Jie Zhang - School of Physics, Astronomy and Computational Sciences, George Mason University

Jie Zhang
Are you Jie Zhang?

Claim your profile, edit publications, add additional information:

Contact Details

Jie Zhang
School of Physics, Astronomy and Computational Sciences, George Mason University
United States

Pubs By Year

External Links

Pub Categories

Solar and Stellar Astrophysics (10)
Physics - Plasma Physics (6)
Computer Science - Information Theory (5)
Mathematics - Information Theory (5)
Physics - Soft Condensed Matter (4)
Physics - Mesoscopic Systems and Quantum Hall Effect (4)
Physics - Space Physics (3)
Computer Science - Computer Science and Game Theory (3)
High Energy Astrophysical Phenomena (3)
Computer Science - Learning (2)
Physics - Instrumentation and Detectors (2)
Physics - Materials Science (2)
Physics - Physics and Society (2)
High Energy Physics - Experiment (2)
Computer Science - Artificial Intelligence (1)
Physics - Accelerator Physics (1)
Mathematics - Number Theory (1)
Physics - Optics (1)
Mathematics - Commutative Algebra (1)
Instrumentation and Methods for Astrophysics (1)
Nuclear Experiment (1)
Computer Science - Distributed; Parallel; and Cluster Computing (1)
Statistics - Machine Learning (1)
Mathematics - Representation Theory (1)
Mathematics - Rings and Algebras (1)
Computer Science - Cryptography and Security (1)
Computer Science - Computational Complexity (1)

Publications Authored By Jie Zhang

Genome-wide association studies (GWAS) have achieved great success in the genetic study of Alzheimer's disease (AD). Collaborative imaging genetics studies across different research institutions show the effectiveness of detecting genetic risk factors. However, the high dimensionality of GWAS data poses significant challenges in detecting risk SNPs for AD. Read More

Compact acceleration of tightly collimated relativistic electron beam with high charge from laser-plasma interaction has many unique applications. However, currently the well-known schemes including laser wakefield acceleration from gas and vacuum laser acceleration from solid often produce electron beams either with low charge or with large divergence angles, suffering from lack of balance between the plasma density and the collimation force. In this work, we report the generation of well collimated electron beams with the divergence angle of a few degrees, quasi-monoenergetic spectra peaked at the MeV-level, and extremely high charge ($\sim$100 nC) via the powerful sub-ps laser pulse interacting with solid target. Read More

The singular value decomposition (SVD) is a widely used matrix factorization tool which underlies plenty of useful applications, e.g. recommendation system, abnormal detection and data compression. Read More

The electronic structure and optical absorption spectrum of V^{0} and V^{-} center in MgO are investigated using first-principles calculations based on density functional theory. It is demonstrated that the configuration with distortion is energetically favorable in PBE0 functional. The six O atoms around Mg vacancy are non-equivalent due to the distortion. Read More

Solar filaments/prominences are one of the most common features in the corona, which may lead to energetic coronal mass ejections (CMEs) and flares when they erupt. Filaments are about one hundred times cooler and denser than the coronal material, and physical understanding of their material origin remains controversial. Two types of scenarios have been proposed: one argues that the filament plasma is brought into the corona from photosphere or chromosphere through a siphon or evaporation/injection process, while the other suggests that the material condenses from the surrounding coronal plasma due to thermal instability. Read More

We investigate random search processes on complex networks and for the first time derive an exact expression for the partial cover time that quantifies the time a walker needs to visit multiple targets. Based on that, we find some invariant metrics like the effects of source location and the scale exponent of the size effect, which are independent of the target number. Interestingly, we observe the slow, logarithmic increase of the global partial cover time with the target number across various real networks. Read More

We construct a low-temperature microwave waveguide interferometer for measuring high-frequency properties of two-dimensional electron gases (2DEGs). Coupled plasmon-cyclotron resonance (PCR) spectra are used to extract effective mass, bulk plasmon frequency, and carrier relaxation times. In contrast to traditional transmission spectroscopy, this method does not require sample preparation and is nondestructive. Read More

