J. Tan - Department of Physics, University of Florida

J. Tan
Are you J. Tan?

Claim your profile, edit publications, add additional information:

Contact Details

J. Tan
Department of Physics, University of Florida
Coral Gables
United States

Pubs By Year

External Links

Pub Categories

Astrophysics of Galaxies (24)
Solar and Stellar Astrophysics (12)
Physics - Materials Science (4)
Physics - Mesoscopic Systems and Quantum Hall Effect (3)
Quantitative Biology - Populations and Evolution (2)
Instrumentation and Methods for Astrophysics (2)
Mathematics - History and Overview (2)
Physics - Physics and Society (2)
Nonlinear Sciences - Chaotic Dynamics (2)
Computer Science - Networking and Internet Architecture (2)
Computer Science - Learning (2)
Computer Science - Robotics (2)
Physics - Chemical Physics (2)
Computer Science - Multimedia (1)
Mathematics - Combinatorics (1)
Physics - Statistical Mechanics (1)
Quantum Physics (1)
Computer Science - Computers and Society (1)
Physics - Disordered Systems and Neural Networks (1)
High Energy Physics - Experiment (1)
Quantitative Biology - Quantitative Methods (1)
Physics - Fluid Dynamics (1)
Statistics - Methodology (1)
Physics - Accelerator Physics (1)
Computer Science - Computer Vision and Pattern Recognition (1)
Cosmology and Nongalactic Astrophysics (1)

Publications Authored By J. Tan

Affiliations: 1University of Pennsylvania, Philadelphia, USA, 2University of Pennsylvania, Philadelphia, USA, 3University of Pennsylvania, Philadelphia, USA

The study of viscous fluid flow coupled with rigid or deformable solids has many applications in biological and engineering problems, e.g., blood cell transport, drug delivery, and particulate flow. Read More

Virtual reality (VR) video provides an immersive 360 viewing experience to a user wearing a head-mounted display: as the user rotates his head, correspondingly different fields-of-view (FoV) of the 360 video are rendered for observation. Transmitting the entire 360 video in high quality over bandwidth-constrained networks from server to client for real-time playback is challenging. In this paper we propose a multi-stream switching framework for VR video streaming: the server pre-encodes a set of VR video streams covering different view ranges that account for server-client round trip time (RTT) delay, and during streaming the server transmits and switches streams according to a user's detected head rotation angle. Read More

We show clear experimental evidence of co-operative terahertz (THz) dynamics observed below 3 THz (~100 cm-1), for a low-symmetry Zr-based metal-organic framework (MOF) structure, termed MIL-140A [ZrO(O2C-C6H4-CO2)]. Utilizing a combination of high-resolution inelastic neutron scattering and synchrotron radiation far-infrared spectroscopy, we measured low-energy vibrations originating from the hindered rotations of organic linkers, whose energy barriers and detailed dynamics have been elucidated via ab initio density functional theory (DFT) calculations. For completeness, we obtained Raman spectra and characterized the alterations to the complex pore architecture caused by the THz rotations. Read More

Outstanding functional tunability underpinning metal-organic framework (MOF) confers a versatile platform to contrive next-generation chemical sensors, optoelectronics, energy harvesters and converters. We report a rare exemplar of a porous 2D nanosheet material, constructed from an extended 3D MOF structure. We develop a rapid supramolecular self-assembly methodology at ambient conditions, to synthesize readily-exfoliatable MOF nanosheets, functionalized in situ by adopting the Guest@MOF (Host) strategy. Read More

We present the first use of in situ far-infrared spectroscopy to analyze the thermal amorphization of a zeolitic imidazolate framework material. We explain the nature of vibrational motion changes during the amorphization process and reveal new insights into the effect that temperature has on the Zn-N tetrahedra. Read More

We have measured astrometry for members of the Orion Nebula Cluster with images obtained in 2015 with the Wide Field Camera 3 on board the Hubble Space Telescope. By comparing those data to previous measurements with NICMOS on Hubble in 1998, we have discovered that a star in the Kleinmann-Low Nebula, source x from Lonsdale et al. (1982), is moving with an unusually high proper motion of 29 mas/yr, which corresponds to 55 km/s at the distance of Orion. Read More

