J. Sinclair - University of Sussex, Physics & Astronomy, Falmer, Brighton, UK

J. Sinclair
Are you J. Sinclair?

Claim your profile, edit publications, add additional information:

Contact Details

Name
J. Sinclair
Affiliation
University of Sussex, Physics & Astronomy, Falmer, Brighton, UK
City
Brighton
Country
United Kingdom

Pubs By Year

External Links

Pub Categories

 
Physics - Instrumentation and Detectors (9)
 
High Energy Physics - Experiment (9)
 
Earth and Planetary Astrophysics (4)
 
Quantum Physics (2)
 
Instrumentation and Methods for Astrophysics (1)
 
Astrophysics of Galaxies (1)
 
Nonlinear Sciences - Pattern Formation and Solitons (1)
 
Physics - Plasma Physics (1)
 
Solar and Stellar Astrophysics (1)

Publications Authored By J. Sinclair

2017May
Authors: MicroBooNE collaboration, R. Acciarri, C. Adams, R. An, J. Anthony, J. Asaadi, M. Auger, L. Bagby, S. Balasubramanian, B. Baller, C. Barnes, G. Barr, M. Bass, F. Bay, M. Bishai, A. Blake, T. Bolton, B. Bullard, L. Camilleri, D. Caratelli, B. Carls, R. Castillo Fernandez, F. Cavanna, H. Chen, E. Church, D. Cianci, E. Cohen, G. H. Collin, J. M. Conrad, M. Convery, J. I. Crespo-Anadon, G. De Geronimo, M. Del Tutto, D. Devitt, S. Dytman, B. Eberly, A. Ereditato, L. Escudero Sanchez, J. Esquivel, A. A. Fadeeva, B. T. Fleming, W. Foreman, A. P. Furmanski, D. Garcia-Gamez, G. T. Garvey, V. Genty, D. Goeldi, S. Gollapinni, N. Graf, E. Gramellini, H. Greenlee, R. Grosso, R. Guenette, A. Hackenburg, P. Hamilton, O. Hen, J. Hewes, C. Hill, J. Ho, G. Horton-Smith, A. Hourlier, E. -C. Huang, C. James, J. Jan de Vries, C. -M. Jen, L. Jiang, R. A. Johnson, J. Joshi, H. Jostlein, D. Kaleko, G. Karagiorgi, W. Ketchum, B. Kirby, M. Kirby, T. Kobilarcik, I. Kreslo, A. Laube, S. Li, Y. Li, A. Lister, B. R. Littlejohn, S. Lockwitz, D. Lorca, W. C. Louis, M. Luethi, B. Lundberg, X. Luo, A. Marchionni, C. Mariani, J. Marshall, D. A. Martinez Caicedo, V. Meddage, T. Miceli, G. B. Mills, J. Moon, M. Mooney, C. D. Moore, J. Mousseau, R. Murrells, D. Naples, P. Nienaber, J. Nowak, O. Palamara, V. Paolone, V. Papavassiliou, S. F. Pate, Z. Pavlovic, E. Piasetzky, D. Porzio, G. Pulliam, X. Qian, J. L. Raaf, V. Radeka, A. Rafique, S. Rescia, L. Rochester, C. Rudolf von Rohr, B. Russell, D. W. Schmitz, A. Schukraft, W. Seligman, M. H. Shaevitz, J. Sinclair, A. Smith, E. L. Snider, M. Soderberg, S. Soldner-Rembold, S. R. Soleti, P. Spentzouris, J. Spitz, J. St. John, T. Strauss, A. M. Szelc, N. Tagg, K. Terao, M. Thomson, C. Thorn, M. Toups, Y. -T. Tsai, S. Tufanli, T. Usher, W. Van De Pontseele, R. G. Van de Water, B. Viren, M. Weber, D. A. Wickremasinghe, S. Wolbers, T. Wongjirad, K. Woodruff, T. Yang, L. Yates, B. Yu, G. P. Zeller, J. Zennamo, C. Zhang

The low-noise operation of readout electronics in a liquid argon time projection chamber (LArTPC) is critical to properly extract the distribution of ionization charge deposited on the wire planes of the TPC, especially for the induction planes. This paper describes the characteristics and mitigation of the observed noise in the MicroBooNE detector. The MicroBooNE's single-phase LArTPC comprises two induction planes and one collection sense wire plane with a total of 8256 wires. Read More

