J. J. Kelly - UniversityC. Davis and Wisconsin

J. J. Kelly
Are you J. J. Kelly?

Claim your profile, edit publications, add additional information:

Contact Details

J. J. Kelly
UniversityC. Davis and Wisconsin
Daytona Beach
United States

Pubs By Year

External Links

Pub Categories

Quantum Physics (25)
Physics - Superconductivity (19)
Physics - Mesoscopic Systems and Quantum Hall Effect (13)
Nuclear Experiment (3)
Mathematics - Combinatorics (3)
Computer Science - Other (2)
Computer Science - Computer Vision and Pattern Recognition (2)
Computer Science - Robotics (2)
Mathematics - Classical Analysis and ODEs (2)
Statistics - Applications (1)
Physics - Materials Science (1)
Computer Science - Neural and Evolutionary Computing (1)
Nonlinear Sciences - Cellular Automata and Lattice Gases (1)
Computer Science - Databases (1)
Mathematics - Category Theory (1)
High Energy Physics - Experiment (1)
Statistics - Methodology (1)
Computer Science - Computers and Society (1)
Mathematics - Algebraic Topology (1)
Physics - Instrumentation and Detectors (1)
Physics - Chemical Physics (1)
Mathematics - Dynamical Systems (1)

Publications Authored By J. J. Kelly

The $X_m$ exceptional orthogonal polynomials (XOP) form a complete set of eigenpolynomials to a differential equation. Despite being complete, the XOP set does not contain polynomials of every degree. Thereby, the XOP escape the Bochner classification theorem. Read More

We present the results of precision mass measurements of neutron-rich cadmium isotopes. These nuclei approach the $N=82$ waiting point in the astrophysical \emph{r}-process and are also important to nuclear structure as they lie near doubly-magic $^{132}$Sn on the chart of nuclides. Of particular note is the clear identification of the ground state mass in $^{127}$Cd along with the isomeric state. Read More

An ideal preamplifier for qubit measurement must not only provide high gain and near quantum-limited noise performance, but also isolate the delicate quantum circuit from noisy downstream measurement stages while producing negligible backaction. Here we use a Superconducting Low-inductance Undulatory Galvanometer (SLUG) microwave amplifier to read out a superconducting transmon qubit, and we characterize both reverse isolation and measurement backaction of the SLUG. For appropriate dc bias, the SLUG achieves reverse isolation that is better than that of a commercial cryogenic isolator. Read More

Rgbp is an R package that provides estimates and verifiable confidence intervals for random effects in two-level conjugate hierarchical models for overdispersed Gaussian, Poisson, and Binomial data. Rgbp models aggregate data from k independent groups summarized by observed sufficient statistics for each random effect, such as sample means, possibly with covariates. Rgbp uses approximate Bayesian machinery with unique improper priors for the hyper-parameters, which leads to good repeated sampling coverage properties for random effects. Read More

We obtain representations of $X_1$ exceptional orthogonal polynomials through determinants of matrices that have certain adjusted moments as entries. We start out directly from the Darboux transformation, allowing for a universal perspective, rather than dependent upon the particular system (Jacobi or Type of Laguerre polynomials). We include a recursion formula for the adjusted moments and provide the initial adjusted moments for each system. Read More

We present a method to incorporate global orientation information from the sun into a visual odometry pipeline using only the existing image stream, where the sun is typically not visible. We leverage recent advances in Bayesian Convolutional Neural Networks to train and implement a sun detection model that infers a three-dimensional sun direction vector from a single RGB image. Crucially, our method also computes a principled uncertainty associated with each prediction, using a Monte Carlo dropout scheme. Read More

In the absence of reliable and accurate GPS, visual odometry (VO) has emerged as an effective means of estimating the egomotion of robotic vehicles. Like any dead-reckoning technique, VO suffers from unbounded accumulation of drift error over time, but this accumulation can be limited by incorporating absolute orientation information from, for example, a sun sensor. In this paper, we leverage recent work on visual outdoor illumination estimation to show that estimation error in a stereo VO pipeline can be reduced by inferring the sun position from the same image stream used to compute VO, thereby gaining the benefits of sun sensing without requiring a dedicated sun sensor or the sun to be visible to the camera. Read More

By analyzing the dissipative dynamics of a tunable gap flux qubit, we extract both sides of its two-sided environmental flux noise spectral density over a range of frequencies around $2k_BT/h \approx 1\,\rm{GHz}$, allowing for the observation of a classical-quantum crossover. Below the crossover point, the symmetric noise component follows a $1/f$ power law that matches the magnitude of the $1/f$ noise near $1\,{\rm{Hz}}$. The antisymmetric component displays a 1/T dependence below $100\,\rm{mK}$, providing dynamical evidence for a paramagnetic environment. Read More

