J. Gainer - Editor

J. Gainer
Are you J. Gainer?

Claim your profile, edit publications, add additional information:

Contact Details

Name
J. Gainer
Affiliation
Editor
City
Missoula
Country
United States

Pubs By Year

Pub Categories

 
High Energy Physics - Phenomenology (35)
 
High Energy Physics - Experiment (27)
 
High Energy Astrophysical Phenomena (2)
 
Astrophysics (1)
 
High Energy Physics - Theory (1)
 
Cosmology and Nongalactic Astrophysics (1)

Publications Authored By J. Gainer

Weak scale supersymmetry (SUSY) remains a compelling extension of the Standard Model because it stabilizes the quantum corrections to the Higgs and W, Z boson masses. In natural SUSY models these corrections are, by definition, never much larger than the corresponding masses. Natural SUSY models all have an upper limit on the gluino mass, too high to lead to observable signals even at the high luminosity LHC. Read More

Radiatively-driven natural SUSY (RNS) models enjoy electroweak naturalness at the $10\%$ level while respecting LHC sparticle and Higgs mass constraints. Gluino and top squark masses can range up to several TeV (with other squarks even heavier) but a set of light Higgsinos are required with mass not too far above $m_h\sim 125$ GeV. Within the RNS framework, gluinos dominantly decay via ${\tilde g} \to t{\tilde t}_1^{*},\ \bar{t}{\tilde t}_1 \to t\bar{t}{\widetilde Z}_{1,2}$ or $t\bar{b}{\widetilde W}_1^-+c. Read More

We critically examine the classic endpoint method for particle mass determination, focusing on difficult corners of parameter space, where some of the measurements are not independent, while others are adversely affected by the experimental resolution. In such scenarios, mass differences can be measured relatively well, but the overall mass scale remains poorly constrained. Using the example of the standard SUSY decay chain $\tilde q\to \tilde\chi^0_2\to \tilde \ell \to \tilde \chi^0_1$, we demonstrate that sensitivity to the remaining mass scale parameter can be recovered by measuring the two-dimensional kinematical boundary in the relevant three-dimensional phase space of invariant masses squared. Read More

Determining the masses of new physics particles appearing in decay chains is an important and longstanding problem in high energy phenomenology. Recently it has been shown that these mass measurements can be improved by utilizing the boundary of the allowed region in the fully differentiable phase space in its full dimensionality. Here we show that the practical challenge of identifying this boundary can be solved using techniques based on the geometric properties of the cells resulting from Voronoi tessellations of the relevant data. Read More

High energy experimental data can be viewed as a sampling of the relevant phase space. We point out that one can apply Voronoi tessellations in order to understand the underlying probability distributions in this phase space. Interesting features in the data can then be discovered by studying the properties of the ensemble of Voronoi cells. Read More

Reconstructed mass variables, such as $M_2$, $M_{2C}$, $M_T^\star$, and $M_{T2}^W$, play an essential role in searches for new physics at hadron colliders. The calculation of these variables generally involves constrained minimization in a large parameter space, which is numerically challenging. We provide a C++ code, OPTIMASS, which interfaces with the MINUIT library to perform this constrained minimization using the Augmented Lagrangian Method. Read More

We point out that interesting features in high energy physics data can be determined from properties of Voronoi tessellations of the relevant phase space. For illustration, we focus on the detection of kinematic "edges" in two dimensions, which may signal physics beyond the standard model. After deriving some useful geometric results for Voronoi tessellations on perfect grids, we propose several algorithms for tagging the Voronoi cells in the vicinity of kinematic edges in real data. Read More

Supersymmetric (SUSY) models, even those described by relatively few parameters, generically allow many possible SUSY particle (sparticle) mass hierarchies. As the sparticle mass hierarchy determines, to a great extent, the collider phenomenology of a model, the enumeration of these hierarchies is of the utmost importance. We therefore provide a readily generalizable procedure for determining the number of sparticle mass hierarchies in a given SUSY model. Read More

The search for light stops is of paramount importance, both in general as a promising path to the discovery of beyond the standard model physics and more specifically as a way of evaluating the success of the naturalness paradigm. While the LHC experiments have ruled out much of the relevant parameter space, there are "stop gaps", i.e. Read More

