Jian Tang - MIT,LNS

Jian Tang
Are you Jian Tang?

Claim your profile, edit publications, add additional information:

Contact Details

Name
Jian Tang
Affiliation
MIT,LNS
City
Lititz
Country
United States

Pubs By Year

External Links

Pub Categories

 
Quantum Physics (18)
 
High Energy Physics - Phenomenology (10)
 
High Energy Physics - Experiment (9)
 
Computer Science - Learning (8)
 
Physics - Materials Science (6)
 
Computer Science - Computation and Language (5)
 
Physics - Instrumentation and Detectors (4)
 
Physics - Mesoscopic Systems and Quantum Hall Effect (3)
 
Computer Science - Information Retrieval (2)
 
Statistics - Machine Learning (2)
 
Physics - Optics (2)
 
Physics - Superconductivity (1)
 
Computer Science - Artificial Intelligence (1)
 
High Energy Astrophysical Phenomena (1)
 
Physics - Atomic Physics (1)
 
Computer Science - Human-Computer Interaction (1)
 
Computer Science - Distributed; Parallel; and Cluster Computing (1)
 
Computer Science - Computer Vision and Pattern Recognition (1)
 
Nuclear Experiment (1)
 
Computer Science - Information Theory (1)
 
Mathematics - Information Theory (1)
 
Computer Science - Neural and Evolutionary Computing (1)

Publications Authored By Jian Tang

Automatic decision-making approaches, such as reinforcement learning (RL), have been applied to (partially) solve the resource allocation problem adaptively in the cloud computing system. However, a complete cloud resource allocation framework exhibits high dimensions in state and action spaces, which prohibit the usefulness of traditional RL techniques. In addition, high power consumption has become one of the critical concerns in design and control of cloud computing systems, which degrades system reliability and increases cooling cost. Read More

Photons propagating in Laguerre-Gaussian modes have characteristic orbital angular momentums, which are fundamental optical degrees of freedom. The orbital angular momentum of light has potential application in high capacity optical communication and even in quantum information processing. In this work, we experimentally construct a ring cavity with 4 lenses and 4 mirrors that is completely degenerate for Laguerre-Gaussian modes. Read More

Recently low displacement rank (LDR) matrices, or so-called structured matrices, have been proposed to compress large-scale neural networks. Empirical results have shown that neural networks with weight matrices of LDR matrices, referred as LDR neural networks, can achieve significant reduction in space and computational complexity while retaining high accuracy. We formally study LDR matrices in deep learning. Read More

Improving the precision of measurements is a prime challenge to the scientific community. Quantum metrology provides methods to overcome the standard quantum limit (SQL) of 1/sqrt{N} and to reach the fundamental Heisenberg-limit (HL) of 1/N. While a lot of theoretical and experimenta works have been dedicated to this task, most of the attempts focused on utilizing NOON and squeezed states, which exhibit unique quantum correlations. Read More

Most existing word embedding approaches do not distinguish the same words in different contexts, therefore ignoring their contextual meanings. As a result, the learned embeddings of these words are usually a mixture of multiple meanings. In this paper, we acknowledge multiple identities of the same word in different contexts and learn the \textbf{identity-sensitive} word embeddings. Read More

This paper studied generating natural languages at particular contexts or situations. We proposed two novel approaches which encode the contexts into a continuous semantic representation and then decode the semantic representation into text sequences with recurrent neural networks. During decoding, the context information are attended through a gating mechanism, addressing the problem of long-range dependency caused by lengthy sequences. Read More

Statistical topic models efficiently facilitate the exploration of large-scale data sets. Many models have been developed and broadly used to summarize the semantic structure in news, science, social media, and digital humanities. However, a common and practical objective in data exploration tasks is not to enumerate all existing topics, but to quickly extract representative ones that broadly cover the content of the corpus, i. Read More