Surface distributions of two level system (TLS) defects and magnetic vortices are limiting dissipation sources in superconducting quantum circuits. Arrays of flux-trapping holes are commonly used to eliminate loss due to magnetic vortices, but may increase dielectric TLS loss. We find that dielectric TLS loss increases by approximately 25% for resonators with a hole array beginning 2 $\mu \text{m}$ from the resonator edge, while the dielectric loss added by holes further away was below measurement sensitivity. Read More

Many superconducting qubit systems use the dispersive interaction between the qubit and a coupled harmonic resonator to perform quantum state measurement. Previous works have found that such measurements can induce state transitions in the qubit if the number of photons in the resonator is too high. We investigate these transitions and find that they can push the qubit out of the two-level subspace, and that they show resonant behavior as a function of photon number. Read More

Structure functions, as measured in lepton-nucleon scattering, have proven to be very useful in studying the quark dynamics within the nucleon. However, it is experimentally difficult to separately determine the longitudinal and transverse structure functions, and consequently there are substantially less data available for the longitudinal structure function in particular. Here we present separated structure functions for hydrogen and deuterium at low four--momentum transfer squared, Q^2< 1 GeV^2, and compare these with parton distribution parameterizations and a k_T factorization approach. Read More

The intriguing many-body phases of quantum matter arise from the interplay of particle interactions, spatial symmetries, and external fields. Generating these phases in an engineered system could provide deeper insight into their nature and the potential for harnessing their unique properties. However, concurrently bringing together the main ingredients for realizing many-body phenomena in a single experimental platform is a major challenge. Read More

We examine 12 studies on the efficacy of disaggregated energy feedback. The average electricity reduction across these studies is 4.5%. Read More

In this article we provide sufficient conditions on weakly idempotent complete exact categories $E$ which admit an abelian embedding, such that various categories of chain complexes in $E$ are equipped with projective model structures. In particular we show that as soon as $E$ has enough projectives, the category $\textbf{Ch}_{+}(E)$ of bounded below complexes is equipped with a projective model structure. In the case that $E$ also admits all kernels we show that it is also true of $\textbf{Ch}_{\ge0}(E)$, and that a generalisation of the Dold-Kan correspondence holds. Read More

We present a method to optimize qubit control parameters during error detection which is compatible with large-scale qubit arrays. We demonstrate our method to optimize single or two-qubit gates in parallel on a nine-qubit system. Additionally, we show how parameter drift can be compensated for during computation by inserting a frequency drift and using our method to remove it. Read More

Statistical mechanics is founded on the assumption that all accessible configurations of a system are equally likely. This requires dynamics that explore all states over time, known as ergodic dynamics. In isolated quantum systems, however, the occurrence of ergodic behavior has remained an outstanding question. Read More

We report the first electronic structure calculation performed on a quantum computer without exponentially costly precompilation. We use a programmable array of superconducting qubits to compute the energy surface of molecular hydrogen using two distinct quantum algorithms. First, we experimentally execute the unitary coupled cluster method using the variational quantum eigensolver. Read More

A major challenge in quantum computing is to solve general problems with limited physical hardware. Here, we implement digitized adiabatic quantum computing, combining the generality of the adiabatic algorithm with the universality of the digital approach, using a superconducting circuit with nine qubits. We probe the adiabatic evolutions, and quantify the success of the algorithm for random spin problems. Read More

The Workshop on Nuclear Data Needs and Capabilities for Applications (NDNCA) was held at Lawrence Berkeley National Laboratory (LBNL) on 27-29 May 2015. The goals of NDNCA were compile nuclear data needs across a wide spectrum of applied nuclear science, and to provide a summary of associated capabilities (accelerators, reactors, spectrometers, etc.) available for required measurements. Read More

Topological entropy is a widely studied indicator of chaos in topological dynamics. Here we give a generalized definition of topological entropy which may be applied to set-valued functions. We demonstrate that some of the well-known results concerning topological entropy of continuous (single-valued) functions extend naturally to set-valued functions while others must be altered. Read More

Leakage errors occur when a quantum system leaves the two-level qubit subspace. Reducing these errors is critically important for quantum error correction to be viable. To quantify leakage errors, we use randomized benchmarking in conjunction with measurement of the leakage population. Read More

Energy disaggregation estimates appliance-by-appliance electricity consumption from a single meter that measures the whole home's electricity demand. Recently, deep neural networks have driven remarkable improvements in classification performance in neighbouring machine learning fields such as image classification and automatic speech recognition. In this paper, we adapt three deep neural network architectures to energy disaggregation: 1) a form of recurrent neural network called `long short-term memory' (LSTM); 2) denoising autoencoders; and 3) a network which regresses the start time, end time and average power demand of each appliance activation. Read More