2017Apr
Authors: MicroBooNE collaboration, R. Acciarri, C. Adams, R. An, J. Anthony, J. Asaadi, M. Auger, L. Bagby, S. Balasubramanian, B. Baller, C. Barnes, G. Barr, M. Bass, F. Bay, M. Bishai, A. Blake, T. Bolton, L. Bugel, L. Camilleri, D. Caratelli, B. Carls, R. Castillo Fernandez, F. Cavanna, H. Chen, E. Church, D. Cianci, E. Cohen, G. H. Collin, J. M. Conrad, M. Convery, J. I. Crespo-Anadon, M. Del Tutto, D. Devitt, S. Dytman, B. Eberly, A. Ereditato, L. Escudero Sanchez, J. Esquivel, B. T. Fleming, W. Foreman, A. P. Furmanski, D. Garcia-Gamez, G. T. Garvey, V. Genty, D. Goeldi, S. Gollapinni, N. Graf, E. Gramellini, H. Greenlee, R. Grosso, R. Guenette, A. Hackenburg, P. Hamilton, O. Hen, J. Hewes, C. Hill, J. Ho, G. Horton-Smith, E. -C. Huang, C. James, J. Jan de Vries, C. -M. Jen, L. Jiang, R. A. Johnson, J. Joshi, H. Jostlein, D. Kaleko, G. Karagiorgi, W. Ketchum, B. Kirby, M. Kirby, T. Kobilarcik, I. Kreslo, A. Laube, Y. Li, A. Lister, B. R. Littlejohn, S. Lockwitz, D. Lorca, W. C. Louis, M. Luethi, B. Lundberg, X. Luo, A. Marchionni, C. Mariani, J. Marshall, D. A. Martinez Caicedo, V. Meddage, T. Miceli, G. B. Mills, J. Moon, M. Mooney, C. D. Moore, J. Mousseau, R. Murrells, D. Naples, P. Nienaber, J. Nowak, O. Palamara, V. Paolone, V. Papavassiliou, S. F. Pate, Z. Pavlovic, E. Piasetzky, D. Porzio, G. Pulliam, X. Qian, J. L. Raaf, A. Rafique, L. Rochester, C. Rudolf von Rohr, B. Russell, D. W. Schmitz, A. Schukraft, W. Seligman, M. H. Shaevitz, J. Sinclair, E. L. Snider, M. Soderberg, S. Soldner-Rembold, S. R. Soleti, P. Spentzouris, J. Spitz, J. St. John, T. Strauss, K. A. Sutton, A. M. Szelc, N. Tagg, K. Terao, M. Thomson, M. Toups, Y. -T. Tsai, S. Tufanli, T. Usher, R. G. Van de Water, B. Viren, M. Weber, D. A. Wickremasinghe, S. Wolbers, T. Wongjirad, K. Woodruff, T. Yang, L. Yates, G. P. Zeller, J. Zennamo, C. Zhang

The MicroBooNE liquid argon time projection chamber (LArTPC) has been taking data at Fermilab since 2015 collecting, in addition to neutrino beam, cosmic-ray muons. Results are presented on the reconstruction of Michel electrons produced by the decay at rest of cosmic-ray muons. Michel electrons are abundantly produced in the TPC, and given their well known energy spectrum can be used to study MicroBooNE's detector response to low-energy electrons (electrons with energies up to ~50 MeV). Read More

2017Mar
Authors: MicroBooNE collaboration, P. Abratenko, R. Acciarri, C. Adams, R. An, J. Asaadi, M. Auger, L. Bagby, S. Balasubramanian, B. Baller, C. Barnes, G. Barr, M. Bass, F. Bay, M. Bishai, A. Blake, T. Bolton, L. Bugel, L. Camilleri, D. Caratelli, B. Carls, R. Castillo Fernandez, F. Cavanna, H. Chen, E. Church, D. Cianci, E. Cohen, G. H. Collin, J. M. Conrad, M. Convery, J. I. Crespo-Anadon, M. Del Tutto, D. Devitt, S. Dytman, B. Eberly, A. Ereditato, L. Escudero Sanchez, J. Esquivel, B. T. Fleming, W. Foreman, A. P. Furmanski, D. Garcia-Gamez, G. T. Garvey, V. Genty, D. Goeldi, S. Gollapinni, N. Graf, E. Gramellini, H. Greenlee, R. Grosso, R. Guenette, A. Hackenburg, P. Hamilton, O. Hen, J. Hewes, C. Hill, J. Ho, G. Horton-Smith, E. -C. Huang, C. James, J. Jan de Vries, C. -M. Jen, L. Jiang, R. A. Johnson, B. J. P. Jones, J. Joshi, H. Jostlein, D. Kaleko, L. N. Kalousis, G. Karagiorgi, W. Ketchum, B. Kirby, M. Kirby, T. Kobilarcik, I. Kreslo, A. Laube, Y. Li, A. Lister, B. R. Littlejohn, S. Lockwitz, D. Lorca, W. C. Louis, M. Luethi, B. Lundberg, X. Luo, A. Marchionni, C. Mariani, J. Marshall, D. A. Martinez Caicedo, V. Meddage, T. Miceli, G. B. Mills, J. Moon, M. Mooney, C. D. Moore, J. Mousseau, R. Murrells, D. Naples, P. Nienaber, J. Nowak, O. Palamara, V. Paolone, V. Papavassiliou, S. F. Pate, Z. Pavlovic, E. Piasetzky, D. Porzio, G. Pulliam, X. Qian, J. L. Raaf, A. Rafique, L. Rochester, C. Rudolf von Rohr, B. Russell, D. W. Schmitz, A. Schukraft, W. Seligman, M. H. Shaevitz, J. Sinclair, E. L. Snider, M. Soderberg, S. Soldner-Rembold, S. R. Soleti, P. Spentzouris, J. Spitz, J. St. John, T. Strauss, A. M. Szelc, N. Tagg, K. Terao, M. Thomson, M. Toups, Y. -T. Tsai, S. Tufanli, T. Usher, R. G. Van de Water, B. Viren, M. Weber, J. Weston, D. A. Wickremasinghe, S. Wolbers, T. Wongjirad, K. Woodruff, T. Yang, L. Yates, G. P. Zeller, J. Zennamo, C. Zhang

