Jesus Zavala - Dark Cosmology Centre

Jesus Zavala
Are you Jesus Zavala?

Claim your profile, edit publications, add additional information:

Contact Details

Name
Jesus Zavala
Affiliation
Dark Cosmology Centre
City
Copenhagen O
Country
Denmark

Pubs By Year

External Links

Pub Categories

 
Cosmology and Nongalactic Astrophysics (28)
 
High Energy Physics - Phenomenology (11)
 
Astrophysics of Galaxies (8)
 
Astrophysics (7)
 
High Energy Astrophysical Phenomena (3)
 
High Energy Physics - Theory (1)

Publications Authored By Jesus Zavala

We present a theoretical analysis of some unexplored aspects of relaxed Bose-Einstein condensate dark matter (BECDM) haloes. This type of ultralight bosonic scalar field dark matter is a viable alternative to the standard cold dark matter (CDM) paradigm, as it makes the same large-scale predictions as CDM and potentially overcomes CDM's small-scale problems via a galaxy-scale de Broglie wavelength. We simulate BECDM halo formation through mergers, evolved under the Schr\"odinger-Poisson equations. Read More

We perform dark-matter-only simulations of a sample of 28 relaxed massive cluster-sized haloes in the Cold Dark Matter (CDM) and Self-Interacting Dark Matter (SIDM) models of structure formation, in order to study the structural differences across the models at large radii, in a regime that has been largely unexplored, and where the impact of baryonic physics is expected to be very limited. We find that the sample distributions for the radial profiles of the density, ellipsoidal axis ratios (halo shapes), and velocity anisotropies ($\beta$) of the haloes differ considerably between the models, even at $\gtrsim10\%$ of the virial radius, if the amplitude of the self-scattering cross section is $\sigma/m_\chi=1$ cm$^2$ gr$^{-1}$. For the density profiles and halo shapes, the separation is around the $1\sigma$ level, with the halo shapes showing the strongest deviations, whereas for $\beta$ we find a narrower distribution in SIDM by $\sim25\%$. Read More

We explore for the first time the effect of self-interacting dark matter (SIDM) on the dark matter (DM) and baryonic distribution in massive galaxies formed in hydrodynamical cosmological simulations, including explicit baryonic physics treatment. A novel implementation of Super-Massive Black Hole (SMBH) formation and evolution is used, as in Tremmel et al.(2015, 2016), allowing to explicitly follow SMBH dynamics at the center of galaxies. Read More

Galactic rotation curves are a fundamental constraint for any cosmological model. We use controlled N-body simulations of galaxies to study the gravitational effect of baryons in a scenario with collisionless cold dark matter (CDM) versus one with a self-interacting dark matter (SIDM) component. In particular, we examine the inner profiles of the rotation curves in the velocity range Vmax = 30-250 km/s, whose diversity has been found to be greater than predicted by the Lambda-CDM scenario. Read More

The isotropic gamma-ray background arises from the contribution of unresolved sources, including members of confirmed source classes and proposed gamma-ray emitters such as the radiation induced by dark matter annihilation and decay. Clues about the properties of the contributing sources are imprinted in the anisotropy characteristics of the gamma-ray background. We use 81 months of Pass 7 Reprocessed data from the Fermi Large Area Telescope to perform a measurement of the anisotropy angular power spectrum of the gamma-ray background. Read More

Dark matter annihilation or decay could have a significant impact on the ionisation and thermal history of the universe. In this paper, we study the potential contribution of dark matter annihilation (s-wave- or p-wave-dominated) or decay to cosmic reionisation, via the production of electrons, positrons and photons. We map out the possible perturbations to the ionisation and thermal histories of the universe due to dark matter processes, over a broad range of velocity-averaged annihilation cross-sections/decay lifetimes and dark matter masses. Read More

We investigate the effects of self-interacting dark matter (SIDM) on the tidal stripping and evaporation of satellite galaxies in a Milky Way-like host. We use a suite of five zoom-in, dark-matter-only simulations, two with velocity-independent SIDM cross sections, two with velocity-dependent SIDM cross sections, and one cold dark matter simulation for comparison. After carefully assigning stellar mass to satellites at infall, we find that stars are stripped at a higher rate in SIDM than in CDM. Read More

The gravitationally-lensed galaxy A1689-zD1 is one of the most distant spectroscopically confirmed sources ($z=7.5$). It is the earliest known galaxy where the interstellar medium (ISM) has been detected; dust emission was detected with the Atacama Large Millimetre Array (ALMA). Read More

We formulate an effective theory of structure formation (ETHOS) that enables cosmological structure formation to be computed in almost any microphysical model of dark matter physics. This framework maps the detailed microphysical theories of particle dark matter interactions into the physical effective parameters that shape the linear matter power spectrum and the self-interaction transfer cross section of non-relativistic dark matter. These are the input to structure formation simulations, which follow the evolution of the cosmological and galactic dark matter distributions. Read More

