James Chiang - SLAC

James Chiang
Are you James Chiang?

Claim your profile, edit publications, add additional information:

Contact Details

James Chiang

Pubs By Year

External Links

Pub Categories

Astrophysics (18)
High Energy Astrophysical Phenomena (6)
Instrumentation and Methods for Astrophysics (4)
Cosmology and Nongalactic Astrophysics (1)
Mathematics - Statistics (1)
Statistics - Theory (1)

Publications Authored By James Chiang

We describe a system to measure the Quantum Efficiency in the wavelength range of 300 nm to 1100 nm of 40x40 mm n-channel CCD sensors for the construction of the 3.2 gigapixel LSST focal plane. The technique uses a series of instrument to create a very uniform flux of photons of controllable intensity in the wavelength range of interest across the face the sensor. Read More

At least a fraction of Gravitational Wave (GW) progenitors are expected to emit an electromagnetic (EM) signal in the form of a short gamma-ray burst (sGRB). The discovery of such a transient EM counterpart is challenging because the LIGO/VIRGO localization region is much larger (several hundreds of square degrees) than the field of view of X-ray, optical and radio telescopes. The Fermi Large Area Telescope (LAT) has a wide field of view ($\sim 2. Read More

The joint likelihood is a simple extension of the standard likelihood formalism that enables the estimation of common parameters across disjoint datasets. Joining the likelihood, rather than the data itself, means nuisance parameters can be dealt with independently. Application of this technique, particularly to Fermi-LAT dwarf spheroidal analyses, has already been met with great success. Read More

This presentation describes the Bayesian Block algorithm in the context of its application to analysis of time series data from the Fermi Gamma Ray Space Telescope. More generally this algorithm performs optimal segmentation analysis on sequential data in any mode, with arbitrary sampling and in the presence of gaps and exposure variations. A new procedure for correcting for backgrounds is also described. Read More


The Nuclear Spectroscopic Telescope Array (NuSTAR) mission, launched on 13 June 2012, is the first focusing high-energy X-ray telescope in orbit. NuSTAR operates in the band from 3 -- 79 keV, extending the sensitivity of focusing far beyond the ~10 keV high-energy cutoff achieved by all previous X-ray satellites. The inherently low-background associated with concentrating the X-ray light enables NuSTAR to probe the hard X-ray sky with a more than one-hundred-fold improvement in sensitivity over the collimated or coded-mask instruments that have operated in this bandpass. Read More

3C 66A is an intermediate-frequency-peaked BL Lac object detected by the Large Area Telescope onboard the Fermi Gamma-ray Space Telescope. We present a study of the long-term variations of this blazar seen over 2 years at GeV energies with Fermi and in the optical (flux and polarization) and near infrared with the Kanata telescope. In 2008, the first year of the study, we find a correlation between the gamma-ray flux and the measurements taken with the Kanata telescope. Read More

This paper addresses the problem of detecting and characterizing local variability in time series and other forms of sequential data. The goal is to identify and characterize statistically significant variations, at the same time suppressing the inevitable corrupting observational errors. We present a simple nonparametric modeling technique and an algorithm implementing it - an improved and generalized version of Bayesian Blocks (Scargle 1998) - that finds the optimal segmentation of the data in the observation interval. Read More

The emission from a gamma-ray burst (GRB) photosphere can give rise to a variety of spectral shapes. The spectrum can retain the shape of a Planck function or it can be broadened and have the shape of a Band function. This fact is best illustrated by studying GRB090902B: The main gamma-ray spectral component is initially close to a Planck function, which can only be explained by emission from the jet photosphere. Read More

Recent claims that the strength B_IGMF of the intergalactic magnetic field (IGMF) is >~ 1e-15 G are based on upper limits to the expected cascade flux in the GeV band produced by blazar TeV photons absorbed by the extragalactic background light. This limit depends on an assumption that the mean blazar TeV flux remains constant on timescales >~2 (B_ IGMF/1e-18 G)^2 / (E/{10 GeV})^2 yr for an IGMF coherence length ~ 1 Mpc, where E is the measured photon energy. Restricting TeV activity of 1ES 0229+200 to ~3 -- 4 years during which the source has been observed leads to a more robust lower limit of B_IGMF >~ 1e-18 G, which can be larger by an order of magnitude if the intrinsic source flux above ~5 -- 10 TeV from 1ES 0229+200 is strong. Read More

Affiliations: 1Stanford Linear Accelerator Center, 2Stanford Linear Accelerator Center, 3Scuola Normale Superiore, 4Stanford Linear Accelerator Center, 5Stanford Linear Accelerator Center
Category: Astrophysics