Star formation from the interstellar medium of galactic disks is a basic process controlling the evolution of galaxies. Understanding the star formation rate in a local patch of a disk with a given gas mass is thus an important challenge for theoretical models. Here we simulate a kiloparsec region of a disk, following the evolution of self-gravitating molecular clouds down to subparsec scales, as they form stars that then inject feedback energy by dissociating and ionizing UV photons and supernova explosions. Read More

We study giant molecular cloud (GMC) collisions and their ability to trigger star cluster formation. We further develop our three dimensional magnetized, turbulent, colliding GMC simulations by implementing star formation sub-grid models. Two such models are explored: (1) "Density-Regulated," i. Read More

We report the mechanical properties of the `giant' negative compressibility material zinc(II) dicyanoaurate, as determined using a combination of single-crystal nanoindentation measurements and \emph{ab initio} density functional theory calculations. While the elastic response of zinc dicyanoaurate is found to be intermediate to the behaviour of dense and open framework structures, we discover the material to exhibit a particularly strong elastic recovery, which is advantageous for a range of practical applications. We attribute this response to the existence of supramolecular helices that function as atomic-scale springs, storing mechanical energy during compressive stress and hence inhibiting plastic deformation. Read More

Affiliations: 1Department of Astronomy, University of Florida, 2Department of Astronomy, University of Florida, 3Western Washington University, 4University of Oxford, 5Yale, 6Department of Astronomy, University of Florida, 7Leiden Observatory, 8Steward Observatory, 9University of Michigan, 10University of Michigan, 11Vanderbilt University, 12University of Virginia, 13Wesleyan University, 14University of Virginia, 15University of Virginia, 16University of Virginia

The kinematics and dynamics of young stellar populations tests theories of their formation. With this aim, we continue our analysis of the SDSS-III/APOGEE INfrared Spectra of Young Nebulous Clusters (IN-SYNC) survey, a high resolution near infrared spectroscopic survey of young clusters. We focus on the Orion A star-forming region, for which IN-SYNC obtained spectra of ~2700 stars. Read More

Revelation of chlorine and bromine isotope fractionation of halogenated organic compounds (HOCs) in electron impact (EI) ion source is crucial for compound-specific chlorine/bromine isotope analysis (CSIA-Cl/Br) using gas chromatography EI mass spectrometry (GC-EI-MS). This study systematically investigated chlorine/bromine isotope fractionation in EI ion source of HOCs including 12 organochlorines and 5 organobromines using GC-double focus magnetic-sector high resolution MS (GC-DFS-HRMS). In-source chlorine/bromine isotope fractionation behaviors of the HOCs were revealed with varied isotope fractionation patterns and extents depending on compounds. Read More

Compound-specific chlorine/bromine isotope analysis (CSIA-Cl/Br) has become a useful approach for degradation pathway investigation and source appointment of halogenated organic pollutants (HOPs). CSIA-Cl/Br is usually conducted by gas chromatography-mass spectrometry (GC-MS), which could be negatively impacted by chlorine and bromine isotope fractionation of HOPs on GC columns. In this study, 31 organochlorines and 4 organobromines were systematically investigated in terms of Cl/Br isotope fractionation on GC columns using GC-double focus magnetic-sector high resolution MS (GC-DFS-HRMS). Read More

We present a new method of learning control policies that successfully operate under unknown dynamic models. We create such policies by leveraging a large number of training examples that are generated using a physical simulator. Our system is made of two components: a Universal Policy (UP) and a function for Online System Identification (OSI). Read More

We have developed and trained a convolutional neural network to automatically and simultaneously segment optic disc, fovea and blood vessels. Fundus images were normalised before segmentation was performed to enforce consistency in background lighting and contrast. For every effective point in the fundus image, our algorithm extracted three channels of input from the neighbourhood of the point and forward the response across the 7 layer network. Read More

Affiliations: 1Dept. of Astronomy, Yale University, USA, 2Dept. of Astronomy, University of Florida, USA, 3Max-Planck-Institute for Extraterrestrial Physics, 4INAF - Osservatorio Astrofisico di Arcetri, Italy, 5European Southern Observatory, 6Max-Planck-Institute for Astronomy, Germany

We present high resolution (0.2", 1000 AU) ALMA observations of massive infrared dark cloud clump, G028.37+00. Read More

Affiliations: 1Dept. of Astronomy, University of Florida, 2Dept. of Astronomy, University of Florida, 3CIERA, Northwestern University