We discuss a technique for measuring a charged particle's momentum by means of multiple Coulomb scattering (MCS) in the MicroBooNE liquid argon time projection chamber (LArTPC). This method does not require the full particle ionization track to be contained inside of the detector volume as other track momentum reconstruction methods do (range-based momentum reconstruction and calorimetric momentum reconstruction). We motivate use of this technique, describe a tuning of the underlying phenomenological formula, quantify its performance on fully contained beam-neutrino-induced muon tracks both in simulation and in data, and quantify its performance on exiting muon tracks in simulation. Read More

We analytically and numerically investigate the performance of weak-value amplification (WVA) and related parameter estimation methods in the presence of temporally correlated noise. WVA is a special instance of a general measurement strategy that involves sorting data into separate subsets based on the outcome of a second "partitioning" measurement. Using a simplified noise model that can be analyzed exactly together with optimal statistical estimators, we compare WVA to a conventional measurement method. Read More

2016Dec
Authors: MicroBooNE Collaboration, R. Acciarri, C. Adams, R. An, A. Aparicio, S. Aponte, J. Asaadi, M. Auger, N. Ayoub, L. Bagby, B. Baller, R. Barger, G. Barr, M. Bass, F. Bay, K. Biery, M. Bishai, A. Blake, V. Bocean, D. Boehnlein, V. D. Bogert, T. Bolton, L. Bugel, C. Callahan, L. Camilleri, D. Caratelli, B. Carls, R. Castillo Fernandez, F. Cavanna, S. Chappa, H. Chen, K. Chen, C. Y. Chi, C. S. Chiu, E. Church, D. Cianci, G. H. Collin, J. M. Conrad, M. Convery, J. Cornele, P. Cowan, J. I. Crespo-Anadon, G. Crutcher, C. Darve, R. Davis, M. Del Tutto, D. Devitt, S. Duffin, S. Dytman, B. Eberly, A. Ereditato, D. Erickson, L. Escudero Sanchez, J. Esquivel, S. Farooq, J. Farrell, D. Featherston, B. T. Fleming, W. Foreman, A. P. Furmanski, V. Genty, M. Geynisman, D. Goeldi, B. Goff, S. Gollapinni, N. Graf, E. Gramellini, J. Green, A. Greene, H. Greenlee, T. Griffin, R. Grosso, R. Guenette, A. Hackenburg, R. Haenni, P. Hamilton, P. Healey, O. Hen, E. Henderson, J. Hewes, C. Hill, K. Hill, L. Himes, J. Ho, G. Horton-Smith, D. Huffman, C. M. Ignarra, C. James, E. James, J. Jan de Vries, W. Jaskierny, C. M. Jen, L. Jiang, B. Johnson, M. Johnson, R. A. Johnson, B. J. P. Jones, J. Joshi, H. Jostlein, D. Kaleko, L. N. Kalousis, G. Karagiorgi, T. Katori, P. Kellogg, W. Ketchum, J. Kilmer, B. King, B. Kirby, M. Kirby, E. Klein, T. Kobilarcik, I. Kreslo, R. Krull, R. Kubinski, G. Lange, F. Lanni, A. Lathrop, A. Laube, W. M. Lee, Y. Li, D. Lissauer, A. Lister, B. R. Littlejohn, S. Lockwitz, D. Lorca, W. C. Louis, G. Lukhanin, M. Luethi, B. Lundberg, X. Luo, G. Mahler, I. Majoros, D. Makowiecki, A. Marchionni, C. Mariani, D. Markley, J. Marshall, D. A. Martinez Caicedo, K. T. McDonald, D. McKee, A. McLean, J. Mead, V. Meddage, T. Miceli, G. B. Mills, W. Miner, J. Moon, M. Mooney, C. D. Moore, Z. Moss, J. Mousseau, R. Murrells, D. Naples, P. Nienaber, B. Norris, N. Norton, J. Nowak, M. OBoyle, T. Olszanowski, O. Palamara, V. Paolone, V. Papavassiliou, S. F. Pate, Z. Pavlovic, R. Pelkey, M. Phipps, S. Pordes, D. Porzio, G. Pulliam, X. Qian, J. L. Raaf, V. Radeka, A. Rafique, R. A Rameika, B. Rebel, R. Rechenmacher, S. Rescia, L. Rochester, C. Rudolf von Rohr, A. Ruga, B. Russell, R. Sanders, W. R. Sands III, M. Sarychev, D. W. Schmitz, A. Schukraft, R. Scott, W. Seligman, M. H. Shaevitz, M. Shoun, J. Sinclair, W. Sippach, T. Smidt, A. Smith, E. L. Snider, M. Soderberg, M. Solano-Gonzalez, S. Soldner-Rembold, S. R. Soleti, J. Sondericker, P. Spentzouris, J. Spitz, J. St. John, T. Strauss, K. Sutton, A. M. Szelc, K. Taheri, N. Tagg, K. Tatum, J. Teng, K. Terao, M. Thomson, C. Thorn, J. Tillman, M. Toups, Y. T. Tsai, S. Tufanli, T. Usher, M. Utes, R. G. Van de Water, C. Vendetta, S. Vergani, E. Voirin, J. Voirin, B. Viren, P. Watkins, M. Weber, T. Wester, J. Weston, D. A. Wickremasinghe, S. Wolbers, T. Wongjirad, K. Woodruff, K. C. Wu, T. Yang, B. Yu, G. P. Zeller, J. Zennamo, C. Zhang, M. Zuckerbrot