Since there is 3P2 neutron superfluid in neutron star interior, it can be treated as a system of magnetic dipoles. Under the presence of background magnetic field, the magnetic dipoles tend to align in the same direction. When the temperature is lower than 10**7K, the strong magnetic fields of the magnetars may originate from the induced magnetic moment of the 3P2 neutron Cooper pairs in the anisotropic neutron superfluid. Read More

In this paper we discuss in detail the quantization of Landau energy levels of a strongly magnetized and completely degenerate relativistic electron gas in neutron stars. In particular, we focus on the Fermi energy dependence of the magnetic field for a relativistic electron gas in the superstrong magnetic field of magnetars. We would like to point out that some of the results concerning the microscopic number density of states of a strongly magnetized electron gas given by well-known statistical physics text books are incorrect. Read More

The carrier emission efficiency of light emitting diodes is of fundamental importance for many technological applications, including the performance of GaN and other semiconductor photocathodes. We have measured the evolution of the emitted carriers and the associated transient electric field after femtosecond laser excitation of n-type GaN single crystals. These processes were studied using subpicosecond, ultrashort, electron pulses and explained by means of a three-layer analytical model. Read More

Nuclear fusion reactions are the most important processes in nature to power stars and produce new elements, and lie at the center of the understanding of nucleosynthesis in the universe. It is critically important to study the reactions in full plasma environments that are close to true astrophysical conditions. By using laser-driven counter-streaming collisionless plasmas, we studied the fusion D$+$D$\rightarrow n +^3$He in a Gamow-like window around 27 keV. Read More

In ultra-dense small cell networks, spatial multiplexing gain is a challenge because of the different propagation conditions. The channels associated with different transmitreceive pairs can be highly correlated due to the i) high probability of line-of-sight (LOS) communication between user equipment (UE) and base station (BS), and ii) insufficient spacing between antenna elements at both UE and BS. In this paper, we propose a novel transmission technique titled Diversity Pulse Shaped Transmission (DPST) to enhance the throughput over the correlated MIMO channels in an ultra-dense small cell network. Read More

In this paper, we analyse the performance of dense small cell network (SCNs). We derive analytical expressions for both their coverage probability and their area spectral efficiency (ASE) using a path loss model that considers both line-of-sight (LOS) and non-LOS (NLOS) components. Due to the close proximity of small cell base stations (BSs) and user equipments (UEs) in such dense SCNs, we also consider Rician fading as the multi-path fading channel model for both the LOS and NLOS fading transmissions. Read More

We first construct derived equivalences of differential graded algebras which are endomorphism algebras of the objects from a triangle in the homotopy category of differential graded algebras. Secondly, we obtain the derived equivalences of differential graded endomorphism algebras from a standard derived equivalences of finite dimensional algebras. Moreover, under some conditions, the cohomology rings of these differential graded endomorphism algebras are also derived equivalent. Read More

In this paper, we prove that a class of regular sequences can be viewed as projections of fixed points of uniform morphisms on a countable alphabet, and also can be generated by countable states automata. Moreover, we prove that the regularity of some regular sequences is invariant under some codings. Read More

Anomalous random walks having long-range jumps are a critical branch of dynamical processes on networks, which can model a number of search and transport processes. However, traditional measurements based on mean first passage time are not useful as they fail to characterize the cost associated with each jump. Here we introduce a new concept of mean first traverse distance (MFTD) to characterize anomalous random walks that represents the expected traverse distance taken by walkers searching from source node to target node, and we provide a procedure for calculating the MFTD between two nodes. Read More

We study the consensus-halving problem of dividing an object into two portions, such that each of $n$ agents has equal valuation for the two portions. The $\epsilon$-approximate consensus-halving problem allows each agent to have an $\epsilon$ discrepancy on the values of the portions. We prove that computing $\epsilon$-approximate consensus-halving solution using $n$ cuts is in PPA, and is PPAD-hard, where $\epsilon$ is some positive constant; the problem remains PPAD-hard when we allow a constant number of additional cuts. Read More

The largest geomagnetic storm so far in the solar cycle 24 was produced by a fast coronal mass ejection (CME) originating on 2015 March 15. It was an initially west-oriented CME and expected to only cause a weak geomagnetic disturbance. Why did this CME finally cause such a large geomagnetic storm? We try to find some clues by investigating its propagation from the Sun to 1 AU. Read More