We present a class of orderings L for which there exists a profile u of preferences for a fixed odd number of individuals such that Borda's rule maps u to L. Read More

Weak measurement has provided new insight into the nature of quantum measurement, by demonstrating the ability to extract average state information without fully projecting the system. For single qubit measurements, this partial projection has been demonstrated with violations of the Leggett-Garg inequality. Here we investigate the effects of weak measurement on a maximally entangled Bell state through application of the Hybrid Bell-Leggett-Garg inequality (BLGI) on a linear chain of four transmon qubits. Read More

Josephson parametric amplifiers have become a critical tool in superconducting device physics due to their high gain and quantum-limited noise. Traveling wave parametric amplifiers (TWPAs) promise similar noise performance while allowing for significant increases in both bandwidth and dynamic range. We present a TWPA device based on an LC-ladder transmission line of Josephson junctions and parallel plate capacitors using low-loss amorphous silicon dielectric. Read More

Let g be a strategy-proof rule on the domain NP of profiles where no alternative Pareto-dominates any other. Then we establish a result with a Gibbard-Satterthwaite flavor: g is dictatorial if its range contains at least three alternatives. Read More

Simulating quantum physics with a device which itself is quantum mechanical, a notion Richard Feynman originated, would be an unparallelled computational resource. However, the universal quantum simulation of fermionic systems is daunting due to their particle statistics, and Feynman left as an open question whether it could be done, because of the need for non-local control. Here, we implement fermionic interactions with digital techniques in a superconducting circuit. Read More

Quantum computing becomes viable when a quantum state can be preserved from environmentally-induced error. If quantum bits (qubits) are sufficiently reliable, errors are sparse and quantum error correction (QEC) is capable of identifying and correcting them. Adding more qubits improves the preservation by guaranteeing increasingly larger clusters of errors will not cause logical failure - a key requirement for large-scale systems. Read More

A precise measurement of dephasing over a range of timescales is critical for improving quantum gates beyond the error correction threshold. We present a metrological tool, based on randomized benchmarking, capable of greatly increasing the precision of Ramsey and spin echo sequences by the repeated but incoherent addition of phase noise. We find our SQUID-based qubit is not limited by $1/f$ flux noise at short timescales, but instead observe a telegraph noise mechanism that is not amenable to study with standard measurement techniques. Read More

In this demonstration, we present an open source toolkit for evaluating non-intrusive load monitoring research; a field which aims to disaggregate a household's total electricity consumption into individual appliances. The toolkit contains: a number of importers for existing public data sets, a set of preprocessing and statistics functions, a benchmark disaggregation algorithm and a set of metrics to evaluate the performance of such algorithms. Specifically, this release of the toolkit has been designed to enable the use of large data sets by only loading individual chunks of the whole data set into memory at once for processing, before combining the results of each chunk. Read More

Let g be a strategy-proof rule on the domain NP of profiles where no alternative Pareto-dominates any other and let g have range S on NP. We complete the proof of a Gibbard-Satterthwaite result - if S contains more than two elements, then g is dictatorial - by establishing a full range result on two subdomains of NP. Read More

Many superconducting qubits are highly sensitive to dielectric loss, making the fabrication of coherent quantum circuits challenging. To elucidate this issue, we characterize the interfaces and surfaces of superconducting coplanar waveguide resonators and study the associated microwave loss. We show that contamination induced by traditional qubit lift-off processing is particularly detrimental to quality factors without proper substrate cleaning, while roughness plays at most a small role. Read More

The discovery of topological phases in condensed matter systems has changed the modern conception of phases of matter. The global nature of topological ordering makes these phases robust and hence promising for applications. However, the non-locality of this ordering makes direct experimental studies an outstanding challenge, even in the simplest model topological systems, and interactions among the constituent particles adds to this challenge. Read More

We apply the method of compressed sensing (CS) quantum process tomography (QPT) to characterize quantum gates based on superconducting Xmon and phase qubits. Using experimental data for a two-qubit controlled-Z gate, we obtain an estimate for the process matrix $\chi$ with reasonably high fidelity compared to full QPT, but using a significantly reduced set of initial states and measurement configurations. We show that the CS method still works when the amount of used data is so small that the standard QPT would have an underdetermined system of equations. Read More

One of the key challenges in quantum information is coherently manipulating the quantum state. However, it is an outstanding question whether control can be realized with low error. Only gates from the Clifford group -- containing $\pi$, $\pi/2$, and Hadamard gates -- have been characterized with high accuracy. Read More

Accurate methods of assessing the performance of quantum gates are extremely important. Quantum process tomography and randomized benchmarking are the current favored methods. Quantum process tomography gives detailed information, but significant approximations must be made to reduce this information to a form quantum error correction simulations can use. Read More