We investigate the formation and early evolution of star clusters assuming that they form from a turbulent starless clump of given mass bounded inside a parent self-gravitating molecular cloud characterized by a particular mass surface density. As a first step we assume instantaneous star cluster formation and gas expulsion. We draw our initial conditions from observed properties of starless clumps. Read More

Measures of wealth and production have been found to scale superlinearly with the population of a city. Therefore, it makes economic sense for humans to congregate together in dense settlements. A recent model of population dynamics showed that population growth can become superexponential due to the superlinear scaling of production with population in a city. Read More

Non-parametric detrending or noise reduction methods are often employed to separate trends from noisy time series when no satisfactory models exist to fit the data. However, conventional detrending methods depend on subjective choices of detrending parameters. Here, we present a simple multivariate detrending method based on available nonlinear forecasting techniques. Read More

We study feedback during massive star formation using semi-analytic methods, considering the effects of disk winds, radiation pressure, photoevaporation and stellar winds, while following protostellar evolution in collapsing massive gas cores. We find that disk winds are the dominant feedback mechanism setting star formation efficiencies (SFEs) from initial cores of ~0.3-0. Read More

This paper describes Team Delft's robot, which won the Amazon Picking Challenge 2016, including both the Picking and the Stowing competitions. The goal of the challenge is to automate pick and place operations in unstructured environments, specifically the shelves in an Amazon warehouse. Team Delft's robot is based on an industrial robot arm, 3D cameras and a customized gripper. Read More

We present an overview and first results of the {\it SOFIA} Massive (SOMA) Star Formation Survey, which is using the FORCAST instrument to image massive protostars from $\sim10$--$40\:\rm{\mu}\rm{m}$. These wavelengths trace thermal emission from warm dust, which in Core Accretion models mainly emerges from the inner regions of protostellar outflow cavities. Dust in dense core envelopes also imprints characteristic extinction patterns at these wavelengths causing intensity peaks to shift along the outflow axis and profiles to become more symmetric at longer wavelengths. Read More

Authors: Demitri Muna, Michael Alexander, Alice Allen, Richard Ashley, Daniel Asmus, Ruyman Azzollini, Michele Bannister, Rachael Beaton, Andrew Benson, G. Bruce Berriman, Maciej Bilicki, Peter Boyce, Joanna Bridge, Jan Cami, Eryn Cangi, Xian Chen, Nicholas Christiny, Christopher Clark, Michelle Collins, Johan Comparat, Neil Cook, Darren Croton, Isak Delberth Davids, Éric Depagne, John Donor, Leonardo A. dos Santos, Stephanie Douglas, Alan Du, Meredith Durbin, Dawn Erb, Daniel Faes, J. G. Fernández-Trincado, Anthony Foley, Sotiria Fotopoulou, Søren Frimann, Peter Frinchaboy, Rafael Garcia-Dias, Artur Gawryszczak, Elizabeth George, Sebastian Gonzalez, Karl Gordon, Nicholas Gorgone, Catherine Gosmeyer, Katie Grasha, Perry Greenfield, Rebekka Grellmann, James Guillochon, Mark Gurwell, Marcel Haas, Alex Hagen, Daryl Haggard, Tim Haines, Patrick Hall, Wojciech Hellwing, Edmund Christian Herenz, Samuel Hinton, Renee Hlozek, John Hoffman, Derek Holman, Benne Willem Holwerda, Anthony Horton, Cameron Hummels, Daniel Jacobs, Jens Juel Jensen, David Jones, Arna Karick, Luke Kelley, Matthew Kenworthy, Ben Kitchener, Dominik Klaes, Saul Kohn, Piotr Konorski, Coleman Krawczyk, Kyler Kuehn, Teet Kuutma, Michael T. Lam, Richard Lane, Jochen Liske, Diego Lopez-Camara, Katherine Mack, Sam Mangham, Qingqing Mao, David J. E. Marsh, Cecilia Mateu, Loïc Maurin, James McCormac, Ivelina Momcheva, Hektor Monteiro, Michael Mueller, Roberto Munoz, Rohan Naidu, Nicholas Nelson, Christian Nitschelm, Chris North, Juan Nunez-Iglesias, Sara Ogaz, Russell Owen, John Parejko, Vera Patrício, Joshua Pepper, Marshall Perrin, Timothy Pickering, Jennifer Piscionere, Richard Pogge, Radek Poleski, Alkistis Pourtsidou, Adrian M. Price-Whelan, Meredith L. Rawls, Shaun Read, Glen Rees, Hanno Rein, Thomas Rice, Signe Riemer-Sørensen, Naum Rusomarov, Sebastian F. Sanchez, Miguel Santander-García, Gal Sarid, William Schoenell, Aleks Scholz, Robert L. Schuhmann, William Schuster, Peter Scicluna, Marja Seidel, Lijing Shao, Pranav Sharma, Aleksandar Shulevski, David Shupe, Cristóbal Sifón, Brooke Simmons, Manodeep Sinha, Ian Skillen, Bjoern Soergel, Thomas Spriggs, Sundar Srinivasan, Abigail Stevens, Ole Streicher, Eric Suchyta, Joshua Tan, O. Grace Telford, Romain Thomas, Chiara Tonini, Grant Tremblay, Sarah Tuttle, Tanya Urrutia, Sam Vaughan, Miguel Verdugo, Alexander Wagner, Josh Walawender, Andrew Wetzel, Kyle Willett, Peter K. G. Williams, Guang Yang, Guangtun Zhu, Andrea Zonca

