations of 3D objects, our framework also allows us to automatically discover and exploit consistent structure in the data. We demonstrate that using our method allows predicting shape representations which can be leveraged for obtaining a consistent parsing across the instances of a shape collection and constructing an interpretable shape similarity measure. Read More

We investigate an experiential learning paradigm for acquiring an internal model of intuitive physics. Our model is evaluated on a real-world robotic manipulation task that requires displacing objects to target locations by poking. The robot gathered over 400 hours of experience by executing more than 100K pokes on different objects. Read More

Algorithm design is a laborious process and often requires many iterations of ideation and validation. In this paper, we explore automating algorithm design and present a method to learn an optimization algorithm, which we believe to be the first method that can automatically discover a better algorithm. We approach this problem from a reinforcement learning perspective and represent any particular optimization algorithm as a policy. Read More

We address the problem of novel view synthesis: given an input image, synthesizing new images of the same object or scene observed from arbitrary viewpoints. We approach this as a learning task but, critically, instead of learning to synthesize pixels from scratch, we learn to copy them from the input image. Our approach exploits the observation that the visual appearance of different views of the same instance is highly correlated, and such correlation could be explicitly learned by training a convolutional neural network (CNN) to predict appearance flows -- 2-D coordinate vectors specifying which pixels in the input view could be used to reconstruct the target view. Read More

We consider the problem of amodal instance segmentation, the objective of which is to predict the region encompassing both visible and occluded parts of each object. Thus far, the lack of publicly available amodal segmentation annotations has stymied the development of amodal segmentation methods. In this paper, we sidestep this issue by relying solely on standard modal instance segmentation annotations to train our model. Read More

Existing methods for retrieving k-nearest neighbours suffer from the curse of dimensionality. We argue this is caused in part by inherent deficiencies of space partitioning, which is the underlying strategy used by most existing methods. We devise a new strategy that avoids partitioning the vector space and present a novel randomized algorithm that runs in time linear in dimensionality of the space and sub-linear in the intrinsic dimensionality and the size of the dataset and takes space constant in dimensionality of the space and linear in the size of the dataset. Read More

Existing methods for pixel-wise labelling tasks generally disregard the underlying structure of labellings, often leading to predictions that are visually implausible. While incorporating structure into the model should improve prediction quality, doing so is challenging - manually specifying the form of structural constraints may be impractical and inference often becomes intractable even if structural constraints are given. We sidestep this problem by reducing structured prediction to a sequence of unconstrained prediction problems and demonstrate that this approach is capable of automatically discovering priors on shape, contiguity of region predictions and smoothness of region contours from data without any a priori specification. Read More

In this paper we explore two ways of using context for object detection. The first model focusses on people and the objects they commonly interact with, such as fashion and sports accessories. The second model considers more general object detection and uses the spatial relationships between objects and between objects and scenes. Read More

Actions as simple as grasping an object or navigating around it require a rich understanding of that object's 3D shape from a given viewpoint. In this paper we repurpose powerful learning machinery, originally developed for object classification, to discover image cues relevant for recovering the 3D shape of potentially unfamiliar objects. We cast the problem as one of local prediction of surface normals and global detection of 3D reflection symmetry planes, which open the door for extrapolating occluded surfaces from visible ones. Read More

The ability to plan and execute goal specific actions in varied, unexpected settings is a central requirement of intelligent agents. In this paper, we explore how an agent can be equipped with an internal model of the dynamics of the external world, and how it can use this model to plan novel actions by running multiple internal simulations ("visual imagination"). Our models directly process raw visual input, and use a novel object-centric prediction formulation based on visual glimpses centered on objects (fixations) to enforce translational invariance of the learned physical laws. Read More

We consider the problem of enriching current object detection systems with veridical object sizes and relative depth estimates from a single image. There are several technical challenges to this, such as occlusions, lack of calibration data and the scale ambiguity between object size and distance. These have not been addressed in full generality in previous work. Read More

