Jennifer Yee - CfA

Jennifer Yee
Are you Jennifer Yee?

Claim your profile, edit publications, add additional information:

Contact Details

Name
Jennifer Yee
Affiliation
CfA
Location

Pubs By Year

Pub Categories

 
Earth and Planetary Astrophysics (14)
 
Solar and Stellar Astrophysics (8)
 
Astrophysics (4)
 
Astrophysics of Galaxies (2)
 
High Energy Astrophysical Phenomena (1)
 
Instrumentation and Methods for Astrophysics (1)

Publications Authored By Jennifer Yee

The distance to the planetary system OGLE-2015-BLG-0966L and the separation between the planet and its host star are ambiguous due to an ambiguity in the distance to the source star (Street et al. 2016). We attempt to break this degeneracy by measuring the systemic radial velocity of the source star measured from a spectrum taken while the source was highly magnified. Read More

It has recently been discovered that some, if not all, classical novae emit GeV gamma-rays during outburst, but the mechanics of this gamma-ray emission are still not well understood. We present here a comprehensive, multi-wavelength dataset---from radio to X-rays---for the most gamma-ray luminous classical nova to-date, V1324 Sco. Using this dataset, we show that V1324 Sco is a canonical dusty Fe-II type nova, with a bulk ejecta velocity of $1150 \pm 40~\rm km~s^{-1}$ and an ejecta mass of $2. Read More

The WFIRST microlensing mission will measure precise light curves and relative parallaxes for millions of stars, giving it the potential to characterize short-period transiting planets all along the line of sight and into the galactic bulge. These light curves will enable the detection of more than 100,000 transiting planets whose host stars have measured distances. Although most of these planets cannot be followed up, several thousand hot Jupiters can be confirmed directly by detection of their secondary eclipses in the WFIRST data. Read More

I present a novel method for measuring lens masses for microlensing events. By combining a measured lens flux with the microlens parallax vector pi_E, it is possible to derive the mass of the lens system without knowing the angular size of the Einstein ring, theta_E. This enables mass and distance measurements for single, luminous lenses, as well as binary and planetary lenses without caustic crossings. Read More

To move one step forward toward a Galactic distribution of planets, we present the first planet sensitivity analysis for microlensing events with simultaneous observations from space and the ground. We present this analysis for two such events, OGLE-2014-BLG-0939 and OGLE-2014-BLG-0124, which both show substantial planet sensitivity even though neither of them reached high magnification. This suggests that an ensemble of low to moderate magnification events can also yield significant planet sensitivity and therefore probability to detect planets. Read More

Light curves of microlensing events involving stellar binaries and planetary systems can provide information about the orbital elements of the system due to orbital modulations of the caustic structure. Accurately measuring the orbit in either the stellar or planetary case requires detailed modeling of subtle deviations in the light curve. At the same time, the natural, Cartesian parameterization of a microlensing binary is partially degenerate with the microlens parallax. Read More

We are still in the early days of exoplanet discovery. Astronomers are beginning to model the atmospheres and interiors of exoplanets and have developed a deeper understanding of processes of planet formation and evolution. However, we have yet to map out the full complexity of multi-planet architectures or to detect Earth analogues around nearby stars. Read More

Space-based microlens parallax measurements are a powerful tool for understanding planet populations, especially their distribution throughout the Galaxy. However, if space-based observations of the microlensing events must be specifically targeted, it is crucial that microlensing events enter the parallax sample without reference to the known presence or absence of planets. Hence, it is vital to define objective criteria for selecting events where possible and to carefully consider and minimize the selection biases where not possible so that the final sample represents a controlled experiment. Read More

NASA's proposed WFIRST-AFTA mission will discover thousands of exoplanets with separations from the habitable zone out to unbound planets, using the technique of gravitational microlensing. The Study Analysis Group 11 of the NASA Exoplanet Program Analysis Group was convened to explore scientific programs that can be undertaken now, and in the years leading up to WFIRST's launch, in order to maximize the mission's scientific return and to reduce technical and scientific risk. This report presents those findings, which include suggested precursor Hubble Space Telescope observations, a ground-based, NIR microlensing survey, and other programs to develop and deepen community scientific expertise prior to the mission. Read More