The Astropy Project (http://astropy.org) is, in its own words, "a community effort to develop a single core package for Astronomy in Python and foster interoperability between Python astronomy packages." For five years this project has been managed, written, and operated as a grassroots, self-organized, almost entirely volunteer effort while the software is used by the majority of the astronomical community. Read More

High levels of deuterium fraction in N$_2$H$^+$ are observed in some pre-stellar cores. Single-zone chemical models find that the timescale required to reach observed values ($D_{\rm frac}^{{\rm N}_2{\rm H}^+} \equiv {\rm N}_2{\rm D}^+/{\rm N}_2{\rm H}^+ \gtrsim 0.1$) is longer than the free-fall time, possibly ten times longer. Read More

Affiliations: 1Dept. of Astronomy, University of Florida, USA, 2Dept. of Astronomy, University of Florida, USA, 3Max-Planck-Institute for Extraterrestrial Physics, 4INAF - Osservatorio Astrofisico di Arcetri, Italy, 5Dept. of Astronomy, University of Florida, USA, 6Max-Planck-Institute for Astronomy, Germany

We carry out an ALMA $\rm N_2D^+$(3-2) and 1.3~mm continuum survey towards 32 high mass surface density regions in seven Infrared Dark Clouds with the aim of finding massive starless cores, which may be the initial conditions for the formation of massive stars. Cores showing strong $\rm N_2D^+$(3-2) emission are expected to be highly deuterated and indicative of early, potentially pre-stellar stages of star formation. Read More

Massive stars, multiple stellar systems and clusters are born from the gravitational collapse of massive dense gaseous clumps, and the way these systems form strongly depends on how the parent clump fragments into cores during collapse. Numerical simulations show that magnetic fields may be the key ingredient in regulating fragmentation. Here we present ALMA observations at ~0. Read More