This paper describes the design and construction of the MicroBooNE liquid argon time projection chamber and associated systems. MicroBooNE is the first phase of the Short Baseline Neutrino program, located at Fermilab, and will utilize the capabilities of liquid argon detectors to examine a rich assortment of physics topics. In this document details of design specifications, assembly procedures, and acceptance tests are reported. Read More

The Fermilab Short Baseline Neutrino (SBN) program aims to observe and reconstruct thousands of neutrino-argon interactions with its three detectors (SBND, MicroBooNE and ICARUS-T600), using their hundred of tonnes Liquid Argon Time Projection Chambers to perform a rich physics analysis program, in particular focused in the search for sterile neutrinos. Given the relatively shallow depth of the detectors, the continuos flux of cosmic ray particles which crossing their volumes introduces a constant background which can be falsely identified as part of the event of interest. Here we present the Cosmic Ray Tagger (CRT) system, a novel technique to tag and identify these crossing particles using scintillation modules which measure their time and coordinates relative to events internal to the neutrino detector, mitigating therefore their effect in the event tracking reconstruction. Read More

In 1988, Aharonov, Albert, and Vaidman introduced a new paradigm of quantum measurement in a paper which had the unwieldy but provocative title "How the result of a measurement of a component of the spin of a spin-1=2 particle can turn out to be 100." This paradigm, so-called "weak measurement," has since been the subject of widespread theoretical and experimental attention, both for the perspective it offers on quantum reality and for possible applications to precision measurement. Yet almost all of the weak-measurement experiments carried out so far could be alternatively understood in terms of the classical (electro-magnetic wave) theory of optics. Read More

2016Nov
Authors: MicroBooNE collaboration, R. Acciarri, C. Adams, R. An, J. Asaadi, M. Auger, L. Bagby, B. Baller, G. Barr, M. Bass, F. Bay, M. Bishai, A. Blake, T. Bolton, L. Bugel, L. Camilleri, D. Caratelli, B. Carls, R. Castillo Fernandez, F. Cavanna, H. Chen, E. Church, D. Cianci, G. H. Collin, J. M. Conrad, M. Convery, J. I. Crespo-Anadón, M. Del Tutto, D. Devitt, S. Dytman, B. Eberly, A. Ereditato, L. Escudero Sanchez, J. Esquivel, B. T. Fleming, W. Foreman, A. P. Furmanski, G. T. Garvey, V. Genty, D. Goeldi, S. Gollapinni, N. Graf, E. Gramellini, H. Greenlee, R. Grosso, R. Guenette, A. Hackenburg, P. Hamilton, O. Hen, J. Hewes, C. Hill, J. Ho, G. Horton-Smith, C. James, J. Jan de Vries, C. -M. Jen, L. Jiang, R. A. Johnson, B. J. P. Jones, J. Joshi, H. Jostlein, D. Kaleko, G. Karagiorgi, W. Ketchum, B. Kirby, M. Kirby, T. Kobilarcik, I. Kreslo, A. Laube, Y. Li, A. Lister, B. R. Littlejohn, S. Lockwitz, D. Lorca, W. C. Louis, M. Luethi, B. Lundberg, X. Luo, A. Marchionni, C. Mariani, J. Marshall, D. A. Martinez Caicedo, V. Meddage, T. Miceli, G. B. Mills, J. Moon, M. Mooney, C. D. Moore, J. Mousseau, R. Murrells, D. Naples, P. Nienaber, J. Nowak, O. Palamara, V. Paolone, V. Papavassiliou, S. F. Pate, Z. Pavlovic, D. Porzio, G. Pulliam, X. Qian, J. L. Raaf, A. Rafique, L. Rochester, C. Rudolf von Rohr, B. Russell, D. W. Schmitz, A. Schukraft, W. Seligman, M. H. Shaevitz, J. Sinclair, E. L. Snider, M. Soderberg, S. Söldner-Rembold, S. R. Soleti, P. Spentzouris, J. Spitz, J. St. John, T. Strauss, A. M. Szelc, N. Tagg, K. Terao, M. Thomson, M. Toups, Y. -T. Tsai, S. Tufanli, T. Usher, R. G. Van de Water, B. Viren, M. Weber, J. Weston, D. A. Wickremasinghe, S. Wolbers, T. Wongjirad, K. Woodruff, T. Yang, G. P. Zeller, J. Zennamo, C. Zhang