Embedding and visualizing large-scale high-dimensional data in a two-dimensional space is an important problem since such visualization can reveal deep insights out of complex data. Most of the existing embedding approaches, however, run on an excessively high precision, ignoring the fact that at the end, embedding outputs are converted into coarse-grained discrete pixel coordinates in a screen space. Motivated by such an observation and directly considering pixel coordinates in an embedding optimization process, we accelerate Barnes-Hut tree-based t-distributed stochastic neighbor embedding (BH-SNE), known as a state-of-the-art 2D embedding method, and propose a novel method called PixelSNE, a highly-efficient, screen resolution-driven 2D embedding method with a linear computational complexity in terms of the number of data items. Read More

Searching for the Neutrinoless Double Beta Decay (NLDBD) is now regarded as the topmost promising technique to explore the nature of neutrinos after the discovery of neutrino masses in oscillation experiments. PandaX-III (Particle And Astrophysical Xenon Experiment III) will search for the NLDBD of $^{136}$Xe at the China Jin Ping underground Laboratory (CJPL). In the first phase of the experiment, a high pressure gas Time Projection Chamber (TPC) will contain 200 kg, 90% $^{136}$Xe enriched gas operated at 10 bar. Read More

Standard weak measurement (SWM) has been proved to be a useful ingredient for measuring small longitudinal phase shifts. [Phys. Rev. Read More

Jinping Neutrino Experiment (Jinping) is proposed to significantly improve measurements on solar neutrinos and geoneutrinos in China Jinping Laboratory - a lab with a number of unparalleled features, thickest overburden, lowest reactor neutrino background, etc., which identify it as the world-best low-energy neutrino laboratory. The proposed experiment will have target mass of 4 kilotons of liquid scintillator or water-based liquid scintillator, with a fiducial mass of 2 kilotons for neutrino-electron scattering events and 3 kilotons for inverse-beta interaction events. Read More

We study the problem of visualizing large-scale and high-dimensional data in a low-dimensional (typically 2D or 3D) space. Much success has been reported recently by techniques that first compute a similarity structure of the data points and then project them into a low-dimensional space with the structure preserved. These two steps suffer from considerable computational costs, preventing the state-of-the-art methods such as the t-SNE from scaling to large-scale and high-dimensional data (e. Read More

This paper studies energy-efficient power allocation schemes for secondary users in sensing-based spectrum sharing cognitive radio systems. It is assumed that secondary users first perform channel sensing possibly with errors and then initiate data transmission with different power levels based on sensing decisions. The circuit power is taken into account in total power consumption. Read More

Einstein-Podolsky-Rosen (EPR) steering describes the ability of one observer to nonlocally "steer" the other observer's state through local measurements. It exhibits a unique asymmetric property, i.e. Read More

Quantum repeaters are critical components for distributing entanglement over long distances in presence of unavoidable optical losses during transmission. Stimulated by Duan-Lukin-Cirac-Zoller protocol, many improved quantum-repeater protocols based on quantum memories have been proposed, which commonly focus on the entanglement-distribution rate. Among these protocols, the elimination of multi-photons (multi-photon-pairs) and the use of multimode quantum memory are demonstrated to have the ability to greatly improve the entanglement-distribution rate. Read More

In a hybrid quantum network, linking two kinds of quantum nodes through photonic channels requires excellent matching of central frequency and bandwidth between both nodes and their interfacing photons. However, pre-existing photon sources can not fulfill this requirement. Using a novel conjoined double-cavity strategy, we report the generation of nondegenerate narrow-band photon pairs by cavity-enhanced spontaneous parametric down-conversion. Read More

Unsupervised text embedding methods, such as Skip-gram and Paragraph Vector, have been attracting increasing attention due to their simplicity, scalability, and effectiveness. However, comparing to sophisticated deep learning architectures such as convolutional neural networks, these methods usually yield inferior results when applied to particular machine learning tasks. One possible reason is that these text embedding methods learn the representation of text in a fully unsupervised way, without leveraging the labeled information available for the task. Read More