Authors: The CLIC, CLICdp collaborations, :, M. J. Boland, U. Felzmann, P. J. Giansiracusa, T. G. Lucas, R. P. Rassool, C. Balazs, T. K. Charles, K. Afanaciev, I. Emeliantchik, A. Ignatenko, V. Makarenko, N. Shumeiko, A. Patapenka, I. Zhuk, A. C. Abusleme Hoffman, M. A. Diaz Gutierrez, M. Vogel Gonzalez, Y. Chi, X. He, G. Pei, S. Pei, G. Shu, X. Wang, J. Zhang, F. Zhao, Z. Zhou, H. Chen, Y. Gao, W. Huang, Y. P. Kuang, B. Li, Y. Li, J. Shao, J. Shi, C. Tang, X. Wu, L. Ma, Y. Han, W. Fang, Q. Gu, D. Huang, X. Huang, J. Tan, Z. Wang, Z. Zhao, T. Laštovička, U. Uggerhoj, T. N. Wistisen, A. Aabloo, K. Eimre, K. Kuppart, S. Vigonski, V. Zadin, M. Aicheler, E. Baibuz, E. Brücken, F. Djurabekova, P. Eerola, F. Garcia, E. Haeggström, K. Huitu, V. Jansson, V. Karimaki, I. Kassamakov, A. Kyritsakis, S. Lehti, A. Meriläinen, R. Montonen, T. Niinikoski, K. Nordlund, K. Österberg, M. Parekh, N. A. Törnqvist, J. Väinölä, M. Veske, W. Farabolini, A. Mollard, O. Napoly, F. Peauger, J. Plouin, P. Bambade, I. Chaikovska, R. Chehab, M. Davier, W. Kaabi, E. Kou, F. LeDiberder, R. Pöschl, D. Zerwas, B. Aimard, G. Balik, J. -P. Baud, J. -J. Blaising, L. Brunetti, M. Chefdeville, C. Drancourt, N. Geoffroy, J. Jacquemier, A. Jeremie, Y. Karyotakis, J. M. Nappa, S. Vilalte, G. Vouters, A. Bernard, I. Peric, M. Gabriel, F. Simon, M. Szalay, N. van der Kolk, T. Alexopoulos, E. N. Gazis, N. Gazis, E. Ikarios, V. Kostopoulos, S. Kourkoulis, P. D. Gupta, P. Shrivastava, H. Arfaei, M. K. Dayyani, H. Ghasem, S. S. Hajari, H. Shaker, Y. Ashkenazy, H. Abramowicz, Y. Benhammou, O. Borysov, S. Kananov, A. Levy, I. Levy, O. Rosenblat, G. D'Auria, S. Di Mitri, T. Abe, A. Aryshev, T. Higo, Y. Makida, S. Matsumoto, T. Shidara, T. Takatomi, Y. Takubo, T. Tauchi, N. Toge, K. Ueno, J. Urakawa, A. Yamamoto, M. Yamanaka, R. Raboanary, R. Hart, H. van der Graaf, G. Eigen, J. Zalieckas, E. Adli, R. Lillestøl, L. Malina, J. Pfingstner, K. N. Sjobak, W. Ahmed, M. I. Asghar, H. Hoorani, S. Bugiel, R. Dasgupta, M. Firlej, T. A. Fiutowski, M. Idzik, M. Kopec, M. Kuczynska, J. Moron, K. P. Swientek, W. Daniluk, B. Krupa, M. Kucharczyk, T. Lesiak, A. Moszczynski, B. Pawlik, P. Sopicki, T. Wojtoń, L. Zawiejski, J. Kalinowski, M. Krawczyk, A. F. Żarnecki, E. Firu, V. Ghenescu, A. T. Neagu, T. Preda, I-S. Zgura, A. Aloev, N. Azaryan, J. Budagov, M. Chizhov, M. Filippova, V. Glagolev, A. Gongadze, S. Grigoryan, D. Gudkov, V. Karjavine, M. Lyablin, A. Olyunin, A. Samochkine, A. Sapronov, G. Shirkov, V. Soldatov, A. Solodko, E. Solodko, G. Trubnikov, I. Tyapkin, V. Uzhinsky, A. Vorozhtov, E. Levichev, N. Mezentsev, P. Piminov, D. Shatilov, P. Vobly, K. Zolotarev, I. Bozovic Jelisavcic, G. Kacarevic, S. Lukic, G. Milutinovic-Dumbelovic, M. Pandurovic, U. Iriso, F. Perez, M. Pont, J. Trenado, M. Aguilar-Benitez, J. Calero, L. Garcia-Tabares, D. Gavela, J. L. Gutierrez, D. Lopez, F. Toral, D. Moya, A. Ruiz Jimeno, I. Vila, T. Argyropoulos, C. Blanch Gutierrez, M. Boronat, D. Esperante, A. Faus-Golfe, J. Fuster, N. Fuster Martinez, N. Galindo Muñoz, I. García, J. Giner Navarro, E. Ros, M. Vos, R. Brenner, T. Ekelöf, M. Jacewicz, J. Ögren, M. Olvegård, R. Ruber, V. Ziemann, D. Aguglia, N. Alipour Tehrani, A. Andersson, F. Andrianala, F. Antoniou, K. Artoos, S. Atieh, R. Ballabriga Sune, M. J. Barnes, J. Barranco