We present the first simulations within an effective theory of structure formation (ETHOS), which includes the effect of interactions between dark matter and dark radiation on the linear initial power spectrum and dark matter self-interactions during non-linear structure formation. We simulate a Milky Way-like halo in four different dark matter models and the cold dark matter case. Our highest resolution simulation has a particle mass of $2. Read More

We explore the co-evolution of the specific angular momentum of dark matter haloes and the cold baryons that comprise the galaxies within. We study over two thousand central galaxies within the reference cosmological hydrodynamical simulation of the "Evolution and Assembly of GaLaxies and their Environments" (EAGLE) project. We employ a methodology within which the evolutionary history of a system is specified by the time-evolving properties of the Lagrangian particles that define it at z=0. Read More

2015Aug

We have recently introduced a novel statistical measure of dark matter clustering in phase space, the particle phase space average density ($P^2SAD$). In a two-paper series, we studied the structure of $P^2SAD$ in the Milky-Way-size Aquarius haloes, constructed a physically motivated model to describe it, and illustrated its potential as a powerful tool to predict signals sensitive to the nanostructure of dark matter haloes. In this letter, we report a remarkable universality of the clustering of dark matter in phase space as measured by $P^2SAD$ within the subhaloes of host haloes across different environments covering a range from dwarf-size to cluster-size haloes ($10^{10}-10^{15}$ M$_\odot$). Read More

We present the first cosmological simulations of dwarf galaxies, which include dark matter self-interactions and baryons. We study two dwarf galaxies within cold dark matter, and four different elastic self-interacting scenarios with constant and velocity-dependent cross sections, motivated by a new force in the hidden dark matter sector. Our highest resolution simulation has a baryonic mass resolution of $1. Read More

We demonstrate that self-interacting dark matter models with interactions mediated by light particles can have significant deviations in the matter power-spectrum and detailed structure of galactic halos when compared to a standard cold dark matter scenario. While these deviations can take the form of suppression of small scale structure that are in some ways similar to that of warm dark matter, the self-interacting models have a much wider range of possible phenomenology. A long-range force in the dark matter can introduce multiple scales to the initial power spectrum, in the form of dark acoustic oscillations and an exponential cut-off in the power spectrum. Read More

The IceCube Neutrino Observatory has observed highly energetic neutrinos in excess of the expected atmospheric neutrino background. It is intriguing to consider the possibility that such events are probing physics beyond the standard model. In this context, $\mathcal{O}$(PeV) dark matter particles decaying to neutrinos have been considered while dark matter annihilation has been dismissed invoking the unitarity bound as a limiting factor. Read More

The mass aggregation and merger histories of present-day distinct haloes selected from the cosmological Millennium Simulations I and II are mapped into stellar mass aggregation and galaxy merger histories of central galaxies by using empirical stellar-to-halo and stellar-to-gas mass relations. The growth of bulges driven by the galaxy mergers/interactions is calculated using dynamical prescriptions. The predicted bulge demographics at redshift z~0 is consistent with observations (Zavala+2012). Read More

We present a model for the structure of the particle phase space average density ($P^2SAD$) in galactic haloes, introduced recently as a novel measure of the clustering of dark matter. Our model is based on the stable clustering hypothesis in phase space, the spherical collapse model, and tidal disruption of substructures, which is calibrated against the Aquarius simulations. Using this model, we can predict the behaviour of $P^2SAD$ in the numerically unresolved regime, down to the decoupling mass limit of generic WIMP models. Read More

We combine the detailed Star Formation Histories of the Fornax and Sculptor dwarf Spheroidals with the Mass Assembly History of their dark matter (DM) halo progenitors to estimate if the energy deposited by Supernova type II (SNeII) is sufficient to create a substantial DM core. Assuming the efficiency of energy injection of the SNeII into DM particles is $\epsilon_{\rm gc}=0.05$, we find that a single early episode, $z \gtrsim z_{\rm infall}$, that combines the energy of all SNeII due to explode over 0. Read More

We present a novel perspective on the clustering of dark matter in phase space by defining the particle phase space average density ($P^2SAD$) as a two-dimensional extension of the two-point correlation function averaged within a certain volume in phase space. This statistics is a sensitive measure of small scale (sub-)structure of dark matter haloes. By analysing the structure of $P^2SAD$ in Milky-Way-size haloes using the Aquarius simulations, we find it to be nearly universal at small scales, i. Read More