2015Jul
Authors: Fengpeng An, Guangpeng An, Qi An, Vito Antonelli, Eric Baussan, John Beacom, Leonid Bezrukov, Simon Blyth, Riccardo Brugnera, Margherita Buizza Avanzini, Jose Busto, Anatael Cabrera, Hao Cai, Xiao Cai, Antonio Cammi, Guofu Cao, Jun Cao, Yun Chang, Shaomin Chen, Shenjian Chen, Yixue Chen, Davide Chiesa, Massimiliano Clemenza, Barbara Clerbaux, Janet Conrad, Davide D'Angelo, Herve De Kerret, Zhi Deng, Ziyan Deng, Yayun Ding, Zelimir Djurcic, Damien Dornic, Marcos Dracos, Olivier Drapier, Stefano Dusini, Stephen Dye, Timo Enqvist, Donghua Fan, Jian Fang, Laurent Favart, Richard Ford, Marianne Goger-Neff, Haonan Gan, Alberto Garfagnini, Marco Giammarchi, Maxim Gonchar, Guanghua Gong, Hui Gong, Michel Gonin, Marco Grassi, Christian Grewing, Mengyun Guan, Vic Guarino, Gang Guo, Wanlei Guo, Xin-Heng Guo, Caren Hagner, Ran Han, Miao He, Yuekun Heng, Yee Hsiung, Jun Hu, Shouyang Hu, Tao Hu, Hanxiong Huang, Xingtao Huang, Lei Huo, Ara Ioannisian, Manfred Jeitler, Xiangdong Ji, Xiaoshan Jiang, Cecile Jollet, Li Kang, Michael Karagounis, Narine Kazarian, Zinovy Krumshteyn, Andre Kruth, Pasi Kuusiniemi, Tobias Lachenmaier, Rupert Leitner, Chao Li, Jiaxing Li, Weidong Li, Weiguo Li, Xiaomei Li, Xiaonan Li, Yi Li, Yufeng Li, Zhi-Bing Li, Hao Liang, Guey-Lin Lin, Tao Lin, Yen-Hsun Lin, Jiajie Ling, Ivano Lippi, Dawei Liu, Hongbang Liu, Hu Liu, Jianglai Liu, Jianli Liu, Jinchang Liu, Qian Liu, Shubin Liu, Shulin Liu, Paolo Lombardi, Yongbing Long, Haoqi Lu, Jiashu Lu, Jingbin Lu, Junguang Lu, Bayarto Lubsandorzhiev, Livia Ludhova, Shu Luo, Vladimir Lyashuk, Randolph Mollenberg, Xubo Ma, Fabio Mantovani, Yajun Mao, Stefano M. Mari, William F. McDonough, Guang Meng, Anselmo Meregaglia, Emanuela Meroni, Mauro Mezzetto, Lino Miramonti, Thomas Mueller, Dmitry Naumov, Lothar Oberauer, Juan Pedro Ochoa-Ricoux, Alexander Olshevskiy, Fausto Ortica, Alessandro Paoloni, Haiping Peng, Jen-Chieh Peng, Ezio Previtali, Ming Qi, Sen Qian, Xin Qian, Yongzhong Qian, Zhonghua Qin, Georg Raffelt, Gioacchino Ranucci, Barbara Ricci, Markus Robens, Aldo Romani, Xiangdong Ruan, Xichao Ruan, Giuseppe Salamanna, Mike Shaevitz, Valery Sinev, Chiara Sirignano, Monica Sisti, Oleg Smirnov, Michael Soiron, Achim Stahl, Luca Stanco, Jochen Steinmann, Xilei Sun, Yongjie Sun, Dmitriy Taichenachev, Jian Tang, Igor Tkachev, Wladyslaw Trzaska, Stefan van Waasen, Cristina Volpe, Vit Vorobel, Lucia Votano, Chung-Hsiang Wang, Guoli Wang, Hao Wang, Meng Wang, Ruiguang Wang, Siguang Wang, Wei Wang, Yi Wang, Yi Wang, Yifang Wang, Zhe Wang, Zheng Wang, Zhigang Wang, Zhimin Wang, Wei Wei, Liangjian Wen, Christopher Wiebusch, Bjorn Wonsak, Qun Wu, Claudia-Elisabeth Wulz, Michael Wurm, Yufei Xi, Dongmei Xia, Yuguang Xie, Zhi-zhong Xing, Jilei Xu, Baojun Yan, Changgen Yang, Chaowen Yang, Guang Yang, Lei Yang, Yifan Yang, Yu Yao, Ugur Yegin, Frederic Yermia, Zhengyun You, Boxiang Yu, Chunxu Yu, Zeyuan Yu, Sandra Zavatarelli, Liang Zhan, Chao Zhang, Hong-Hao Zhang, Jiawen Zhang, Jingbo Zhang, Qingmin Zhang, Yu-Mei Zhang, Zhenyu Zhang, Zhenghua Zhao, Yangheng Zheng, Weili Zhong, Guorong Zhou, Jing Zhou, Li Zhou, Rong Zhou, Shun Zhou, Wenxiong Zhou, Xiang Zhou, Yeling Zhou, Yufeng Zhou, Jiaheng Zou

