Jiashi Feng - NUS

Jiashi Feng
Are you Jiashi Feng?

Claim your profile, edit publications, add additional information:

Contact Details

Jiashi Feng

Pubs By Year

Pub Categories

Computer Science - Computer Vision and Pattern Recognition (42)
Computer Science - Learning (12)
Statistics - Machine Learning (8)
Computer Science - Neural and Evolutionary Computing (5)
Computer Science - Artificial Intelligence (4)
Mathematics - Optimization and Control (3)
Computer Science - Computation and Language (2)
Computer Science - Information Retrieval (1)
Computer Science - Multimedia (1)
Computer Science - Numerical Analysis (1)

Publications Authored By Jiashi Feng

We propose a unified framework to speed up the existing stochastic matrix factorization (SMF) algorithms via variance reduction. Our framework is general and it subsumes several well-known SMF formulations in the literature. We perform a non-asymptotic convergence analysis of our framework and derive computational and sample complexities for our algorithm to converge to an $\epsilon$-stationary point in expectation. Read More

This paper proposes a new framework, named Generative Partition Network (GPN), for addressing the challenging multi-person pose estimation problem. Different from existing pure top-down and bottom-up solutions, the proposed GPN models the multi-person partition detection as a generative process from joint candidates and infers joint configurations for person instances from each person partition locally, resulting in both low joint detection and joint partition complexities. In particular, GPN designs a generative model based on the Generalized Hough Transform framework to detect person partitions via votes from joint candidates in the Hough space, parameterized by centroids of persons. Read More

This paper studies the landscape of empirical risk of deep neural networks by theoretically analyzing its convergence behavior to the population risk as well as its stationary points and properties. For an $l$-layer linear neural network, we prove its empirical risk uniformly converges to its population risk at the rate of $\mathcal{O}(r^{2l}\sqrt{d\log(l)}/\sqrt{n})$ with training sample size of $n$, the total weight dimension of $d$ and the magnitude bound $r$ of weight of each layer. We then derive the stability and generalization bounds for the empirical risk based on this result. Read More

The recent progress of human parsing techniques has been largely driven by the availability of rich data resources. In this work, we demonstrate some critical discrepancies between the current benchmark datasets and the real world human parsing scenarios. For instance, all the human parsing datasets only contain one person per image, while usually multiple persons appear simultaneously in a realistic scene. Read More

Person search in real-world scenarios is a new challenging computer version task with many meaningful applications. The challenge of this task mainly comes from: (1) unavailable bounding boxes for pedestrians and the model needs to search for the person over the whole gallery images; (2) huge variance of visual appearance of a particular person owing to varying poses, lighting conditions, and occlusions. To address these two critical issues in modern person search applications, we propose a novel Individual Aggregation Network (IAN) that can accurately localize persons by learning to minimize intra-person feature variations. Read More

This paper addresses a challenging problem -- how to generate multi-view cloth images from only a single view input. To generate realistic-looking images with different views from the input, we propose a new image generation model termed VariGANs that combines the strengths of the variational inference and the Generative Adversarial Networks (GANs). Our proposed VariGANs model generates the target image in a coarse-to-fine manner instead of a single pass which suffers from severe artifacts. Read More

Most existing weakly supervised localization (WSL) approaches learn detectors by finding positive bounding boxes based on features learned with image-level supervision. However, those features do not contain spatial location related information and usually provide poor-quality positive samples for training a detector. To overcome this issue, we propose a deep self-taught learning approach, which makes the detector learn the object-level features reliable for acquiring tight positive samples and afterwards re-train itself based on them. Read More

To predict a set of diverse and informative proposals with enriched representations, this paper introduces a differentiable Determinantal Point Process (DPP) layer that is able to augment the object detection architectures. Most modern object detection architectures, such as Faster R-CNN, learn to localize objects by minimizing deviations from the ground-truth but ignore correlation between multiple proposals and object categories. Non-Maximum Suppression (NMS) as a widely used proposal pruning scheme ignores label- and instance-level relations between object candidates resulting in multi-labeled detections. Read More

Unconstrained face recognition performance evaluations have traditionally focused on Labeled Faces in the Wild (LFW) dataset for imagery and the YouTubeFaces (YTF) dataset for videos in the last couple of years. Spectacular progress in this field has resulted in a saturation on verification and identification accuracies for those benchmark datasets. In this paper, we propose a unified learning framework named transferred deep feature fusion targeting at the new IARPA Janus Bechmark A (IJB-A) face recognition dataset released by NIST face challenge. Read More