The scarcity of data annotated at the desired level of granularity is a recurring issue in many applications. Significant amounts of effort have been devoted to developing weakly supervised methods tailored to each individual setting, which are often carefully designed to take advantage of the particular properties of weak supervision regimes, form of available data and prior knowledge of the task at hand. Unfortunately, it is difficult to adapt these methods to new tasks and/or forms of data, which often require different weak supervision regimes or models. Read More

We propose the Encoder-Recurrent-Decoder (ERD) model for recognition and prediction of human body pose in videos and motion capture. The ERD model is a recurrent neural network that incorporates nonlinear encoder and decoder networks before and after recurrent layers. We test instantiations of ERD architectures in the tasks of motion capture (mocap) generation, body pose labeling and body pose forecasting in videos. Read More

Hierarchical feature extractors such as Convolutional Networks (ConvNets) have achieved impressive performance on a variety of classification tasks using purely feedforward processing. Feedforward architectures can learn rich representations of the input space but do not explicitly model dependencies in the output spaces, that are quite structured for tasks such as articulated human pose estimation or object segmentation. Here we propose a framework that expands the expressive power of hierarchical feature extractors to encompass both input and output spaces, by introducing top-down feedback. Read More

In this work we propose a technique that transfers supervision between images from different modalities. We use learned representations from a large labeled modality as a supervisory signal for training representations for a new unlabeled paired modality. Our method enables learning of rich representations for unlabeled modalities and can be used as a pre-training procedure for new modalities with limited labeled data. Read More

In this paper we introduce the problem of Visual Semantic Role Labeling: given an image we want to detect people doing actions and localize the objects of interaction. Classical approaches to action recognition either study the task of action classification at the image or video clip level or at best produce a bounding box around the person doing the action. We believe such an output is inadequate and a complete understanding can only come when we are able to associate objects in the scene to the different semantic roles of the action. Read More

Existing object proposal approaches use primarily bottom-up cues to rank proposals, while we believe that objectness is in fact a high level construct. We argue for a data-driven, semantic approach for ranking object proposals. Our framework, which we call DeepBox, uses convolutional neural networks (CNNs) to rerank proposals from a bottom-up method. Read More

The dominant paradigm for feature learning in computer vision relies on training neural networks for the task of object recognition using millions of hand labelled images. Is it possible to learn useful features for a diverse set of visual tasks using any other form of supervision? In biology, living organisms developed the ability of visual perception for the purpose of moving and acting in the world. Drawing inspiration from this observation, in this work we investigate if the awareness of egomotion can be used as a supervisory signal for feature learning. Read More

There are multiple cues in an image which reveal what action a person is performing. For example, a jogger has a pose that is characteristic for jogging, but the scene (e.g. Read More

We address the task of predicting pose for objects of unannotated object categories from a small seed set of annotated object classes. We present a generalized classifier that can reliably induce pose given a single instance of a novel category. In case of availability of a large collection of novel instances, our approach then jointly reasons over all instances to improve the initial estimates. Read More

We propose a unified approach for bottom-up hierarchical image segmentation and object proposal generation for recognition, called Multiscale Combinatorial Grouping (MCG). For this purpose, we first develop a fast normalized cuts algorithm. We then propose a high-performance hierarchical segmenter that makes effective use of multiscale information. Read More

The goal of this work is to replace objects in an RGB-D scene with corresponding 3D models from a library. We approach this problem by first detecting and segmenting object instances in the scene using the approach from Gupta et al. [13]. Read More

We segment moving objects in videos by ranking spatio-temporal segment proposals according to "moving objectness": how likely they are to contain a moving object. In each video frame, we compute segment proposals using multiple figure-ground segmentations on per frame motion boundaries. We rank them with a Moving Objectness Detector trained on image and motion fields to detect moving objects and discard over/under segmentations or background parts of the scene. Read More

We investigate the importance of parts for the tasks of action and attribute classification. We develop a part-based approach by leveraging convolutional network features inspired by recent advances in computer vision. Our part detectors are a deep version of poselets and capture parts of the human body under a distinct set of poses. Read More

We address the problem of action detection in videos. Driven by the latest progress in object detection from 2D images, we build action models using rich feature hierarchies derived from shape and kinematic cues. We incorporate appearance and motion in two ways. Read More