We present several studies of convolutional neural networks applied to data coming from the MicroBooNE detector, a liquid argon time projection chamber (LArTPC). The algorithms studied include the classification of single particle images, the localization of single particle and neutrino interactions in an image, and the detection of a simulated neutrino event overlaid with cosmic ray backgrounds taken from real detector data. These studies demonstrate the potential of convolutional neural networks for particle identification or event detection on simulated neutrino interactions. Read More

Global maps of Jupiter's atmospheric temperatures, gaseous composition and aerosol opacity are derived from a programme of 5-20 $\mu$m mid-infrared spectroscopic observations using the Texas Echelon Cross Echelle Spectrograph (TEXES) on NASA's Infrared Telescope Facility (IRTF). Image cubes from December 2014 in eight spectral channels, with spectral resolutions of $R\sim2000-12000$ and spatial resolutions of $2-4^\circ$ latitude, are inverted to generate 3D maps of tropospheric and stratospheric temperatures, 2D maps of upper tropospheric aerosols, phosphine and ammonia, and 2D maps of stratospheric ethane and acetylene. The results are compared to a re-analysis of Cassini Composite Infrared Spectrometer (CIRS) observations acquired during Cassini's closest approach to Jupiter in December 2000, demonstrating that this new archive of ground-based mapping spectroscopy can match and surpass the quality of previous investigations, and will permit future studies of Jupiter's evolving atmosphere. Read More

We describe a novel high-speed front-end electronic board (FEB) for interfacing an array of 32 Silicon Photo-multipliers (SiPM) with a computer. The FEB provides individually adjustable bias on the SiPMs, and performs low-noise analog signal amplification, conditioning and digitization. It provides event timing information accurate to 1. Read More