Matrix sketching is aimed at finding close approximations of a matrix by factors of much smaller dimensions, which has important applications in optimization and machine learning. Given a matrix A of size m by n, state-of-the-art randomized algorithms take O(m * n) time and space to obtain its low-rank decomposition. Although quite useful, the need to store or manipulate the entire matrix makes it a computational bottleneck for truly large and dense inputs. Read More

We present a model system in which to study natural selection in the colloid world. In the assembly of active Janus particles into rotating pinwheels when mixed with trace amounts of homogeneous colloids in the presence of an AC electric field, broken symmetry in the rotation direction produces spiral, chiral shapes. Locked into a central rotation point by the center particle, the spiral arms are found to trail rotation of the overall cluster. Read More

Spatial multiplexing (SM) gains in multiple input multiple output (MIMO) cellular networks are limited when used in combination with ultra-dense small cell networks. This limitation is due to large spatial correlation among channel pairs. More specifically, it is due to i) line-of-sight (LOS) communication between user equipment (UE) and base station (BS) and ii) in-sufficient spacing between antenna elements. Read More

The upgrade of the current BESIII Endcap TOF (ETOF) is carried out with the Multi-gap Resistive Plate Chamber (MRPC) technology. The installation of the new ETOF has been finished in October 2015. The first results of the MRPCs commissioning at BESIII are reported in this paper. Read More

Magnetic clouds (MCs) are the interplanetary counterpart of coronal magnetic flux ropes. They can provide valuable information to reveal the flux rope characteristics at their eruption stage in the corona, which are unable to be explored in situ at present. In this paper, we make a comprehensive survey of the average iron charge state (Fe) distributions inside 96 MCs for solar cycle 23 using ACE (Advanced Composition Explorer) data. Read More

Optical modulators can be made nowadays with high modulation speed, broad bandwidth, while being compact, owing to the recent advance in material science and microfabrication technology. However, these optical modulators usually work for low intensity light beams. Here, we present an ultrafast, plasma-based optical modulator, which can directly modulate high power lasers with intensity up to 10^16 W/cm^2 level to produce an extremely broad spectrum with a fractional bandwidth over 100%, extending to the mid-infrared regime in the low-frequency side. Read More

Laser wakefield accelerators have great potential as the basis for next generation compact radiation sources because their accelerating gradients are three orders of magnitude larger than traditional accelerators. However, X-ray radiation from such devices still lacks of tunability, especially the intensity and polarization distribution. Here we propose a tunable polarized radiation source from a helical plasma undulator based on plasma channel guided wakefield accelerator. Read More

Based on the structure of Fibonacci sequence, we give a new proof for the irrationality exponents of the Fibonacci real numbers. Moreover, we obtain all the irrationality exponents of the real numbers corresponding to the differences of Fibonacci sequence. Read More

In multiagent e-marketplaces, buying agents need to select good sellers by querying other buyers (called advisors). Partially Observable Markov Decision Processes (POMDPs) have shown to be an effective framework for optimally selecting sellers by selectively querying advisors. However, current solution methods do not scale to hundreds or even tens of agents operating in the e-market. Read More

In order to improve the particle identification capability of the Beijing Spectrometer III (BESIII),t is proposed to upgrade the current endcap time-of-flight (ETOF) detector with multi-gap resistive plate chamber (MRPC) technology. Aiming at extending ETOF overall time resolution better than 100ps, the whole system including MRPC detectors, new-designed Front End Electronics (FEE), CLOCK module, fast control boards and time to digital modules (TDIG), was built up and operated online 3 months under the cosmic ray. The main purposes of cosmic ray test are checking the detectors' construction quality, testing the joint operation of all instruments and guaranteeing the performance of the system. Read More

Solids are distinguished from fluids by their ability to resist shear. In traditional solids, the resistance to shear is associated with the emergence of broken translational symmetry as exhibited by a non-uniform density pattern, which results from either minimizing the energy cost or maximizing the entropy or both. In this work, we focus on a class of systems, where this paradigm is challenged. Read More

SDO/EVE provides rich information of the thermodynamic processes of solar activities, particularly of solar flares. Here, we develop a method to construct thermodynamic spectrum (TDS) charts based on the EVE spectral lines. This tool could be potentially useful to the EUV astronomy to learn the eruptive activities on the distant astronomical objects. Read More

