J. Sorri - University of Jyvaskyla, Finland

J. Sorri
Are you J. Sorri?

Claim your profile, edit publications, add additional information:

Contact Details

Name
J. Sorri
Affiliation
University of Jyvaskyla, Finland
City
Jyväskylän yliopisto
Country
Finland

Pubs By Year

Pub Categories

 
Nuclear Experiment (6)
 
Nuclear Theory (1)

Publications Authored By J. Sorri

The quenching of the experimental spectroscopic factor for proton emission from the short-lived $d_{3/2}$ isomeric state in $^{151m}$Lu was a long-standing problem. In the present work, proton emission from this isomer has been reinvestigated in an experiment at the Accelerator Laboratory of the University of Jyv\"{a}skyl\"{a}. The proton-decay energy and half-life of this isomer were measured to be 1295(5) keV and 15. Read More

Candidates for three excited states in the 66^Se have been identified using the recoil-{\beta} tagging method together with a veto detector for charged-particle evaporation channels. These results allow a comparison of mirror and triplet energy differences between analogue states across the A = 66 triplet as a function of angular momentum. The extracted triplet energy differences follow the negative trend observed in the f_7/2 shell. Read More

The a-decay chains originating from the s1/2 and h11/2 states in 173Au have been investigated following fusion-evaporation reactions. Four generations of a radioactivities have been correlated with 173Aum leading to a measurement of the a decay of 161Tam. It has been found that the known a decay of 161Ta, which was previously associated with the decay of the ground state, is in fact the decay of an isomeric state. Read More

The neutron-deficient nucleus 173Hg has been studied following fusion-evaporation reactions. The observation of gamma rays decaying from excited states are reported for the first time and a tentative level scheme is proposed. The proposed level scheme is discussed within the context of the systematics of neighbouring neutron-deficient Hg nuclei. Read More

2010Mar
Affiliations: 1University of Jyvaskyla, Finland, 2University of York, U.K, 3University of Liverpool, U.K, 4University of Liverpool, U.K, 5University of Jyvaskyla, Finland, 6University of Jyvaskyla, Finland, 7University of Jyvaskyla, Finland, 8University of Jyvaskyla, Finland, 9University of Jyvaskyla, Finland, 10University of Jyvaskyla, Finland, 11University of Jyvaskyla, Finland, 12University of Jyvaskyla, Finland, 13University of Jyvaskyla, Finland, 14University of Jyvaskyla, Finland, 15University of Liverpool, U.K, 16University of Liverpool, U.K, 17University of Liverpool, U.K, 18University of Jyvaskyla, Finland, 19University of York, U.K, 20University of Jyvaskyla, Finland, 21University of Jyvaskyla, Finland, 22University of Jyvaskyla, Finland, 23University of Jyvaskyla, Finland, 24University of Jyvaskyla, Finland, 25University of York, U.K, 26University of Jyvaskyla, Finland, 27University of York, U.K, 28Universite Bordeaux/CNRS/IN2P3, France, 29Universite Libre de Bruxelles, Belgium

Excited states in the extremely neutron-deficient nucleus, 180Pb, have been identified for the first time using the JUROGAM II array in conjunction with the RITU recoil separator at the Accelerator Laboratory of the University of Jyvaskyla. This study lies at the limit of what is presently achievable with in-beam spectroscopy, with an estimated cross-section of only 10 nb for the 92Mo(90Zr,2n)180Pb reaction. A continuation of the trend observed in 182Pb and 184Pb is seen, where the prolate minimum continues to rise beyond the N=104 mid-shell with respect to the spherical ground state. Read More

The technique of recoil beta tagging has been developed which allows prompt gamma decays in nuclei from excited states to be correlated with electrons from their subsequent short-lived beta decay. This technique is ideal for studying nuclei very far from stability and improves in sensitivity for very short-lived decays and for high decay Q-values. The method has allowed excited states in 78Y to be observed for the first time, as well as an extension in the knowledge of T=1 states in 74Rb. Read More