We consider the problems of robust PAC learning from distributed and streaming data, which may contain malicious errors and outliers, and analyze their fundamental complexity questions. In particular, we establish lower bounds on the communication complexity for distributed robust learning performed on multiple machines, and on the space complexity for robust learning from streaming data on a single machine. These results demonstrate that gaining robustness of learning algorithms is usually at the expense of increased complexities. Read More

We investigate a principle way to progressively mine discriminative object regions using classification networks to address the weakly-supervised semantic segmentation problems. Classification networks are only responsive to small and sparse discriminative regions from the object of interest, which deviates from the requirement of the segmentation task that needs to localize dense, interior and integral regions for pixel-wise inference. To mitigate this gap, we propose a new adversarial erasing approach for localizing and expanding object regions progressively. Read More

Existing object proposal algorithms usually search for possible object regions over multiple locations and scales separately, which ignore the interdependency among different objects and deviate from the human perception procedure. To incorporate global interdependency between objects into object localization, we propose an effective Tree-structured Reinforcement Learning (Tree-RL) approach to sequentially search for objects by fully exploiting both the current observation and historical search paths. The Tree-RL approach learns multiple searching policies through maximizing the long-term reward that reflects localization accuracies over all the objects. Read More

This paper develops a general framework for learning interpretable data representation via Long Short-Term Memory (LSTM) recurrent neural networks over hierarchal graph structures. Instead of learning LSTM models over the pre-fixed structures, we propose to further learn the intermediate interpretable multi-level graph structures in a progressive and stochastic way from data during the LSTM network optimization. We thus call this model the structure-evolving LSTM. Read More

Learning rich and diverse feature representation are always desired for deep convolutional neural networks (CNNs). Besides, when auxiliary annotations are available for specific data, simply ignoring them would be a great waste. In this paper, we incorporate these auxiliary annotations as privileged information and propose a novel CNN model that is able to maximize inherent diversity of a CNN model such that the model can learn better feature representation with a stronger generalization ability. Read More

We consider the problem of learning from noisy data in practical settings where the size of data is too large to store on a single machine. More challenging, the data coming from the wild may contain malicious outliers. To address the scalability and robustness issues, we present an online robust learning (ORL) approach. Read More

Video based person re-identification plays a central role in realistic security and video surveillance. In this paper we propose a novel Accumulative Motion Context (AMOC) network for addressing this important problem, which effectively exploits the long-range motion context for robustly identifying the same person under challenging conditions. Given a video sequence of the same or different persons, the proposed AMOC network jointly learns appearance representation and motion context from a collection of adjacent frames using a two-stream convolutional architecture. Read More

Face recognition techniques have been developed significantly in recent years. However, recognizing faces with partial occlusion is still challenging for existing face recognizers which is heavily desired in real-world applications concerning surveillance and security. Although much research effort has been devoted to developing face de-occlusion methods, most of them can only work well under constrained conditions, such as all the faces are from a pre-defined closed set. Read More

In this chapter, we present CORrelation ALignment (CORAL), a simple yet effective method for unsupervised domain adaptation. CORAL minimizes domain shift by aligning the second-order statistics of source and target distributions, without requiring any target labels. In contrast to subspace manifold methods, it aligns the original feature distributions of the source and target domains, rather than the bases of lower-dimensional subspaces. Read More

In this work, we address the challenging video scene parsing problem by developing effective representation learning methods given limited parsing annotations. In particular, we contribute two novel methods that constitute a unified parsing framework. (1) \textbf{Predictive feature learning}} from nearly unlimited unlabeled video data. Read More

In this paper, we address a rain removal problem from a single image, even in the presence of heavy rain and rain streak accumulation. Our core ideas lie in the new rain image models and a novel deep learning architecture. We first modify an existing model comprising a rain streak layer and a background layer, by adding a binary map that locates rain streak regions. Read More

In this paper, we consider the scene parsing problem and propose a novel Multi-Path Feedback recurrent neural network (MPF-RNN) for parsing scene images. MPF-RNN can enhance the capability of RNNs in modeling long-range context information at multiple levels and better distinguish pixels that are easy to confuse. Different from feedforward CNNs and RNNs with only single feedback, MPF-RNN propagates the contextual features learned at top layer through \textit{multiple} weighted recurrent connections to learn bottom features. Read More

Most of existing detection pipelines treat object proposals independently and predict bounding box locations and classification scores over them separately. However, the important semantic and spatial layout correlations among proposals are often ignored, which are actually useful for more accurate object detection. In this work, we propose a new EM-like group recursive learning approach to iteratively refine object proposals by incorporating such context of surrounding proposals and provide an optimal spatial configuration of object detections. Read More

Recently, several optimization methods have been successfully applied to the hyperparameter optimization of deep neural networks (DNNs). The methods work by modeling the joint distribution of hyperparameter values and corresponding error. Those methods become less practical when applied to modern DNNs whose training may take a few days and thus one cannot collect sufficient observations to accurately model the distribution. Read More