Self-Interacting Dark Matter is an attractive alternative to the Cold Dark Matter paradigm only if it is able to substantially reduce the central densities of dwarf-size haloes while keeping the densities and shapes of cluster-size haloes within current constraints. Given the seemingly stringent nature of the latter, it was thought for nearly a decade that SIDM would be viable only if the cross section for self-scattering was strongly velocity-dependent. However, it has recently been suggested that a constant cross section per unit mass of sigma_T/m~0. Read More

Self-interacting dark matter offers an interesting alternative to collisionless dark matter because of its ability to preserve the large-scale success of the cold dark matter model, while seemingly solving its challenges on small scales. We present here the first study of the expected dark matter detection signal taking into account different self-scattering models. We demonstrate that models with constant and velocity dependent cross sections, which are consistent with observational constraints, lead to distinct signatures in the velocity distribution, because non-thermalised features found in the cold dark matter distribution are thermalised through particle scattering. Read More

The existence of an extended hot gaseous corona surrounding clusters, groups and massive galaxies is well established by observational evidence and predicted by current theories of galaxy formation. When a small galaxy collides with a larger one, their coronae are the first to interact, producing disturbances that remove gas from the smaller system and settle it into the corona of the larger one. For a Milky-Way-size galaxy merging into a low-mass group, ram pressure stripping and the Kelvin-Helmholtz instability are the most relevant of these disturbances. Read More

The Fermi-LAT collaboration has recently reported the detection of angular power above the photon noise level in the diffuse gamma-ray background between 1 and 50 GeV. Such signal can be used to constrain a possible contribution from Dark-Matter-induced photons. We estimate the intensity and features of the angular power spectrum (APS) of this potential Dark Matter (DM) signal, for both decaying and annihilating DM candidates, by constructing template all-sky gamma-ray maps for the emission produced in the galactic halo and its substructures, as well as in extragalactic (sub)halos. Read More

We study the effect of baryons on the abundance of structures and substructures in a Lambda-CDM cosmology, using a pair of high resolution cosmological simulations from the GIMIC project. Both simulations use identical initial conditions, but while one contains only dark matter, the other also includes baryons. We find that gas pressure, reionisation, supernova feedback, stripping, and truncated accretion systematically reduce the total mass and the abundance of structures below ~10^12 solar masses compared to the pure dark matter simulation. Read More

2012Apr
Affiliations: 1Department of Physics and Astronomy, University of Waterloo, 2Instituto de Astronomia-UNAM, 3Instituto de Astronomia-UNAM, 4Center for Cosmology, Department of Physics and Astronomy, University of California

We use the Millennium I and II cosmological simulations to revisit the impact of mergers in the growth of bulges in central galaxies in the LCDM scenario. We seed galaxies within the growing CDM haloes using semi-empirical relations to assign stellar and gaseous masses, and an analytic treatment to estimate the transfer of stellar mass to the bulge of the remnant after a galaxy merger. We find that this model roughly reproduces the observed correlation between the bulge-to-total (B/T) mass ratio and stellar mass in present-day central galaxies as well as their observed demographics, although low-mass B/T<0. Read More

We present N-body simulations of a new class of self-interacting dark matter models, which do not violate any astrophysical constraints due to a non-power-law velocity dependence of the transfer cross section which is motivated by a Yukawa-like new gauge boson interaction. Specifically, we focus on the formation of a Milky Way-like dark matter halo taken from the Aquarius project and re-simulate it for a couple of representative cases in the allowed parameter space of this new model. We find that for these cases, the main halo only develops a small core (~1 kpc) followed by a density profile identical to that of the standard cold dark matter scenario outside of that radius. Read More

2011Oct
Affiliations: 1Instituto de Astrofisica de Andalucia IAA-CSIC, 2Department of Physics and Astrophysics, University of Waterloo, 3KIPAC - SLAC National Accelerator Laboratory, 4Instituto de Astrofisica de Andalucia IAA-CSIC, 5Harvard-Smithsonian Center for Astrophysics

For the first time, the Fermi-LAT measured the angular power spectrum (APS) of anisotropies in the diffuse gamma-ray background. The data is found to be broadly compatible with a model with contributions from the point sources in the 1-year catalog, the galactic diffuse background, and the extragalactic isotropic emission; however deviations are present at both large and small angular scales. In this study, we complement the model with a contribution from Dark Matter (DM) whose distribution is modeled exploiting the results of the most recent N-body simulations, considering the contribution of extragalactic halos and subhalos (from Millennium-II) and of galactic substructures (from Aquarius). Read More

(Abridged) The extragalactic background light (EBL) observed at multiple wavelengths is a promising tool to probe the nature of dark matter since it might contain a significant contribution from gamma-rays produced promptly by dark matter annihilation. Additionally, the electrons and positrons produced in the annihilation give energy to the CMB photons to populate the EBL with X-rays and gamma-rays. We here create full-sky maps of the radiation from both of these contributions using the high-resolution Millennium-II simulation. Read More