We show that space-based microlensing experiments can recover lens masses and distances for a large fraction of all events (those with individual photometric errors <~ 0.01 mag) using a combination of one-dimensional microlens parallaxes and astrometric microlensing. This will provide a powerful probe of the mass distributions of planets, black holes, and neutron stars, the distribution of planets as a function of Galactic environment, and the velocity distributions of black holes and neutron stars. Read More

Microlensing experiments are returning increasingly detailed information about the planetary and binary systems that are being detected, far beyond what was originally expected. In several cases the lens mass and distance are measured, and a few very special cases have yielded complete 8-parameter Kepler solutions, i.e. Read More

While of order a million asteroids have been discovered, the number in rigorously controlled samples that have precise orbits and rotation periods, as well as well-measured colors, is relatively small. In particular, less than a dozen main-belt asteroids with estimated diameters D<3 km, have excellent rotation periods. We show how existing and soon-to-be-acquired microlensing data can yield a large asteroid sample with precise orbits and rotation periods, which will include roughly 6% of all asteroids with maximum brightness I<18. Read More

Terrestrial microlens parallax is one of the very few methods that can measure the mass and number density of isolated dark low-mass objects, such as old free-floating planets and brown dwarfs. Terrestrial microlens parallax can be measured whenever a microlensing event differs substantially as observed from two or more well-separated sites. If the lens also transits the source during the event, then its mass can be measured. Read More

We show that for high-magnification (Amax > 100) microlensing events, accurate microlens parallaxes can be obtained from three or fewer photometric measurements from a small telescope on a satellite in solar orbit at ~1 AU from Earth. This is 1--2 orders of magnitude less observing resources than are required for standard space-based parallaxes. Such microlens parallax measurements would yield accurate mass and distance measurements to the lens for all cases in which finite-source effects were observed from the ground over peak. Read More

Despite the extensive study of lithium depletion during pre-main-sequence contraction, studies of individual stars show discrepancies between ages determined from the HR diagram and ages determined from lithium depletion (Song et al. 2002, White & Hillenbrand 2005) indicating open questions in the pre-main-sequence evolutionary models. To further test these models, we present high resolution spectra for members of the Beta Pictoris Moving Group (BPMG), which is young and nearby. Read More

The light curve of an exoplanetary transit can be used to estimate the planetary radius and other parameters of interest. Because accurate parameter estimation is a non-analytic and computationally intensive problem, it is often useful to have analytic approximations for the parameters as well as their uncertainties and covariances. Here we give such formulas, for the case of an exoplanet transiting a star with a uniform brightness distribution. Read More

Kepler will monitor enough stars that it is likely to detect single transits of planets with periods longer than the mission lifetime. We show that by combining the Kepler photometry of such transits with precise radial velocity (RV) observations taken over ~3 months, and assuming circular orbits, it is possible to estimate the periods of these transiting planets to better than 20% (for planets with radii greater than that of Neptune) and the masses to within a factor of 2 (for planet masses m_p > M_Jup). We also explore the effects of eccentricity on our estimates of these uncertainties. Read More

Kepler will monitor a sufficient number of stars that it is likely to detect single transits of planets with periods longer than the mission lifetime. We show that by combining the exquisite Kepler photometry of such transits with precise radial velocity observations taken over a reasonable timescale (~ 6 months) after the transits, and assuming circular orbits, it is possible to estimate the periods of these transiting planets to better than 20%, for planets with radii greater than that of Neptune, and the masses to within a factor of 2, for planets with masses larger than or about equal to the mass of Jupiter. Using a Fisher matrix analysis, we derive analytic estimates for the uncertainties in the velocity of the planet and the acceleration of the star at the time of transit, which we then use to derive the uncertainties for the planet mass, radius, period, semimajor axis, and orbital inclination. Read More

The light curve of an exoplanetary transit can be used to estimate the planetary radius and other parameters of interest. Because accurate parameter estimation is a non-analytic and computationally intensive problem, it is often useful to have analytic approximations for the parameters as well as their uncertainties and covariances. Here we give such formulas, for the case of an exoplanet transiting a star with a uniform brightness distribution. Read More