Automatically searching for optimal hyperparameter configurations is of crucial importance for applying deep learning algorithms in practice. Recently, Bayesian optimization has been proposed for optimizing hyperparameters of various machine learning algorithms. Those methods adopt probabilistic surrogate models like Gaussian processes to approximate and minimize the validation error function of hyperparameter values. Read More

Deep neural networks have achieved remarkable success in a wide range of practical problems. However, due to the inherent large parameter space, deep models are notoriously prone to overfitting and difficult to be deployed in portable devices with limited memory. In this paper, we propose an iterative hard thresholding (IHT) approach to train Skinny Deep Neural Networks (SDNNs). Read More

Intermediate features at different layers of a deep neural network are known to be discriminative for visual patterns of different complexities. However, most existing works ignore such cross-layer heterogeneities when classifying samples of different complexities. For example, if a training sample has already been correctly classified at a specific layer with high confidence, we argue that it is unnecessary to enforce rest layers to classify this sample correctly and a better strategy is to encourage those layers to focus on other samples. Read More

Accompanied with the rising popularity of compressed sensing, the Alternating Direction Method of Multipliers (ADMM) has become the most widely used solver for linearly constrained convex problems with separable objectives. In this work, we observe that many previous variants of ADMM update the primal variable by minimizing different majorant functions with their convergence proofs given case by case. Inspired by the principle of majorization minimization, we respectively present the unified frameworks and convergence analysis for the Gauss-Seidel ADMMs and Jacobian ADMMs, which use different historical information for the current updating. Read More

Fine-grained object classification is a challenging task due to the subtle inter-class difference and large intra-class variation. Recently, visual attention models have been applied to automatically localize the discriminative regions of an image for better capturing critical difference and demonstrated promising performance. However, without consideration of the diversity in attention process, most of existing attention models perform poorly in classifying fine-grained objects. Read More

Person re-identification across disjoint camera views has been widely applied in video surveillance yet it is still a challenging problem. One of the major challenges lies in the lack of spatial and temporal cues, which makes it difficult to deal with large variations of lighting conditions, viewing angles, body poses and occlusions. Recently, several deep learning based person re-identification approaches have been proposed and achieved remarkable performance. Read More

We consider the problem of minimizing the sum of the average function consisting of a large number of smooth convex component functions and a general convex function that can be non-differentiable. Although many methods have been proposed to solve the problem with the assumption that the sum is strongly convex, few methods support the non-strongly convex cases. Adding a small quadratic regularization is the common trick used to tackle non-strongly convex problems; however, it may worsen certain qualities of solutions or weaken the performance of the algorithms. Read More

In this work, we consider the image super-resolution (SR) problem. The main challenge of image SR is to recover high-frequency details of a low-resolution (LR) image that are important for human perception. To address this essentially ill-posed problem, we introduce a Deep Edge Guided REcurrent rEsidual~(DEGREE) network to progressively recover the high-frequency details. Read More

Visual Question and Answering (VQA) problems are attracting increasing interest from multiple research disciplines. Solving VQA problems requires techniques from both computer vision for understanding the visual contents of a presented image or video, as well as the ones from natural language processing for understanding semantics of the question and generating the answers. Regarding visual content modeling, most of existing VQA methods adopt the strategy of extracting global features from the image or video, which inevitably fails in capturing fine-grained information such as spatial configuration of multiple objects. Read More

Modern deep neural network based object detection methods typically classify candidate proposals using their interior features. However, global and local surrounding contexts that are believed to be valuable for object detection are not fully exploited by existing methods yet. In this work, we take a step towards understanding what is a robust practice to extract and utilize contextual information to facilitate object detection in practice. Read More

By taking the semantic object parsing task as an exemplar application scenario, we propose the Graph Long Short-Term Memory (Graph LSTM) network, which is the generalization of LSTM from sequential data or multi-dimensional data to general graph-structured data. Particularly, instead of evenly and fixedly dividing an image to pixels or patches in existing multi-dimensional LSTM structures (e.g. Read More

The question why deep learning algorithms perform so well in practice has attracted increasing research interest. However, most of well-established approaches, such as hypothesis capacity, robustness or sparseness, have not provided complete explanations, due to the high complexity of the deep learning algorithms and their inherent randomness. In this work, we introduce a new approach~\textendash~ensemble robustness~\textendash~towards characterizing the generalization performance of generic deep learning algorithms. Read More

Object proposal is essential for current state-of-the-art object detection pipelines. However, the existing proposal methods generally fail in producing results with satisfying localization accuracy. The case is even worse for small objects which however are quite common in practice. Read More

