Jiawei Han - UIUC

Jiawei Han
Are you Jiawei Han?

Claim your profile, edit publications, add additional information:

Contact Details

Name
Jiawei Han
Affiliation
UIUC
Location

Pubs By Year

External Links

Pub Categories

 
Computer Science - Learning (11)
 
Computer Science - Computation and Language (7)
 
Computer Science - Databases (5)
 
Computer Science - Information Retrieval (5)
 
Statistics - Machine Learning (2)
 
Computer Science - Artificial Intelligence (2)
 
Computer Science - Data Structures and Algorithms (1)
 
Quantitative Biology - Molecular Networks (1)

Publications Authored By Jiawei Han

Mining textual patterns in news, tweets, papers, and many other kinds of text corpora has been an active theme in text mining and NLP research. Previous studies adopt a dependency parsing-based pattern discovery approach. However, the parsing results lose rich context around entities in the patterns, and the process is costly for a corpus of large scale. Read More

As one of the fundamental tasks in text analysis, phrase mining aims at extracting quality phrases from a text corpus. Phrase mining is important in various tasks such as information extraction/retrieval, taxonomy construction, and topic modeling. Most existing methods rely on complex, trained linguistic analyzers, and thus likely have unsatisfactory performance on text corpora of new domains and genres without extra but expensive adaption. Read More

Most real-world data can be modeled as heterogeneous information networks (HINs) consisting of vertices of multiple types and their relationships. Search for similar vertices of the same type in large HINs, such as bibliographic networks and business-review networks, is a fundamental problem with broad applications. Although similarity search in HINs has been studied previously, most existing approaches neither explore rich semantic information embedded in the network structures nor take user's preference as a guidance. Read More

In the literature, two series of models have been proposed to address prediction problems including classification and regression. Simple models, such as generalized linear models, have ordinary performance but strong interpretability on a set of simple features. The other series, including tree-based models, organize numerical, categorical and high dimensional features into a comprehensive structure with rich interpretable information in the data. Read More

Extracting entities and relations for types of interest from text is important for understanding massive text corpora. Traditionally, systems of entity relation extraction have relied on human-annotated corpora for training and adopted an incremental pipeline. Such systems require additional human expertise to be ported to a new domain, and are vulnerable to errors cascading down the pipeline. Read More

Many countries are suffering from severe air pollution. Understanding how different air pollutants accumulate and propagate is critical to making relevant public policies. In this paper, we use urban big data (air quality data and meteorological data) to identify the \emph{spatiotemporal (ST) causal pathways} for air pollutants. Read More

One of the key obstacles in making learning protocols realistic in applications is the need to supervise them, a costly process that often requires hiring domain experts. We consider the framework to use the world knowledge as indirect supervision. World knowledge is general-purpose knowledge, which is not designed for any specific domain. Read More

Protein-protein interaction (PPI) networks, providing a comprehensive landscape of protein interacting patterns, enable us to explore biological processes and cellular components at multiple resolutions. For a biological process, a number of proteins need to work together to perform the job. Proteins densely interact with each other, forming large molecular machines or cellular building blocks. Read More

Current systems of fine-grained entity typing use distant supervision in conjunction with existing knowledge bases to assign categories (type labels) to entity mentions. However, the type labels so obtained from knowledge bases are often noisy (i.e. Read More

This paper presents a novel research problem on joint discovery of commonalities and differences between two individual documents (or document sets), called Comparative Document Analysis (CDA). Given any pair of documents from a document collection, CDA aims to automatically identify sets of quality phrases to summarize the commonalities of both documents and highlight the distinctions of each with respect to the other informatively and concisely. Our solution uses a general graph-based framework to derive novel measures on phrase semantic commonality and pairwise distinction}, and guides the selection of sets of phrases by solving two joint optimization problems. Read More

Thanks to information explosion, data for the objects of interest can be collected from increasingly more sources. However, for the same object, there usually exist conflicts among the collected multi-source information. To tackle this challenge, truth discovery, which integrates multi-source noisy information by estimating the reliability of each source, has emerged as a hot topic. Read More

While most topic modeling algorithms model text corpora with unigrams, human interpretation often relies on inherent grouping of terms into phrases. As such, we consider the problem of discovering topical phrases of mixed lengths. Existing work either performs post processing to the inference results of unigram-based topic models, or utilizes complex n-gram-discovery topic models. Read More

Automated generation of high-quality topical hierarchies for a text collection is a dream problem in knowledge engineering with many valuable applications. In this paper a scalable and robust algorithm is proposed for constructing a hierarchy of topics from a text collection. We divide and conquer the problem using a top-down recursive framework, based on a tensor orthogonal decomposition technique. Read More

We introduce KERT (Keyphrase Extraction and Ranking by Topic), a framework for topical keyphrase generation and ranking. By shifting from the unigram-centric traditional methods of unsupervised keyphrase extraction to a phrase-centric approach, we are able to directly compare and rank phrases of different lengths. We construct a topical keyphrase ranking function which implements the four criteria that represent high quality topical keyphrases (coverage, purity, phraseness, and completeness). Read More

2012Jun
Affiliations: 1UIUC, 2Michigan State University, 3Zhejiang University, 4Michigan State University, 5UIUC

In this work, we develop a simple algorithm for semi-supervised regression. The key idea is to use the top eigenfunctions of integral operator derived from both labeled and unlabeled examples as the basis functions and learn the prediction function by a simple linear regression. We show that under appropriate assumptions about the integral operator, this approach is able to achieve an improved regression error bound better than existing bounds of supervised learning. Read More

In practical data integration systems, it is common for the data sources being integrated to provide conflicting information about the same entity. Consequently, a major challenge for data integration is to derive the most complete and accurate integrated records from diverse and sometimes conflicting sources. We term this challenge the truth finding problem. Read More

Fisher score is one of the most widely used supervised feature selection methods. However, it selects each feature independently according to their scores under the Fisher criterion, which leads to a suboptimal subset of features. In this paper, we present a generalized Fisher score to jointly select features. Read More

With the rapid development of online social media, online shopping sites and cyber-physical systems, heterogeneous information networks have become increasingly popular and content-rich over time. In many cases, such networks contain multiple types of objects and links, as well as different kinds of attributes. The clustering of these objects can provide useful insights in many applications. Read More

In this paper we introduce a new type of pattern -- a flipping correlation pattern. The flipping patterns are obtained from contrasting the correlations between items at different levels of abstraction. They represent surprising correlations, both positive and negative, which are specific for a given abstraction level, and which "flip" from positive to negative and vice versa when items are generalized to a higher level of abstraction. Read More