We describe the role of GeV gamma-ray observations with GLAST-LAT (Gamma-ray Large Area Space Telescope - Large Area Telescope) in identifying interaction sites of cosmic-ray proton (or hadrons) with interstellar medium (ISM). We expect to detect gamma rays from neutral pion decays in high-density ISM regions in the Galaxy, Large Magellanic Cloud, and other satellite galaxies. These gamma-ray sources have been detected already with EGRET (Energetic Gamma Ray Experiment Telescope) as extended sources (eg. Read More

Affiliations: 1Stanford Linear Accelerator Center, 2Scuola Normale Superiore, 3Stanford Linear Accelerator Center, 4Stanford Linear Accelerator Center, 5Stanford Linear Accelerator Center
Category: Astrophysics

We have developed an image restoration technique based on the Richardson-Lucy algorithm optimized for GLAST-LAT image analysis. Our algorithm is original since it utilizes the PSF (point spread function) that is calculated for each event. This is critical for EGRET and GLAST-LAT image analysis since the PSF depends on the energy and angle of incident gamma-rays and varies by more than one order of magnitude. Read More

We model the spectral energy distribution of the type 1 Seyfert galaxies, fitting data from simultaneous optical, UV, and X-ray monitoring observations. We assume a geometry consisting of a hot central Comptonizing region surrounded by a thin accretion disk. The properties of the disk and the hot central region are determined by the feedback occurring between the hot Comptonizing region and thermal reprocessing in the disk that, along with viscous dissipation, provides the seed photons for the Comptonization process. Read More

We model the spectral energy distribution of the type 1 Seyfert galaxy NGC 5548, fitting data from simultaneous optical, UV, and X-ray monitoring observations. We assume a geometry consisting of a hot central Comptonizing region surrounded by a thin accretion disk. The properties of the disk and the hot central region are determined by the feedback occurring between the hot Comptonizing region and thermal reprocessing in the disk that, along with viscous dissipation, provides the seed photons for the Comptonization process. Read More

Using a geometry consisting of a hot central Comptonizing plasma surrounded by a thin accretion disk, we model the optical through hard X-ray spectral energy distributions of the type 1 Seyfert galaxies NGC 3516 and NGC 7469. As in the model proposed by Poutanen, Krolik, & Ryde for the X-ray binary Cygnus X-1 and later applied to Seyfert galaxies by Zdziarski, Lubi\'nski, & Smith, feedback between the radiation reprocessed by the disk and the thermal Comptonization emission from the hot central plasma plays a pivotal role in determining the X-ray spectrum, and as we show, the optical and ultraviolet spectra as well. Seemingly uncorrelated optical/UV and X-ray light curves, similar to those which have been observed from these objects can be explained by variations in the size, shape, and temperature of the Comptonizing plasma. Read More

We find that energy losses due to synchrotron self-Compton (SSC) emission in blazar jets can produce distinctive signatures in the time-averaged synchrotron and SSC spectra of these objects. For a fairly broad range of particle injection distributions, SSC-loss dominated synchrotron emission exhibits a spectral dependence $F_\nu \sim \nu^{-3/2}$. The presence or absence of this dependence in the optical and ultraviolet spectra of flat spectrum radio quasars such as 3C~279 and in the soft X-ray spectra of high frequency BL Lac objects such as Mrk 501 gives a robust measure of the importance of SSC losses. Read More

We present an application of the thermal Comptonization/disk reprocessing model recently proposed by Zdziarski, Lubi\'nski, & Smith. We show that the absence of strong optical variations in the presence of strong concurrent X-ray variations, similar to those found by HST/RXTE monitoring observations of NGC 3516, can be explained by changing the geometry of the Comptonizing plasma rather than the accretion disk itself. The total X-ray luminosity of the Comptonizing plasma must decrease as its spatial extent increases. Read More

We discuss the results of three-dimensional magnetohydrodynamic simulations, using a pseudo-Newtonian potential, of thin disk (h/r ~ 0.1) accretion onto black holes. We find (i) that magnetic stresses persist within the marginally stable orbit, and (ii) that the importance of those stresses for the dynamics of the flow depends upon the strength of magnetic fields in the disk outside the last stable orbit. Read More