The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purpose underground liquid scintillator detector, was proposed with the determination of the neutrino mass hierarchy as a primary physics goal. It is also capable of observing neutrinos from terrestrial and extra-terrestrial sources, including supernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos, atmospheric neutrinos, solar neutrinos, as well as exotic searches such as nucleon decays, dark matter, sterile neutrinos, etc. We present the physics motivations and the anticipated performance of the JUNO detector for various proposed measurements. Read More

This paper studies the problem of embedding very large information networks into low-dimensional vector spaces, which is useful in many tasks such as visualization, node classification, and link prediction. Most existing graph embedding methods do not scale for real world information networks which usually contain millions of nodes. In this paper, we propose a novel network embedding method called the "LINE," which is suitable for arbitrary types of information networks: undirected, directed, and/or weighted. Read More

It has always been a burden to the users of statistical topic models to predetermine the right number of topics, which is a key parameter of most topic models. Conventionally, automatic selection of this parameter is done through either statistical model selection (e.g. Read More

The measurement of correlations between different degrees of freedom is an important, but in general extremely difficult task in many applications of quantum mechanics. Here, we report an all-optical experimental detection and quantification of quantum correlations between the polarization and the frequency degrees of freedom of single photons by means of local operations acting only on the polarization degree of freedom. These operations only require experimental control over an easily accessible two-dimensional subsystem, despite handling strongly mixed quantum states comprised of a continuum of orthogonal frequency states. Read More

We present a computationally efficient method to incorporate density-functional theory into the calculation of reflectivity in low-energy electron microscopy. The reflectivity is determined by matching plane waves representing the electron beams to the Kohn-Sham wave functions calculated for a finite slab in a supercell. We show that the observed quantum interference effects in the reflectivity spectra of a few layers of graphene on a substrate can be reproduced well by the calculations using a moderate slab thickness. Read More

We experimentally realized a new method for transmitting quantum information reliably through paired optical polarization-maintaining (PM) fibers. The physical setup extends the use of a Mach-Zehnder interferometer, where noises are canceled through interference. This method can be viewed as an improved version of the current decohernce-free subspace (DFS) approach in fiber optics. Read More

The PMNS matrix displays an obvious symmetry, but not exact. There are several textures proposed in literature, which possess various symmetry patterns and seem to originate from different physics scenarios at high energy scales. To be consistent with the experimental measurement, all of the regularities slightly decline, i. Read More

The Kibble-Zurek mechanism (KZM) captures the key physics in the non-equilibrium dynamics of second-order phase transitions, and accurately predict the density of the topological defects formed in this process. However, despite much effort, the veracity of the central prediction of KZM, i.e. Read More

Bohr's principle of complementarity lies at the central place of quantum mechanics, according to which the light is chosen to behave as a wave or particles, depending on some exclusive detecting devices. Later, intermediate cases are found, but the total information of the wave-like and particle-like behaviors are limited by some inequalities. One of them is Englert-Greenberger (EG) duality relation. Read More

We consider the prospects for a neutrino factory to measure mixing angles, the CP violating phase and mass-squared differences by detecting wrong-charged muons arising from the chain \mu^+ to \nu_e to \nu_\mu\ to \mu^- and the right-charged muons coming from the chain \mu^+ to \bar{\nu}_\mu\ to \bar{\nu}_\mu\ to \mu^+ (similar to \mu^- chains), where \nu_e to \nu_\mu\ and \bar{\nu}_\mu\ to \bar{\nu}_\mu\ are neutrino oscillation channels through a long baseline. First, we perform the baseline and energy optimization of the neutrino factory including the latest simulation results from the magnetized iron neutrino detector (MIND). Second, we study physics with near detectors and consider the treatment of systematic errors including cross section errors, flux errors, and background uncertainties. Read More