Carbon nanotube field-effect transistors (CNFETs) are promising candidates for building energy-efficient digital systems at highly-scaled technology nodes. However, carbon nanotubes (CNTs) are inherently subject to variations that reduce circuit yield, increase susceptibility to noise, and severely degrade their anticipated energy and speed benefits. Joint exploration and optimization of CNT processing options and CNFET circuit design are required to overcome this outstanding challenge. Read More

Hot channels (HCs), high temperature erupting structures in the lower corona of the Sun, have been proposed as a proxy of magnetic flux ropes (MFRs) since their initial discovery. However, it is difficult to make definitive proof given the fact that there is no direct measurement of magnetic field in the corona. An alternative way is to use the magnetic field measurement in the solar wind from in-situ instruments. Read More

The most promising approach to enhance network capacity for the next generation of wireless cellular networks (5G) is densification, which benefits from the extensive spatial reuse of the spectrum and the reduced distance between transmitters and receivers. In this paper, we examine the performance of different schedulers in ultra dense small cell deployments. Due to the stronger line of sight (LOS) at low inter-site distances (ISDs), we discuss that the Rician fading channel model is more suitable to study network performance than the Rayleigh one, and model the Rician K factor as a function of distance between the user equipment (UE) and its serving base station (BS). Read More

We present the particle-in-cell (PIC) simulation results of the interaction of a high-energy lepton plasma flow with background electron-proton plasma and focus on the acceleration processes of the protons. It is found that the acceleration follows a two-stage processes. In the first stage, protons are accelerated transversely (perpendicular to the lepton flow) by the turbulent magnetic field "islands" generated via the strong Weibel-type instabilities. Read More

Using first-principles calculations and Boltzmann theory, we explore the feasibility to maximize the thermoelectric figure of merit (ZT) of topological insulator Bi2Te3 films in the few-quintuple layer regime. We discover that the delicate competitions between the surface and bulk contributions, coupled with the overall quantum size effects, lead to a novel and generic non-monotonous dependence of ZT on the film thickness. In particular, when the system crosses into the topologically non-trivial regime upon increasing the film thickness, the much longer surface relaxation time associated with the robust nature of the topological surface states results in a maximal ZT value, which can be further optimized to ~2. Read More

Accurately predicting the arrival of coronal mass ejections (CMEs) at the Earth based on remote images is of critical significance in the study of space weather. In this paper, we make a statistical study of 21 Earth directed CMEs, exploring in particular the relationship between CME initial speeds and transit times. The initial speed of a CME is obtained by fitting the CME with the Graduated Cylindrical Shell model and is thus free of projection effects. Read More

A new simple mechanism due to cold electron flow to produce strong magnetic field is proposed. A 600-T strong magnetic field is generated in the free space at the laser intensity of 5.7x10^15 Wcm^-2. Read More

Starting from an unjammed initial state, applying shear to a granular material of a fixed packing fraction below $\phi_J$, i.e. the isotropic jamming density of frictionless spheres can produce shear jamming states, as have been discovered recently. Read More

Filament eruptions often lead to coronal mass ejections (CMEs), which can affect critical technological systems in space and on the ground when they interact with the geo-magnetosphere in high speeds. Therefore, it is an important issue to investigate the acceleration mechanisms of CMEs in solar/space physics. Based on observations and simulations, the resistive magnetic reconnection and the ideal instability of magnetic flux rope have been proposed to accelerate CMEs. Read More

Solar flares typically have an impulsive phase that followed by a gradual phase as best seen in soft X-ray emissions. A recent discovery based on the EUV Variability Experiment (EVE) observations onboard the Solar Dynamics Observatory (SDO) reveals that some flares exhibit a second large peak separated from the first main phase peak by tens of minutes to hours, which is coined as the flare's EUV late phase. In this paper, we address the origin of the EUV late phase by analyzing in detail two late phase flares, an M2. Read More

The second peak in the Fe XVI 33.5 nm line irradiance observed during solar flares by Extreme ultraviolet Variability Experiment (EVE) is known as Extreme UltraViolet (EUV) late phase. Our previous paper (Liu et al. Read More