Garcia, H. Bartosik, C. Belver-Aguilar, A. Benot Morell, D. R. Bett, S. Bettoni, G. Blanchot, O. Blanco Garcia, X. A. Bonnin, O. Brunner, H. Burkhardt, S. Calatroni, M. Campbell, N. Catalan Lasheras, M. Cerqueira Bastos, A. Cherif, E. Chevallay, B. Constance, R. Corsini, B. Cure, S. Curt, B. Dalena, D. Dannheim, G. De Michele, L. De Oliveira, N. Deelen, J. P. Delahaye, T. Dobers, S. Doebert, M. Draper, F. Duarte Ramos, A. Dubrovskiy, K. Elsener, J. Esberg, M. Esposito, V. Fedosseev, P. Ferracin, A. Fiergolski, K. Foraz, A. Fowler, F. Friebel, J-F. Fuchs, C. A. Fuentes Rojas, A. Gaddi, L. Garcia Fajardo, H. Garcia Morales, C. Garion, L. Gatignon, J-C. Gayde, H. Gerwig, A. N. Goldblatt, C. Grefe, A. Grudiev, F. G. Guillot-Vignot, M. L. Gutt-Mostowy, M. Hauschild, C. Hessler, J. K. Holma, E. Holzer, M. Hourican, D. Hynds, Y. Inntjore Levinsen, B. Jeanneret, E. Jensen, M. Jonker, M. Kastriotou, J. M. K. Kemppinen, R. B. Kieffer, W. Klempt, O. Kononenko, A. Korsback, E. Koukovini Platia, J. W. Kovermann, C-I. Kozsar, I. Kremastiotis, S. Kulis, A. Latina, F. Leaux, P. Lebrun, T. Lefevre, L. Linssen, X. Llopart Cudie, A. A. Maier, H. Mainaud Durand, E. Manosperti, C. Marelli, E. Marin Lacoma, R. Martin, S. Mazzoni, G. Mcmonagle, O. Mete, L. M. Mether, M. Modena, R. M. Münker, T. Muranaka, E. Nebot Del Busto, N. Nikiforou, D. Nisbet, J-M. Nonglaton, F. X. Nuiry, A. Nürnberg, M. Olvegard, J. Osborne, S. Papadopoulou, Y. Papaphilippou, A. Passarelli, M. Patecki, L. Pazdera, D. Pellegrini, K. Pepitone, E. Perez Codina, A. Perez Fontenla, T. H. B. Persson, M. Petrič, F. Pitters, S. Pittet, F. Plassard, R. Rajamak, S. Redford, Y. Renier, S. F. Rey, G. Riddone, L. Rinolfi, E. Rodriguez Castro, P. Roloff, C. Rossi, V. Rude, G. Rumolo, A. Sailer, E. Santin, D. Schlatter, H. Schmickler, D. Schulte, N. Shipman, E. Sicking, R. Simoniello, P. K. Skowronski, P. Sobrino Mompean, L. Soby, M. P. Sosin, S. Sroka, S. Stapnes, G. Sterbini, R. Ström, I. Syratchev, F. Tecker, P. A. Thonet, L. Timeo, H. Timko, R. Tomas Garcia, P. Valerio, A. L. Vamvakas, A. Vivoli, M. A. Weber, R. Wegner, M. Wendt, B. Woolley, W. Wuensch, J. Uythoven, H. Zha, P. Zisopoulos, M. Benoit, M. Vicente Barreto Pinto, M. Bopp, H. H. Braun, M. Csatari Divall, M. Dehler, T. Garvey, J. Y. Raguin, L. Rivkin, R. Zennaro, A. Aksoy, Z. Nergiz, E. Pilicer, I. Tapan, O. Yavas, V. Baturin, R. Kholodov, S. Lebedynskyi, V. Miroshnichenko, S. Mordyk, I. Profatilova, V. Storizhko, N. Watson, A. Winter, J. Goldstein, S. Green, J. S. Marshall, M. A. Thomson, B. Xu, W. A. Gillespie, R. Pan, M. A Tyrk, D. Protopopescu, A. Robson, R. Apsimon, I. Bailey, G. Burt, D. Constable, A. Dexter, S. Karimian, C. Lingwood, M. D. Buckland, G. Casse, J. Vossebeld, A. Bosco, P. Karataev, K. Kruchinin, K. Lekomtsev, L. Nevay, J. Snuverink, E. Yamakawa, V. Boisvert, S. Boogert, G. Boorman, S. Gibson, A. Lyapin, W. Shields, P. Teixeira-Dias, S. West, R. Jones, N. Joshi, R. Bodenstein, P. N. Burrows, G. B. Christian, D. Gamba, C. Perry, J. Roberts, J. A. Clarke, N. A. Collomb, S. P. Jamison, B. J. A. Shepherd, D. Walsh, M. Demarteau, J. Repond, H. Weerts, L. Xia, J. D. Wells, C. Adolphsen, T. Barklow, M. Breidenbach, N. Graf, J. Hewett, T. Markiewicz, D. McCormick, K. Moffeit, Y. Nosochkov, M. Oriunno, N. Phinney, T. Rizzo, S. Tantawi, F. Wang, J. Wang, G. White, M. Woodley