We characterize the problem of pose estimation for rigid objects in terms of determining viewpoint to explain coarse pose and keypoint prediction to capture the finer details. We address both these tasks in two different settings - the constrained setting with known bounding boxes and the more challenging detection setting where the aim is to simultaneously detect and correctly estimate pose of objects. We present Convolutional Neural Network based architectures for these and demonstrate that leveraging viewpoint estimates can substantially improve local appearance based keypoint predictions. Read More

All that structure from motion algorithms "see" are sets of 2D points. We show that these impoverished views of the world can be faked for the purpose of reconstructing objects in challenging settings, such as from a single image, or from a few ones far apart, by recognizing the object and getting help from a collection of images of other objects from the same class. We synthesize virtual views by computing geodesics on novel networks connecting objects with similar viewpoints, and introduce techniques to increase the specificity and robustness of factorization-based object reconstruction in this setting. Read More

Object reconstruction from a single image -- in the wild -- is a problem where we can make progress and get meaningful results today. This is the main message of this paper, which introduces an automated pipeline with pixels as inputs and 3D surfaces of various rigid categories as outputs in images of realistic scenes. At the core of our approach are deformable 3D models that can be learned from 2D annotations available in existing object detection datasets, that can be driven by noisy automatic object segmentations and which we complement with a bottom-up module for recovering high-frequency shape details. Read More

Recognition algorithms based on convolutional networks (CNNs) typically use the output of the last layer as feature representation. However, the information in this layer may be too coarse to allow precise localization. On the contrary, earlier layers may be precise in localization but will not capture semantics. Read More

Although the human visual system is surprisingly robust to extreme distortion when recognizing objects, most evaluations of computer object detection methods focus only on robustness to natural form deformations such as people's pose changes. To determine whether algorithms truly mirror the flexibility of human vision, they must be compared against human vision at its limits. For example, in Cubist abstract art, painted objects are distorted by object fragmentation and part-reorganization, to the point that human vision often fails to recognize them. Read More

Deformable part models (DPMs) and convolutional neural networks (CNNs) are two widely used tools for visual recognition. They are typically viewed as distinct approaches: DPMs are graphical models (Markov random fields), while CNNs are "black-box" non-linear classifiers. In this paper, we show that a DPM can be formulated as a CNN, thus providing a novel synthesis of the two ideas. Read More

In this paper we study the problem of object detection for RGB-D images using semantically rich image and depth features. We propose a new geocentric embedding for depth images that encodes height above ground and angle with gravity for each pixel in addition to the horizontal disparity. We demonstrate that this geocentric embedding works better than using raw depth images for learning feature representations with convolutional neural networks. Read More

The human brain is adept at solving difficult high-level visual processing problems such as image interpretation and object recognition in natural scenes. Over the past few years neuroscientists have made remarkable progress in understanding how the human brain represents categories of objects and actions in natural scenes. However, all current models of high-level human vision operate on hand annotated images in which the objects and actions have been assigned semantic tags by a human operator. Read More

In the last two years, convolutional neural networks (CNNs) have achieved an impressive suite of results on standard recognition datasets and tasks. CNN-based features seem poised to quickly replace engineered representations, such as SIFT and HOG. However, compared to SIFT and HOG, we understand much less about the nature of the features learned by large CNNs. Read More

We aim to detect all instances of a category in an image and, for each instance, mark the pixels that belong to it. We call this task Simultaneous Detection and Segmentation (SDS). Unlike classical bounding box detection, SDS requires a segmentation and not just a box. Read More

We present convolutional neural networks for the tasks of keypoint (pose) prediction and action classification of people in unconstrained images. Our approach involves training an R-CNN detector with loss functions depending on the task being tackled. We evaluate our method on the challenging PASCAL VOC dataset and compare it to previous leading approaches. Read More

Object detection performance, as measured on the canonical PASCAL VOC dataset, has plateaued in the last few years. The best-performing methods are complex ensemble systems that typically combine multiple low-level image features with high-level context. In this paper, we propose a simple and scalable detection algorithm that improves mean average precision (mAP) by more than 30% relative to the previous best result on VOC 2012---achieving a mAP of 53. Read More