Synchrotron radiation sources are immensely useful tools for scientific researches and many practical applications. Currently, the state-of-the-art synchrotrons rely on conventional accelerators, where electrons are accelerated in a straight line and radiate in bending magnets or other insertion devices. However, these facilities are usually large and costly. Read More

High quality electron beams with flat distributions in both energy and current are critical for many accelerator-based scientific facilities such as free-electron lasers and MeV ultrafast electron diffraction and microscopes. In this Letter we report on using corrugated structures to compensate for the beam nonlinear energy chirp imprinted by the curvature of the radio-frequency field, leading to a significant reduction in beam energy spread. By using a pair of corrugated structures with orthogonal orientations, we show that the quadrupole wake fields which otherwise increase beam emittance can be effectively canceled. Read More

Heterogeneous cloud radio access networks (HCRANs) are potential solutions to improve both spectral and energy efficiencies by embedding cloud computing into heterogeneous networks (HetNets). The interference among remote radio heads (RRHs) can be suppressed with centralized cooperative processing in the base band unit (BBU) pool, while the intertier interference between RRHs and macro base stations (MBSs) is still challenging in H-CRANs. In this paper, to mitigate this inter-tier interference, a contract-based interference coordination framework is proposed, where three scheduling schemes are involved, and the downlink transmission interval is divided into three phases accordingly. Read More

We study the problem of locating a single facility on a real line based on the reports of self-interested agents, when agents have double-peaked preferences, with the peaks being on opposite sides of their locations. We observe that double-peaked preferences capture real-life scenarios and thus complement the well-studied notion of single-peaked preferences. We mainly focus on the case where peaks are equidistant from the agents' locations and discuss how our results extend to more general settings. Read More

Hot channel (HC) is a high temperature ($\sim$10 MK) structure in the inner corona revealed first by Atmospheric Imaging Assembly (AIA) on board \textit{Solar Dynamics Observatory}. Eruption of HC is often associated with flare and coronal mass ejection. Previous studies suggest that HC is a good proxy of magnetic flux rope (MFR) in the inner corona, in addition to another well-known MFR candidate, the prominence-cavity structure that is with a normal coronal temperature ($\sim$1-2 MK). Read More

We study the Price of Anarchy of mechanisms for the well-known problem of one-sided matching, or house allocation, with respect to the social welfare objective. We consider both ordinal mechanisms, where agents submit preference lists over the items, and cardinal mechanisms, where agents may submit numerical values for the items being allocated. We present a general lower bound of $\Omega(\sqrt{n})$ on the Price of Anarchy, which applies to all mechanisms. Read More

Despite extensive theoretical \cite{GanterPRL1998, ElliotPRL2001,SchirmacherPRL2007, TanakaNatureM2008, MonacoPNAS2009, MarruzzoSCIRP2013} and experimental studies \cite{ChumakovPRL2011, ChumakovPRL2014, KayaScience2010,KChenPRL2010, LXuPRL2012, BonnPreprint2014}, a longstanding puzzle in condensed matter physics remains regarding the origin and nature of "Boson peak" (BP), where the vibrational density of states (DOS) in glasses possesses an excess of states compared with the crystalline counterpart. Here we show that BP is successfully observed in 2D hexagonal granular packing, where the disorder is due to the force network, i.e. Read More

Using first-principles calculations, we systematically investigate the electronic structures and band topologies of four kinds of group-V elemental (P, As, Sb and Bi) monolayers with buckled honeycomb structure. It is found that all these monolayers can change from semiconducting to semimetallic under compressive strain. If a tensile strain is however applied, the P, As and Sb monolayers undergo phase transition from topologically trivial to non-trivial regime, whereas the topological insulating nature of Bi monolayer remains unchanged. Read More

Sensing response of individual single-crystal titania nanowires configured as chemiresistors for detecting reducing (CO, H2) and oxidizing (O2) gases is shown to be sensitive to visible light illumination. It is assumed that doping of the TiO2 nanowires with C and/or N during carbon assisted vapor-solid growth creates extrinsic states in the band gap close to the valence band maximum, which enables photoactivity at the photon energies of visible light. The inherently large surface-to-volume ratio of nanowires, along with facile transport of the photo-generated carriers to/from the nanowires surface promote the adsorption/desorption of donor/acceptor molecules, and therefore open the possibility for visible light assisted gas sensing. Read More