Jasper R. Uijlings

Jasper R. Uijlings
Are you Jasper R. Uijlings?

Claim your profile, edit publications, add additional information:

Contact Details

Name
Jasper R. Uijlings
Affiliation
Location

Pubs By Year

Pub Categories

 
Computer Science - Computer Vision and Pattern Recognition (6)

Publications Authored By Jasper R. Uijlings

Training object class detectors typically requires a large set of images with objects annotated by bounding boxes. However, manually drawing bounding boxes is very time consuming. In this paper we greatly reduce annotation time by proposing center-click annotations: we ask annotators to click on the center of an imaginary bounding box which tightly encloses the object instance. Read More

Semantic classes can be either things (objects with a well-defined shape, e.g. car, person) or stuff (amorphous background regions, e. Read More

We propose a novel method for semantic segmentation, the task of labeling each pixel in an image with a semantic class. Our method combines the advantages of the two main competing paradigms. Methods based on region classification offer proper spatial support for appearance measurements, but typically operate in two separate stages, none of which targets pixel labeling performance at the end of the pipeline. Read More

Training object class detectors typically requires a large set of images in which objects are annotated by bounding-boxes. However, manually drawing bounding-boxes is very time consuming. We propose a new scheme for training object detectors which only requires annotators to verify bounding-boxes produced automatically by the learning algorithm. Read More

Semantic segmentation is the task of assigning a class-label to each pixel in an image. We propose a region-based semantic segmentation framework which handles both full and weak supervision, and addresses three common problems: (1) Objects occur at multiple scales and therefore we should use regions at multiple scales. However, these regions are overlapping which creates conflicting class predictions at the pixel-level. Read More

Intuitively, the appearance of true object boundaries varies from image to image. Hence the usual monolithic approach of training a single boundary predictor and applying it to all images regardless of their content is bound to be suboptimal. In this paper we therefore propose situational object boundary detection: We first define a variety of situations and train a specialized object boundary detector for each of them using [Dollar and Zitnick 2013]. Read More