The Compact Linear Collider (CLIC) is a multi-TeV high-luminosity linear e+e- collider under development. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in a staged approach with three centre-of-mass energy stages ranging from a few hundred GeV up to 3 TeV. The first stage will focus on precision Standard Model physics, in particular Higgs and top-quark measurements. Read More

Atomically thin layers of transition-metal dicalcogenides (TMDCs) are often known to be metastable in the ambient atmosphere. Understanding the mechanism of degradation is essential for their future applications in nanoelectronics, and thus has attracted intensive interest recently. Here, we demonstrate a systematic study of atomically thin WTe$_{2}$ in its low temperature quantum electronic transport properties. Read More

We calculate the cosmic distributions in space and time of the formation sites of the first, "Pop III.1" stars, exploring a model in which these are the progenitors of all supermassive black holes (SMBHs) that are today seen in the centers of most large galaxies. Pop III. Read More

High-mass stars shape the interstellar medium in galaxies, and yet, largely because the initial conditions are poorly constrained, we do not know how they form. One possibility is that high-mass stars and star clusters form at the junction of filamentary networks, referred to as 'hubs'. In this letter we present the complex anatomy of a protocluster hub within an Infrared Dark Cloud (IRDC), G035. Read More

We intercalate a van der Waals heterostructure of graphene and hexagonal Boron Nitride with Au, by encapsulation, and show that Au at the interface is two dimensional. A charge transfer upon current annealing indicates redistribution of Au and induces splitting of the graphene bandstructure. The effect of in plane magnetic field confirms that splitting is due to spin-splitting and that spin polarization is in the plane, characteristic of a Rashba interaction with magnitude approximately 25 meV. Read More

Giant molecular clouds contain supersonic turbulence that can locally heat small fractions of gas to over 100 K. We run shock models for low-velocity, C-type shocks propagating into gas with densities between 10^3 and 10^5 cm^(-3) and find that CO lines are the most important cooling lines. Comparison to photodissociation region (PDR) models indicates that mid-J CO lines (J = 8-7 and higher) should be dominated by emission from shocked gas. Read More

This teaching case describes the challenges faced by MTech Imaging, a Singapore small and medium enterprise (SME) that specializes in providing thermal imaging solutions. In recent years, the company has relentlessly strived to become a digital innovative solution provider. This push has led to the development of a disruptive digital innovation called the AXION platform. Read More

We investigate giant molecular cloud (GMCs) collisions and their ability to induce gravitational instability and thus star formation. This mechanism may be a major driver of star formation activity in galactic disks. We carry out a series of three dimensional, magnetohydrodynamics (MHD), adaptive mesh refinement (AMR) simulations to study how cloud collisions trigger formation of dense filaments and clumps. Read More

We study the probability distribution function (PDF) of mass surface densities, $\Sigma$, of infrared dark cloud (IRDC) G028.37+00.07 and its surrounding giant molecular cloud. Read More

We introduce a new type of coin: \textit{the alternator}. The alternator can pretend to be either a real or a fake coin (which is lighter than a real one). Each time it is put on a balance scale it switches between pretending to be either a real coin or a fake one. Read More

We discuss a generalization of logic puzzles in which truth-tellers and liars are allowed to deviate from their pattern in case of one particular question: "Are you guilty?" Read More

The elimination of extrinsic sources of spin relaxation is key in realizing the exceptional intrinsic spin transport performance of graphene. Towards this, we study charge and spin transport in bilayer graphene-based spin valve devices fabricated in a new device architecture which allows us to make a comparative study by separately investigating the roles of substrate and polymer residues on spin relaxation. First, the comparison between spin valves fabricated on SiO2 and BN substrates suggests that substrate-related charged impurities, phonons and roughness do not limit the spin transport in current devices. Read More