2015Aug
Authors: SNO+ Collaboration1, :2, S. Andringa3, E. Arushanova4, S. Asahi5, M. Askins6, D. J. Auty7, A. R. Back8, Z. Barnard9, N. Barros10, E. W. Beier11, A. Bialek12, S. D. Biller13, E. Blucher14, R. Bonventre15, D. Braid16, E. Caden17, E. Callaghan18, J. Caravaca19, J. Carvalho20, L. Cavalli21, D. Chauhan22, M. Chen23, O. Chkvorets24, K. Clark25, B. Cleveland26, I. T. Coulter27, D. Cressy28, X. Dai29, C. Darrach30, B. Davis-Purcell31, R. Deen32, M. M. Depatie33, F. Descamps34, F. Di Lodovico35, N. Duhaime36, F. Duncan37, J. Dunger38, E. Falk39, N. Fatemighomi40, R. Ford41, P. Gorel42, C. Grant43, S. Grullon44, E. Guillian45, A. L. Hallin46, D. Hallman47, S. Hans48, J. Hartnell49, P. Harvey50, M. Hedayatipour51, W. J. Heintzelman52, R. L. Helmer53, B. Hreljac54, J. Hu55, T. Iida56, C. M. Jackson57, N. A. Jelley58, C. Jillings59, C. Jones60, P. G. Jones61, K. Kamdin62, T. Kaptanoglu63, J. Kaspar64, P. Keener65, P. Khaghani66, L. Kippenbrock67, J. R. Klein68, R. Knapik69, J. N. Kofron70, L. L. Kormos71, S. Korte72, C. Kraus73, C. B. Krauss74, K. Labe75, I. Lam76, C. Lan77, B. J. Land78, S. Langrock79, A. LaTorre80, I. Lawson81, G. M. Lefeuvre82, E. J. Leming83, J. Lidgard84, X. Liu85, Y. Liu86, V. Lozza87, S. Maguire88, A. Maio89, K. Majumdar90, S. Manecki91, J. Maneira92, E. Marzec93, A. Mastbaum94, N. McCauley95, A. B. McDonald96, J. E. McMillan97, P. Mekarski98, C. Miller99, Y. Mohan100, E. Mony101, M. J. Mottram102, V. Novikov103, H. M. O'Keeffe104, E. O'Sullivan105, G. D. Orebi Gann106, M. J. Parnell107, S. J. M. Peeters108, T. Pershing109, Z. Petriw110, G. Prior111, J. C. Prouty112, S. Quirk113, A. Reichold114, A. Robertson115, J. Rose116, R. Rosero117, P. M. Rost118, J. Rumleskie119, M. A. Schumaker120, M. H. Schwendener121, D. Scislowski122, J. Secrest123, M. Seddighin124, L. Segui125, S. Seibert126, T. Shantz127, T. M. Shokair128, L. Sibley129, J. R. Sinclair130, K. Singh131, P. Skensved132, A. Soerensen133, T. Sonley134, R. Stainforth135, M. Strait136, M. I. Stringer137, R. Svoboda138, J. Tatar139, L. Tian140, N. Tolich141, J. Tseng142, H. W. C. Tseung143, R. Van Berg144, E. Vázquez-Jáuregui145, C. Virtue146, B. von Krosigk147, J. M. G. Walker148, M. Walker149, O. Wasalski150, J. Waterfield151, R. F. White152, J. R. Wilson153, T. J. Winchester154, A. Wright155, M. Yeh156, T. Zhao157, K. Zuber158
Affiliations: 1Laboratório de Instrumentaçao e Física Experimental de Partículas, 2Laboratório de Instrumentaçao e Física Experimental de Partículas, 3Laboratório de Instrumentaçao e Física Experimental de Partículas, 4Queen Mary, University of London, School of Physics and Astronomy, London, UK, 5Queen's University, Department of Physics, Engineering Physics and Astronomy, Kingston, ON, Canada, 6University of California, Davis, CA, USA, 7University of Alberta, Department of Physics, Edmonton, AB, Canada, 8Queen Mary, University of London, School of Physics and Astronomy, London, UK, 9Laurentian University, Sudbury, ON, Canada, 10Laboratório de Instrumentaçao e Física Experimental de Partículas, 11University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, PA, USA, 12University of Alberta, Department of Physics, Edmonton, AB, Canada, 13University of Oxford, The Denys Wilkinson Building, Oxford, UK, 14The Enrico Fermi Institute and Department of Physics, The University of Chicago, Chicago, IL, USA, 15University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, PA, USA, 16Laurentian University, Sudbury, ON, Canada, 17Laurentian University, Sudbury, ON, Canada, 18University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, PA, USA, 19University of California, Department of Physics, Berkeley, CA, USA, 20Universidade de Coimbra, Laboratório de Instrumentaçao e Física Experimental de Partículas and Departamento de Física, Coimbra, Portugal, 21University of Oxford, The Denys Wilkinson Building, Oxford, UK, 22Laboratório de Instrumentaçao e Física Experimental de Partículas, 23Queen's University, Department of Physics, Engineering Physics and Astronomy, Kingston, ON, Canada, 24Laurentian University, Sudbury, ON, Canada, 25Queen's University, Department of Physics, Engineering Physics and Astronomy, Kingston, ON, Canada, 26Laurentian University, Sudbury, ON, Canada, 27University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, PA, USA, 28Laurentian University, Sudbury, ON, Canada, 29Queen's University, Department of Physics, Engineering Physics and Astronomy, Kingston, ON, Canada, 30Laurentian University, Sudbury, ON, Canada, 31TRIUMF, Vancouver, BC, Canada, 32University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, PA, USA, 33Laurentian University, Sudbury, ON, Canada, 34University of California, Department of Physics, Berkeley, CA, USA, 35Queen Mary, University of London, School of Physics and Astronomy, London, UK, 36Laurentian University, Sudbury, ON, Canada, 37Laurentian University, Sudbury, ON, Canada, 38University of Oxford, The Denys Wilkinson Building, Oxford, UK, 39University of Sussex, Physics and Astronomy, Falmer, Brighton, UK, 40Queen's University, Department of Physics, Engineering Physics and Astronomy, Kingston, ON, Canada, 41Laurentian University, Sudbury, ON, Canada, 42University of Alberta, Department of Physics, Edmonton, AB, Canada, 43University of California, Davis, CA, USA, 44University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, PA, USA, 45Queen's University, Department of Physics, Engineering Physics and Astronomy, Kingston, ON, Canada, 46University of Alberta, Department of Physics, Edmonton, AB, Canada, 47Laurentian University, Sudbury, ON, Canada, 48Brookhaven National Laboratory, Chemistry Department, Upton, NY, USA, 49University of Sussex, Physics and Astronomy, Falmer, Brighton, UK, 50Queen's University, Department of Physics, Engineering Physics and Astronomy, Kingston, ON, Canada, 51University of Alberta, Department of Physics, Edmonton, AB, Canada, 52University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, PA, USA, 53TRIUMF, Vancouver, BC, Canada, 54Laurentian University, Sudbury, ON, Canada, 55University of Alberta, Department of Physics, Edmonton, AB, Canada, 56Queen's University, Department of Physics, Engineering Physics and Astronomy, Kingston, ON, Canada, 57University of California, Department of Physics, Berkeley, CA, USA, 58University of Oxford, The Denys Wilkinson Building, Oxford, UK, 59Laurentian University, Sudbury, ON, Canada, 60University of Oxford, The Denys Wilkinson Building, Oxford, UK, 61Queen Mary, University of London, School of Physics and Astronomy, London, UK, 62University of California, Department of Physics, Berkeley, CA, USA, 63University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, PA, USA, 64University of Washington, Center for Experimental Nuclear Physics and Astrophysics, and Department of Physics, Seattle, WA, USA, 65University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, PA, USA, 66Laurentian University, Sudbury, ON, Canada, 67University of Washington, Center for Experimental Nuclear Physics and Astrophysics, and Department of Physics, Seattle, WA, USA, 68University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, PA, USA, 