There are recent considerations to increase the photomultiplier density in the IceCube detector array beyond that of DeepCore, which will lead to a lower detection threshold and a huge fiducial mass for the neutrino detection. This initiative is known as "Phased IceCube Next Generation Upgrade" (PINGU). We discuss the possibility to send a neutrino beam from one of the major accelerator laboratories in the Northern hemisphere to such a detector. Read More

We investigate the violation of Leggett-Garg (LG) inequalities inquantum dots with the stationarity assumption. By comparing two types of LG inequalities, we find a better one which is easier to be tested in experiment. In addition, we show that the fine-structure splitting, background noise and temperature of quantum dots all influence the violation of LG inequalities. Read More

Non-Markovian processes have recently become a central topic in the study of open quantum systems. We realize experimentally non-Markovian decoherence processes of single photons by combining time delay and evolution in a polarization-maintaining optical fiber. The experiment allows the identification of the process with strongest memory effects as well as the determination of a recently proposed measure for the degree of quantum non-Markovianity based on the exchange of information between the open system and its environment. Read More

Compared with direct-gap semiconductors, the valley degeneracy of silicon and germanium opens up new channels for spin relaxation that counteract the spin degeneracy of the inversion-symmetric system. Here the symmetries of the electron-phonon interaction for silicon and germanium are identified and the resulting spin lifetimes are calculated. Room-temperature spin lifetimes of electrons in silicon are found to be comparable to those in gallium arsenide, however, the spin lifetimes in silicon or germanium can be tuned by reducing the valley degeneracy through strain or quantum confinement. Read More

We perform the baseline and energy optimization of the Neutrino Factory including the latest simulation results on the magnetized iron detector (MIND). We also consider the impact of tau decays, generated by nu_mu to nu_tau or nu_e to nu_tau appearance, on the mass hierarchy, CP violation, and theta_{13} discovery reaches, which we find to be negligible for the considered detector. For the baseline-energy optimization for small theta_{13}, we qualitatively recover the results with earlier simulations of the MIND detector. Read More

We discuss the effects of one additional sterile neutrino at the Neutrino Factory. Compared to earlier analyses, which have been motivated by LSND results, we do not impose any constraint on the additional mass squared splitting. This means that the additional mass eigenstate could, with small mixings, be located among the known ones, as it is suggested by the recent analysis of cosmological data. Read More

We present a model to derive the state of the photon pairs generated by the biexciton cascade decay of a self-assembled quantum dot, which agrees well with the experimental result. Furthermore we calculate the concurrence and entanglement sudden death is found in this system with temperature increasing, which prevents quantum dot emits entangled photon pairs at a high temperature. The relationship between the fine structure splitting and the sudden death temperature is provided too. Read More

We discuss neutrino oscillation physics with a neutrino factory in stages, including the possibility of upgrading the muon energy within the same program. We point out that a detector designed for the low energy neutrino factory may be used off-axis in a high energy neutrino factory beam. We include the re-optimization of the experiment depending on the value of theta_13 found. Read More

The geometric effects of the beam in near detectors at a neutrino factory are discussed. The refined systematics treatment, including cross section errors, flux errors and background uncertainties, is compared with the IDS-NF one. Different near detector setups are included. Read More

Exciton fine-structure splittings within quantum dots introduce phase differences between the two biexciton decay paths that greatly reduce the entanglement of photon pairs generated via biexciton recombination. We analyze this problem in the frequency domain and propose a practicable method to compensate the phase difference by inserting a spatial light modulator, which substantially improves the entanglement of the photon pairs without any loss. Read More

We discuss the impact of near detectors at a neutrino factory both on standard oscillation and non-standard interaction measurements. Our systematics treatment includes cross section errors, flux errors, and background uncertainties, and our near detector fluxes include the geometry of the neutrino source and the detector. Instead of a specific detector concept, we introduce qualitatively different classes of near detectors with different characteristics, such as near detectors catching the whole neutrino flux (near detector limit) versus near detectors observing a spectrum similar to that of the far detector (far detector limit). Read More