Infrared Dark Clouds (IRDCs) are cold, dense regions that are usually found within Giant Molecular Clouds (GMCs). Ongoing star formation within IRDCs is typically still deeply embedded within the surrounding molecular gas. Characterising the properties of relatively quiescent IRDCs may therefore help us to understand the earliest phases of the star formation process. Read More

We present ALMA follow-up observations of two massive, early-stage core candidates, C1-N & C1-S, in Infrared Dark Cloud (IRDC) G028.37+00.07, which were previously identified by their N2D+(3-2) emission and show high levels of deuteration of this species. Read More

A commonly used approach to study stability in a complex system is by analyzing the Jacobian matrix at an equilibrium point of a dynamical system. The equilibrium point is stable if all eigenvalues have negative real parts. Here, by obtaining eigenvalue bounds of the Jacobian, we show that stable complex systems will favor mutualistic and competitive relationships that are asymmetrical (non-reciprocative) and trophic relationships that are symmetrical (reciprocative). Read More

Infrared dark clouds are kinematically complex molecular structures in the interstellar medium that can host sites of massive star formation. We present 4 square arcminute maps of the 12CO, 13CO, and C18O J = 3 to 2 lines from selected locations within the C and F (G028.37+00. Read More

Computational RFID (CRFID) devices are emerging platforms that can enable perennial computation and sensing by eliminating the need for batteries. Although much research has been devoted to improving upstream (CRFID to RFID reader) communication rates, the opposite direction has so far been neglected, presumably due to the difficulty of guaranteeing fast and error-free transfer amidst frequent power interruptions of CRFID. With growing interest in the market where CRFIDs are forever-embedded in many structures, it is necessary for this void to be filled. Read More

The origin of massive stars is a fundamental open issue in modern astrophysics. Pre-ALMA interferometric studies reveal precursors to early B to late O type stars with collapsing envelopes of 15-20 M$_\odot$ on 1000-3000 AU size-scales. To search for more massive envelopes we selected the most massive nearby young clumps from the ATLASGAL survey to study their protostellar content with ALMA. Read More

I review (1) Physics of Star Formation & Open Questions; (2) Structure & Dynamics of Star-Forming Clouds & Young Clusters; (3) Star Formation Rates: Observations & Theoretical Implications. Read More

Affiliations: 1Department of Astronomy, University of Florida, 2Department of Astronomy, University of Florida, 3Western Washington University, 4University of Oxford, 5Yale, 6Department of Astronomy, University of Florida, 7Leiden Observatory, 8Steward Observatory, 9ETH Zurich, 10University of Michigan, 11Vanderbilt University, 12University of Virginia, 13Wesleyan University, 14University of Virginia, 15University of Virginia, 16University of Virginia, 17Apache Point Observatory and New Mexico State University

We present the results of the SDSS APOGEE INfrared Spectroscopy of Young Nebulous Clusters program (IN-SYNC) survey of the Orion A molecular cloud. This survey obtained high resolution near infrared (NIR) spectroscopy of about 2700 young pre-main sequence stars throughout the region, acquired across five distinct fields spanning 6deg field of view (FOV). With these spectra, we have measured accurate stellar parameters (T_eff, log g, v sin i) and extinctions, and placed the sources in the Hertzsprung-Russel Diagram (HRD). Read More

Nonlinear Kronig-Penney model has been frequently employed to study transmission problem of electron wave in a nonlinear electrified chain or in a doped semiconductor superlattice. Here from an integral equation we derive a novel exact solution of the problem, which contains a simple nonlinear map connecting transmission coefficient with system parameters. Consequently, we suggest a scheme for manipulating electronic distribution and transmission by adjusting the system parameters. Read More

Affiliations: 1Dept. of Astronomy, University of Florida, USA, 2Dept. of Astronomy, University of Florida, USA, 3Max-Planck-Institute for Extraterrestrial Physics, 4INAF - Osservatorio Astrofisico di Arcetri, Italy

To understand massive star formation requires study of its initial conditions. Two massive starless core candidates, C1-N & C1-S, have been detected in IRDC G028.37+00. Read More