69University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, PA, USA, 70University of Washington, Center for Experimental Nuclear Physics and Astrophysics, and Department of Physics, Seattle, WA, USA, 71Lancaster University, Physics Department, Lancaster, UK, 72Laurentian University, Sudbury, ON, Canada, 73Laurentian University, Sudbury, ON, Canada, 74University of Alberta, Department of Physics, Edmonton, AB, Canada, 75The Enrico Fermi Institute and Department of Physics, The University of Chicago, Chicago, IL, USA, 76Queen's University, Department of Physics, Engineering Physics and Astronomy, Kingston, ON, Canada, 77Queen's University, Department of Physics, Engineering Physics and Astronomy, Kingston, ON, Canada, 78University of California, Department of Physics, Berkeley, CA, USA, 79Queen Mary, University of London, School of Physics and Astronomy, London, UK, 80The Enrico Fermi Institute and Department of Physics, The University of Chicago, Chicago, IL, USA, 81Laurentian University, Sudbury, ON, Canada, 82University of Sussex, Physics and Astronomy, Falmer, Brighton, UK, 83University of Sussex, Physics and Astronomy, Falmer, Brighton, UK, 84University of Oxford, The Denys Wilkinson Building, Oxford, UK, 85Queen's University, Department of Physics, Engineering Physics and Astronomy, Kingston, ON, Canada, 86Queen's University, Department of Physics, Engineering Physics and Astronomy, Kingston, ON, Canada, 87Technische Universität Dresden, Institut für Kern- und Teilchenphysik, Dresden, Germany, 88Brookhaven National Laboratory, Chemistry Department, Upton, NY, USA, 89Laboratório de Instrumentaçao e Física Experimental de Partículas, 90University of Oxford, The Denys Wilkinson Building, Oxford, UK, 91Queen's University, Department of Physics, Engineering Physics and Astronomy, Kingston, ON, Canada, 92Laboratório de Instrumentaçao e Física Experimental de Partículas, 93University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, PA, USA, 94University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, PA, USA, 95University of Liverpool, Department of Physics, Liverpool, UK, 96Queen's University, Department of Physics, Engineering Physics and Astronomy, Kingston, ON, Canada, 97University of Sheffield, Department of Physics and Astronomy, Sheffield, UK, 98University of Alberta, Department of Physics, Edmonton, AB, Canada, 99Queen's University, Department of Physics, Engineering Physics and Astronomy, Kingston, ON, Canada, 100University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, PA, USA, 101Queen's University, Department of Physics, Engineering Physics and Astronomy, Kingston, ON, Canada, 102Queen Mary, University of London, School of Physics and Astronomy, London, UK, 103Queen's University, Department of Physics, Engineering Physics and Astronomy, Kingston, ON, Canada, 104Queen's University, Department of Physics, Engineering Physics and Astronomy, Kingston, ON, Canada, 105Queen's University, Department of Physics, Engineering Physics and Astronomy, Kingston, ON, Canada, 106University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, PA, USA, 107Lancaster University, Physics Department, Lancaster, UK, 108University of Sussex, Physics and Astronomy, Falmer, Brighton, UK, 109University of California, Davis, CA, USA, 110University of Alberta, Department of Physics, Edmonton, AB, Canada, 111Laboratório de Instrumentaçao e Física Experimental de Partículas, 112University of California, Department of Physics, Berkeley, CA, USA, 113Queen's University, Department of Physics, Engineering Physics and Astronomy, Kingston, ON, Canada, 114University of Oxford, The Denys Wilkinson Building, Oxford, UK, 115University of Liverpool, Department of Physics, Liverpool, UK, 116University of Liverpool, Department of Physics, Liverpool, UK, 117Brookhaven National Laboratory, Chemistry Department, Upton, NY, USA, 118Laurentian University, Sudbury, ON, Canada, 119Laurentian University, Sudbury, ON, Canada, 120Laurentian University, Sudbury, ON, Canada, 121Laurentian University, Sudbury, ON, Canada, 122University of Washington, Center for Experimental Nuclear Physics and Astrophysics, and Department of Physics, Seattle, WA, USA, 123Armstrong Atlantic State University, Savannah, GA, USA, 124Queen's University, Department of Physics, Engineering Physics and Astronomy, Kingston, ON, Canada, 125University of Oxford, The Denys Wilkinson Building, Oxford, UK, 126University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, PA, USA, 127Laurentian University, Sudbury, ON, Canada, 128University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, PA, USA, 129University of Alberta, Department of Physics, Edmonton, AB, Canada, 130University of Sussex, Physics and Astronomy, Falmer, Brighton, UK, 131University of Alberta, Department of Physics, Edmonton, AB, Canada, 132Queen's University, Department of Physics, Engineering Physics and Astronomy, Kingston, ON, Canada, 133Technische Universität Dresden, Institut für Kern- und Teilchenphysik, Dresden, Germany, 134Queen's University, Department of Physics, Engineering Physics and Astronomy, Kingston, ON, Canada, 135University of Liverpool, Department of Physics, Liverpool, UK, 136The Enrico Fermi Institute and Department of Physics, The University of Chicago, Chicago, IL, USA, 137University of Sussex, Physics and Astronomy, Falmer, Brighton, UK, 138University of California, Davis, CA, USA, 139University of Washington, Center for Experimental Nuclear Physics and Astrophysics, and Department of Physics, Seattle, WA, USA, 140Queen's University, Department of Physics, Engineering Physics and Astronomy, Kingston, ON, Canada, 141University of Washington, Center for Experimental Nuclear Physics and Astrophysics, and Department of Physics, Seattle, WA, USA, 142University of Oxford, The Denys Wilkinson Building, Oxford, UK, 143University of Washington, Center for Experimental Nuclear Physics and Astrophysics, and Department of Physics, Seattle, WA, USA, 144University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, PA, USA, 145SNOLAB, Sudbury, ON, Canada, 146Laurentian University, Sudbury, ON, Canada, 147Technische Universität Dresden, Institut für Kern- und Teilchenphysik, Dresden, Germany, 148University of Liverpool, Department of Physics, Liverpool, UK, 149Queen's University, Department of Physics, Engineering Physics and Astronomy, Kingston, ON, Canada, 150TRIUMF, Vancouver, BC, Canada, 151University of Sussex, Physics and Astronomy, Falmer, Brighton, UK, 152University of Sussex, Physics and Astronomy, Falmer, Brighton, UK, 153Queen Mary, University of London, School of Physics and Astronomy, London, UK, 154University of Washington, Center for Experimental Nuclear Physics and Astrophysics, and Department of Physics, Seattle, WA, USA, 155Queen's University, Department of Physics, Engineering Physics and Astronomy, Kingston, ON, Canada, 156Brookhaven National Laboratory, Chemistry Department, Upton, NY, USA, 157Queen's University, Department of Physics, Engineering Physics and Astronomy, Kingston, ON, Canada, 158Technische Universität Dresden, Institut für Kern- und Teilchenphysik, Dresden, Germany