It is generally believed that a point defect in graphene gives rise to an impurity state at zero energy and causes a sharp peak in the local density of states near the defect site. We revisit the defect problem in graphene and find the general consensus incorrect. By both analytic and numeric methods, we show that the contribution to the local density of states from the impurity state vanishes in the thermodynamic limit. Read More

The magnetic circular dichroism of III-V diluted magnetic semiconductors, calculated within a theoretical framework suitable for highly disordered materials, is shown to be dominated by optical transitions between the bulk bands and an impurity band formed from magnetic dopant states. The theoretical framework incorporates real-space Green's functions to properly incorporate spatial correlations in the disordered conduction band and valence band electronic structure, and includes extended and localized electronic states on an equal basis. Our findings reconcile unusual trends in the experimental magnetic circular dichroism in III-V DMSs with the antiferromagnetic p-d exchange interaction between a magnetic dopant spin and its host. Read More

Following previous study, in the Littlest Higgs model (LHM), the heavy photon is supposed to be a possible dark matter candidate and its relic abundance of the heavy photon is estimated in terms of the Boltzman-Lee-Weinberg time-evolution equation. The effects of the T-parity violation is also considered. Our calculations show that when Higgs mass $M_H$ taken to be 300 GeV and don't consider T-parity violation, only two narrow ranges $133Read More

One of the most important tasks in high energy physics is search for the exotic states, such as glueball, hybrid and multi-quark states. The transitions $\psi(ns)\to \psi(ms)+\pi\pi$ and $\Upsilon(ns)\to \Upsilon(ms)+\pi\pi$ attract great attentions because they may reveal characteristics of hybrids. In this work, we analyze those transition modes in terms of the theoretical framework established by Yan and Kuang. Read More

As is well known, the existed perturbation theory can be applied to calculations of energy, state and transition probability in many quantum systems. However, there are different paths and methods to improve its calculation precision and efficiency in our view. According to an improved scheme of perturbation theory proposed by [An Min Wang, quant-ph/0611217], we reconsider the transition probability and perturbed energy for a Hydrogen atom in a constant magnetic field. Read More

The discovery of ferromagnetism in Mn doped GaAs [1] has ignited interest in the development of semiconductor technologies based on electron spin and has led to several proof-of-concept spintronic devices [2-4]. A major hurdle for realistic applications of (Ga,Mn)As, or other dilute magnetic semiconductors, remains their below room-temperature ferromagnetic transition temperature. Enhancing ferromagnetism in semiconductors requires understanding the mechanisms for interaction between magnetic dopants, such as Mn, and identifying the circumstances in which ferromagnetic interactions are maximized [5]. Read More

We propose a method for all-electrical initialization, control and readout of the spin of single ions substituted into a semiconductor. Mn ions in GaAs form a natural example. In the ion's ground state the Mn core spin magnetic moment locks antiparallel to the spin and orbital magnetic moment of a bound valence hole from the GaAs host. Read More

The spin orientation of a magnetic dopant in a zincblende semiconductor strongly influences the spatial structure of an acceptor state bound to the dopant. The acceptor state has a roughly oblate shape with the short axis aligned with the dopant's core spin. For a Mn dopant in GaAs the local density of states at a site 8 angstrom away from the dopant can change by as much by 90% when the Mn spin orientation changes. Read More

We study sharp low-energy resonance peaks in the local density of states (LDOS) induced by Zn impurities or possible Cu vacancies in superconducting Bi_2Sr_2CaCu_2O_{8+delta}. The measured structure of these near-zero-bias resonances is quantitatively reproduced by an extended impurity potential without invoking internal impurity states or sophisticated tunneling models. The Zn potential extends at least to the nearest-neighbor Cu sites, and the range of order parameter suppression extends at least 8 \AA away from the Zn site. Read More

The structure of vortices in Bose-Einstein condensed atomic gases is studied taking into account many-body correlation effects. It is shown that for excited vortices the particle density in the vortex core increases as the angular momentum of the system increases. The core density can increase by several times with only a few percent change in the angular momentum. Read More