We present disk wind model calculations for the broad emission lines seen in the ultraviolet spectra of the X-ray binary Hercules X-1. Recent HST/STIS observations of these lines suggest that they are kinematically linked to the orbital motion of the neutron star and exhibit a red-shifted to blue-shifted evolution of the line shape during the progression of the eclipse from ingress to egress which is indicative of disk emission. Furthermore, these lines are single-peaked which implies that they may be formed in a disk wind similar to those we have proposed as producing the broad emission lines seen in the UV spectra of active galactic nuclei. Read More

We use three dimensional magnetohydrodynamic simulations, in a pseudo-Newtonian potential, to study geometrically thin accretion disc flows crossing the marginally stable circular orbit around black holes. We concentrate on vertically unstratified and isothermal disk models, but also consider a model that includes stratification. In all cases, we find that the sonic point lies just inside the last stable orbit, with a modest increase in the importance of magnetic field energy, relative to the thermal energy, observed interior to this radius. Read More


Gamma-ray burst (GRB) engines are probed most intimately during the prompt gamma-ray luminous phase when the expanding blast wave is closest to the explosion center. Using GRBs 990123 and 940217 as guides, we briefly review observations of high-energy emission from GRBs and summarize some problems in GRB physics. \gamma\gamma transparency arguments imply relativistic beaming. Read More

We present detailed calculations of nonthermal synchrotron and synchrotron self-Compton (SSC) spectra radiated by blast waves that are energized by interactions with a uniform surrounding medium. Radio, optical, X-ray and gamma-ray light curves and spectral indices are calculated for a standard parameter set that yields hard GRB spectra during the prompt emission phase. Because no lateral spreading of the blast-wave is assumed, the calculated temporal breaks represent the sharpest breaks possible from collimated outflows in a uniform surrounding medium. Read More

The bright Seyfert 1 galaxy \mcg shows large variability on a variety of time scales. We study the $\aproxlt 3$ day time scale variability using a set of simultaneous archival observations that were obtained from \rxte and the {\it Advanced Satellite for Cosmology and Astrophysics} (\asca). The \rxte\ observations span nearly $10^6$ sec and indicate that the X-ray Fourier Power Spectral Density has an rms variability of 16%, is flat from approximately 10^{-6} - 10^{-5} Hz, and then steepens into a power law $\propto f^{-\alpha}$ with $\alpha\aproxgt 1$. Read More

We show that the spectral shape of the low energy tails found for the time-integrated spectra of gamma-ray bursts, even in the absence of strong synchrotron cooling, can be significantly softer than the $\nu F_\nu \propto \nu^{4/3}$ asymptote predicted by synchrotron shock models. As we have noted in a previous work, blast wave deceleration via interaction with ambient material causes the characteristic electron injection energy to decrease in proportion to the bulk Lorentz factor of the blast wave, and under certain conditions, this effect will at least partially account for the observed increase in pulse widths with decreasing energy. This spectral softening can also be reflected in the time-integrated pulse spectrum. Read More

Most models for blazars and gamma-ray bursts involve relativistic plasma outflows powered by accretion processes onto black holes. The blast wave physics developed for cosmological models of GRBs is reviewed. Two points relevant for blazar modeling are made: (1) The injection of nonthermal relativistic particles in the comoving frame is simply treated though a process of energizing the plasma as it sweeps up material from the surrounding medium. Read More

Temporal analyses of the prompt gamma-ray and X-ray light curves of gamma-ray bursts reveal a tendency for the burst pulse time scales to increase with decreasing energy. For an ensemble of BATSE bursts, Fenimore et al. (1995) show that the energy dependence of burst peak durations can be represented by $\Delta t \propto E^{-\gamma}$ with $\gamma \simeq 0. Read More

An equation is derived to calculate the dynamics of relativistic magnetized plasma which decelerates by sweeping up matter from the ISM. Reduction to the non-radiative and radiative regimes is demonstrated. The evolving electron momentum distribution function in the comoving fluid frame is used to calculate the observed synchrotron radiation spectrum, assuming that a fixed fraction of the comoving proton power is instantaneously transformed into a power-law, "shock"-like electron distribution function. Read More

Affiliations: 1Naval Research Laboratory, 2Naval Research Laboratory
Category: Astrophysics

The flaring and fading radio, optical, and X-ray afterglows from GRB 970508 are modeled by a highly relativistic plasma sphere which decelerates by sweeping up ambient gas. The afterglow emission is assumed to be synchrotron radiation emitted by nonthermal electrons in the magnetized plasmoid. The temporal behavior of the delayed emission is controlled by the evolution of the Doppler factor and by adiabatic expansion losses of the nonthermal electrons in the plasmoid. Read More