The performance of deep neural networks is well-known to be sensitive to the setting of their hyperparameters. Recent advances in reverse-mode automatic differentiation allow for optimizing hyperparameters with gradients. The standard way of computing these gradients involves a forward and backward pass of computations. Read More

Rectified linear activation units are important components for state-of-the-art deep convolutional networks. In this paper, we propose a novel S-shaped rectified linear activation unit (SReLU) to learn both convex and non-convex functions, imitating the multiple function forms given by the two fundamental laws, namely the Webner-Fechner law and the Stevens law, in psychophysics and neural sciences. Specifically, SReLU consists of three piecewise linear functions, which are formulated by four learnable parameters. Read More

Precisely-labeled data sets with sufficient amount of samples are very important for training deep convolutional neural networks (CNNs). However, many of the available real-world data sets contain erroneously labeled samples and those errors substantially hinder the learning of very accurate CNN models. In this work, we consider the problem of training a deep CNN model for image classification with mislabeled training samples - an issue that is common in real image data sets with tags supplied by amateur users. Read More

Unlike human learning, machine learning often fails to handle changes between training (source) and test (target) input distributions. Such domain shifts, common in practical scenarios, severely damage the performance of conventional machine learning methods. Supervised domain adaptation methods have been proposed for the case when the target data have labels, including some that perform very well despite being "frustratingly easy" to implement. Read More

Semantic object parsing is a fundamental task for understanding objects in detail in computer vision community, where incorporating multi-level contextual information is critical for achieving such fine-grained pixel-level recognition. Prior methods often leverage the contextual information through post-processing predicted confidence maps. In this work, we propose a novel deep Local-Global Long Short-Term Memory (LG-LSTM) architecture to seamlessly incorporate short-distance and long-distance spatial dependencies into the feature learning over all pixel positions. Read More

In this work, we propose a novel Reversible Recursive Instance-level Object Segmentation (R2-IOS) framework to address the challenging instance-level object segmentation task. R2-IOS consists of a reversible proposal refinement sub-network that predicts bounding box offsets for refining the object proposal locations, and an instance-level segmentation sub-network that generates the foreground mask of the dominant object instance in each proposal. By being recursive, R2-IOS iteratively optimizes the two sub-networks during joint training, in which the refined object proposals and improved segmentation predictions are alternately fed into each other to progressively increase the network capabilities. Read More

In this paper, we address the task of natural language object retrieval, to localize a target object within a given image based on a natural language query of the object. Natural language object retrieval differs from text-based image retrieval task as it involves spatial information about objects within the scene and global scene context. To address this issue, we propose a novel Spatial Context Recurrent ConvNet (SCRC) model as scoring function on candidate boxes for object retrieval, integrating spatial configurations and global scene-level contextual information into the network. Read More

We propose a novel end-to-end deep architecture for face landmark detection, based on a deep convolutional and deconvolutional network followed by carefully designed recurrent network structures. The pipeline of this architecture consists of three parts. Through the first part, we encode an input face image to resolution-preserved deconvolutional feature maps via a deep network with stacked convolutional and deconvolutional layers. Read More

Sparse subspace clustering methods, such as Sparse Subspace Clustering (SSC) \cite{ElhamifarV13} and $\ell^{1}$-graph \cite{YanW09,ChengYYFH10}, are effective in partitioning the data that lie in a union of subspaces. Most of those methods use $\ell^{1}$-norm or $\ell^{2}$-norm with thresholding to impose the sparsity of the constructed sparse similarity graph, and certain assumptions, e.g. Read More

In this work, we consider the problem of pedestrian detection in natural scenes. Intuitively, instances of pedestrians with different spatial scales may exhibit dramatically different features. Thus, large variance in instance scales, which results in undesirable large intra-category variance in features, may severely hurt the performance of modern object instance detection methods. Read More

Recently, significant improvement has been made on semantic object segmentation due to the development of deep convolutional neural networks (DCNNs). Training such a DCNN usually relies on a large number of images with pixel-level segmentation masks, and annotating these images is very costly in terms of both finance and human effort. In this paper, we propose a simple to complex (STC) framework in which only image-level annotations are utilized to learn DCNNs for semantic segmentation. Read More

With the development of Internet culture, cuteness has become a popular concept. Many people are curious about what factors making a person look cute. However, there is rare research to answer this interesting question. Read More

In this paper, we investigate the cross-media retrieval between images and text, i.e., using image to search text (I2T) and using text to search images (T2I). Read More

This paper studies the subspace segmentation problem. Given a set of data points drawn from a union of subspaces, the goal is to partition them into their underlying subspaces they were drawn from. The spectral clustering method is used as the framework. Read More