If dark matter is composed of neutralinos, the gamma-ray radiation produced in their annihilation offers an attractive possibility for dark matter detection. This process may contribute significantly to the extragalactic gamma-ray background (EGB) radiation, which is being measured by the FERMI satellite with unprecedented sensitivity. Using the high-resolution Millennium-II simulation of cosmic structure formation we have produced the first full-sky maps of the expected contribution of dark matter annihilation to the EGB radiation. Read More

We calculate how the relic density of dark matter particles is altered when their annihilation is enhanced by the Sommerfeld mechanism due to a Yukawa interaction between the annihilating particles. Maintaining a dark matter abundance consistent with current observational bounds requires the normalization of the s-wave annihilation cross section to be decreased compared to a model without enhancement. The level of suppression depends on the specific parameters of the particle model, with the kinetic decoupling temperature having the most effect. Read More

If dark matter is composed of neutralinos, one of the most exciting prospects for its detection lies in observations of the gamma-ray radiation created in pair annihilations between neutralinos, a process that may contribute significantly to the extragalactic gamma-ray background (EGB) radiation. We here use the high-resolution Millennium-II simulation of cosmic structure formation to produce the first full-sky maps of the expected radiation coming from extragalactic dark matter structures. Our map making procedure takes into account the total gamma-ray luminosity from all haloes and their subhaloes, and includes corrections for unresolved components of the emission as well as an extrapolation to the damping scale limit of neutralinos. Read More

We derive an expression for the entropy of a dark matter halo described by a Navarro-Frenk-White model with a core. The comparison of this entropy with the one of dark matter at the freeze-out era allows us to constraint the parameter space in mSUGRA models. Moreover, joining these constraints with the ones obtained from the usual abundance criteria and demanding both criteria to be consistent with the 2$\sigma$ bounds for the abundance of dark matter: $0. Read More

We present 3D hydrodynamical simulations of a precessing jet propagating inside a supernova remnant (SNR) shell, particularly applied to the W50-SS433 system in a search for the origin of its peculiar elongated morphology. Several runs were carried out with different values for the mass loss rate of the jet, the initial radius of the SNR, and the opening angle of the precession cone. We found that our models successfully reproduce the scale and morphology of W50 when the opening angle of the jets is set to 10$\degr$ or if this angle linearly varies with time. Read More

Motivated by the possible conflict between the Navarro-Frenk-White(NFW) model predictions for the dark matter contents of galactic systems and its correlation with baryonic surface density, we will explore an alternative paradigm for the description of dark matter halos. Such an alternative emerges from Tsallis' non-extensive thermodynamics applied to self-gravitating systems and leads to the so-called ``stellar polytrope'' (SP) model. We consider that this could be a better approach to real structures rather than the isothermal model, given the fact that the first one takes into account the non-extensivity of energy and entropy present in these type of systems characterized by long-range interactions. Read More

We study a dark matter halo model from two points of view: the ``stellar polytrope'' (SP) model coming from Tsallis' thermodynamics, and the one coming from the Navarro-Frenk-White (NFW) paradigm. We make an appropriate comparison between both halo models and analyzing the relations between the global physical parameters of observed galactic disks, coming from a sample of actual galaxies, with the ones of the unobserved dark matter halos, we conclude that the SP model is favored over the NFW model in such a comparison. Read More

We explore the use of two criteria to constraint the allowed parameter space in mSUGRA models. Both criteria are based in the calculation of the present density of neutralinos as dark matter in the Universe. The first one is the usual ``abundance'' criterion which is used to calculate the relic density after the ``freeze-out'' era. Read More

In this work we study the gravitational influence of the material extending from Uranus orbit to the Kuiper belt and beyond on objects moving within these regions. We conclude that a density distribution given by $\rho(r)=\frac{1}{r}$ (for $r\geq 20 UA$) generates a constant acceleration towards the Sun on those objects, which, with the proper amount of mass, accounts for the blue shift detected on the Pioneers space crafts. We also discuss the effect of this gravitational pull on Neptune, and comment on the possible origin of such a matter distribution. Read More

We present an alternative for the description of galactic halos based on Tsallis' non--extensive entropy formalism; on this scheme, halos are stellar polytropes characterized by three parameters, the central density, $\rho_c$, the central velocity dispersion, $\sigma_c$ and the polytropic index, $n$. To evaluate these parameters we take the Navarro-Frenk-White paradigm as a comparative model and make the following assumptions: both halo models must have the same virial mass, the same total energy and the same maximal velocity. These three conditions fix all the parameters for a given stellar polytrope allowing us to compare both halo models. Read More