Non-intrusive load monitoring, or energy disaggregation, aims to separate household energy consumption data collected from a single point of measurement into appliance-level consumption data. In recent years, the field has rapidly expanded due to increased interest as national deployments of smart meters have begun in many countries. However, empirically comparing disaggregation algorithms is currently virtually impossible. Read More

Many countries are rolling out smart electricity meters. These measure a home's total power demand. However, research into consumer behaviour suggests that consumers are best able to improve their energy efficiency when provided with itemised, appliance-by-appliance consumption information. Read More

Understanding complex quantum matter presents a central challenge in condensed matter physics. The difficulty lies in the exponential scaling of the Hilbert space with the system size, making solutions intractable for both analytical and conventional numerical methods. As originally envisioned by Richard Feynman, this class of problems can be tackled using controllable quantum simulators. Read More

Energy disaggregation is the process of estimating the energy consumed by individual electrical appliances given only a time series of the whole-home power demand. Energy disaggregation researchers require datasets of the power demand from individual appliances and the whole-home power demand. Multiple such datasets have been released over the last few years but provide metadata in a disparate array of formats including CSV files and plain-text README files. Read More

We introduce a superconducting qubit architecture that combines high-coherence qubits and tunable qubit-qubit coupling. With the ability to set the coupling to zero, we demonstrate that this architecture is protected from the frequency crowding problems that arise from fixed coupling. More importantly, the coupling can be tuned dynamically with nanosecond resolution, making this architecture a versatile platform with applications ranging from quantum logic gates to quantum simulation. Read More

We present a method for optimizing quantum control in experimental systems, using a subset of randomized benchmarking measurements to rapidly infer error. This is demonstrated to improve single- and two-qubit gates, minimize gate bleedthrough, where a gate mechanism can cause errors on subsequent gates, and identify control crosstalk in superconducting qubits. This method is able to correct parameters to where control errors no longer dominate, and is suitable for automated and closed-loop optimization of experimental systems. Read More

A quantum computer can solve hard problems - such as prime factoring, database searching, and quantum simulation - at the cost of needing to protect fragile quantum states from error. Quantum error correction provides this protection, by distributing a logical state among many physical qubits via quantum entanglement. Superconductivity is an appealing platform, as it allows for constructing large quantum circuits, and is compatible with microfabrication. Read More

We present a lumped-element Josephson parametric amplifier designed to operate with strong coupling to the environment. In this regime, we observe broadband frequency dependent amplification with multi-peaked gain profiles. We account for this behaviour using the "pumpistor" model which allows for frequency dependent variation of the external impedance. Read More

Progress in superconducting qubit experiments with greater numbers of qubits or advanced techniques such as feedback requires faster and more accurate state measurement. We have designed a multiplexed measurement system with a bandpass filter that allows fast measurement without increasing environmental damping of the qubits. We use this to demonstrate simultaneous measurement of four qubits on a single superconducting integrated circuit, the fastest of which can be measured to 99. Read More

We describe the high fidelity dispersive measurement of a superconducting qubit using a microwave amplifier based on the Superconducting Low-inductance Undulatory Galvanometer (SLUG). The SLUG preamplifier achieves gain of 19 dB and yields a signal-to-noise ratio improvement of 9 dB over a state-of-the-art HEMT amplifier. We demonstrate a separation fidelity of 99% at 700 ns compared to 59% with the HEMT alone. Read More

We demonstrate a high efficiency deterministic quantum receiver to convert flying qubits to logic qubits. We employ a superconducting resonator, which is driven with a shaped pulse through an adjustable coupler. For the ideal "time reversed" shape, we measure absorption and receiver fidelities at the single microwave photon level of, respectively, 99. Read More

Superconducting microwave circuits based on coplanar waveguides (CPW) are susceptible to parasitic slotline modes which can lead to loss and decoherence. We motivate the use of superconducting airbridges as a reliable method for preventing the propagation of these modes. We describe the fabrication of these airbridges on superconducting resonators, which we use to measure the loss due to placing airbridges over CPW lines. Read More

We motivate and derive the dynamical rules for a computationally feasible three-dimensional cellular automaton model of snow crystal growth. The model improves upon points of weak physical connections identified in other similar models which have produced morphological features observed in many snow crystal photographs. A systematic survey of the morphologies resulting from our model illustrates the degree to which these features persist in our results, and the trends that appear as model parameters are varied. Read More

We demonstrate a lumped-element Josephson parametric amplifier, using a single-ended design that includes an on-chip, high-bandwidth flux bias line. The amplifier can be pumped into its region of parametric gain through either the input port or through the flux bias line. Broadband amplification is achieved at a tunable frequency $\omega/2 \pi$ between 5 to 7 GHz with quantum-limited noise performance, a gain-bandwidth product greater than 500 MHz, and an input saturation power in excess of -120 dBm. Read More