SNO+ is a large liquid scintillator-based experiment located 2km underground at SNOLAB, Sudbury, Canada. It reuses the Sudbury Neutrino Observatory detector, consisting of a 12m diameter acrylic vessel which will be filled with about 780 tonnes of ultra-pure liquid scintillator. Designed as a multipurpose neutrino experiment, the primary goal of SNO+ is a search for the neutrinoless double-beta decay (0$\nu\beta\beta$) of 130Te. Read More

The seasonal evolution of Saturn's polar atmospheric temperatures and hydrocarbon composition is derived from a decade of Cassini Composite Infrared Spectrometer (CIRS) 7-16 $\mu$m thermal infrared spectroscopy. We construct a near-continuous record of atmospheric variability poleward of 60$^\circ$ from northern winter/southern summer (2004, $L_s=293^\circ$) through the equinox (2009, $L_s=0^\circ$) to northern spring/southern autumn (2014, $L_s=56^\circ$). The hot tropospheric polar cyclones and the hexagonal shape of the north polar belt are both persistent features throughout the decade of observations. Read More

2014Nov
Affiliations: 1LIP and University, Coimbra, Portugal, 2LIP, Lisboa, Portugal, 3University of Leeds, UK, 4LIP and University, Coimbra, Portugal, 5LIP, Lisboa, Portugal, 6University of Sussex, Brighton, UK, 7Oxford University, UK, 8LBNL, Berkeley, USA, 9University of Sussex, Brighton, UK, 10LIP, Lisboa, Portugal, 11Laurentian University, Sudbury, Canada, 12University of Sussex, Brighton, UK, 13LIP, Lisboa, Portugal, 14LIP, Lisboa, Portugal, 15University of Sussex, Brighton, UK, 16University of Sussex, Brighton, UK, 17University of Liverpool, UK, 18LIP, Lisboa, Portugal, 19University of Sussex, Brighton, UK, 20Queen's University, Kingston, Canada, 21University of Sussex, Brighton, UK, 22University of Sussex, Brighton, UK, 23Queen Mary, University of London, UK

A light injection system using LEDs and optical fibres was designed for the calibration and monitoring of the photomultiplier array of the SNO+ experiment at SNOLAB. Large volume, non-segmented, low-background detectors for rare event physics, such as the multi-purpose SNO+ experiment, need a calibration system that allow an accurate and regular measurement of the performance parameters of their photomultiplier arrays, while minimising the risk of radioactivity ingress. The design implemented for SNO+ uses a set of optical fibres to inject light pulses from external LEDs into the detector. Read More

The Texas Echelon cross Echelle Spectrograph (TEXES), mounted on NASA's Infrared Telescope Facility (IRTF), was used to map mid-infrared ammonia absorption features on both Jupiter and Saturn in February 2013. Ammonia is the principle reservoir of nitrogen on the giant planets, and the ratio of isotopologues ($^{15}$N/$^{14}$N) can reveal insights into the molecular carrier (e.g. Read More

We use a pin-grid electrode to introduce a corrugated electrical potential into a planar dielectric-barrier discharge (DBD) system, so that the amplitude of the applied electric field has the profile of a two-dimensional square lattice. The lattice potential provides a template for the spatial distribution of plasma filaments in the system and has pronounced effects on the patterns that can form. The positions at which filaments become localized within the lattice unit cell vary with the width of the discharge gap. Read More

We present a study of the impact of different model groups in the detection of circumstellar debris disks. Almost all previous studies in this field have used Kurucz model spectra to predict the stellar contribution to the flux at the wavelength of observation thus determining the existence of a disk excess. Only recently have other model groups or families like Marcs and NextGen-Phoenix become available to the same extent. Read More