We attempt to build a model that describes the {\it Fermi} galactic gamma-ray excess (FGCE) within a UV-complete Supersymmetric framework; we find this to be highly non-trivial. At the very least a successful Supersymmetric explanation must have several important ingredients in order to fit the data and satisfy other theoretical and experimental constraints. Under the assumption that a {\it single} annihilation mediator is responsible for both the observed relic density as well as the FGCE, we show that the requirements are not easily satisfied in many TeV-scale SUSY models, but can be met with some model building effort in the general NMSSM with $\sim 10$ parameters beyond the MSSM. Read More

Thus far the LHC experiments have yet to discover beyond-the-standard-model physics. This motivates efforts to search for new physics in model independent ways. In this spirit, we describe procedures for using a variant of the Matrix Element Method to search for new physics without regard to a specific signal hypothesis. Read More

The prevalence of null results in searches for new physics at the LHC motivates the effort to make these searches as model-independent as possible. We describe procedures for adapting the Matrix Element Method for situations where the signal hypothesis is not known a priori. We also present general and intuitive approaches for performing analyses and presenting results, which involve the flattening of background distributions using likelihood information. Read More

Theories of new physics often involve a large number of unknown parameters which need to be scanned. Additionally, a putative signal in a particular channel may be due to a variety of distinct models of new physics. This makes experimental attempts to constrain the parameter space of motivated new physics models with a high degree of generality quite challenging. Read More

We extend the study of Higgs boson couplings in the "golden" $gg\to H \to ZZ^\ast \to 4\ell$ channel in two important respects. First, we demonstrate the importance of off-shell Higgs boson production ($gg\to H^\ast \to ZZ \to 4\ell$) in determining which operators contribute to the $HZZ$ vertex. Second, we include the five operators of lowest non-trivial dimension, including the $Z_\mu Z^\mu \Box H$ and $H Z_\mu \Box Z^\mu$ operators that are often neglected. Read More

We consider a class of on-shell constrained mass variables that are 3+1 dimensional generalizations of the Cambridge $M_{T2}$ variable and that automatically incorporate various assumptions about the underlying event topology. The presence of additional on-shell constraints causes their kinematic distributions to exhibit sharper endpoints than the usual $M_{T2}$ distribution. We study the mathematical properties of these new variables, e. Read More

2013Oct

This report summarizes the work of the Energy Frontier Higgs Boson working group of the 2013 Community Summer Study (Snowmass). We identify the key elements of a precision Higgs physics program and document the physics potential of future experimental facilities as elucidated during the Snowmass study. We study Higgs couplings to gauge boson and fermion pairs, double Higgs production for the Higgs self-coupling, its quantum numbers and $CP$-mixing in Higgs couplings, the Higgs mass and total width, and prospects for direct searches for additional Higgs bosons in extensions of the Standard Model. Read More

We present a general procedure for measuring the tensor structure of the coupling of the scalar Higgs-like boson recently discovered at the LHC to two Z bosons, including the effects of interference among different operators. To motivate our concern with this interference, we explore the parameter space of the couplings in the effective theory describing these interactions and illustrate the effects of interference on the differential dilepton mass distributions. Kinematic discriminants for performing coupling measurements that utilize the effects of interference are developed and described. Read More

The increasing use of multivariate methods, and in particular the Matrix Element Method (MEM), represents a revolution in experimental particle physics. With continued exponential growth in computing capabilities, the use of sophisticated multivariate methods-- already common-- will soon become ubiquitous and ultimately almost compulsory. While the existence of sophisticated algorithms for disentangling signal and background might naively suggest a diminished role for theorists, the use of the MEM, with its inherent connection to the calculation of differential cross sections will benefit from collaboration between theorists and experimentalists. Read More

The latest results from the ATLAS and CMS experiments at the CERN Large Hadron Collider (LHC) unequivocally confirm the existence of a resonance, $X$, with mass near 125 GeV which could be the Higgs boson of the Standard Model. Measuring the properties (quantum numbers and couplings) of this resonance is of paramount importance. Initial analyses by the LHC collaborations disfavor specific alternative benchmark hypotheses, e. Read More

Perhaps the most important question in particle physics today is whether the boson with mass near 125 GeV discovered at the Large Hadron Collider (LHC) is the Higgs Boson of the Standard Model. Since a particularly important property of the Standard Model Higgs is its role in unitarizing longitudinal WW scattering, we study the ability of the LHC to probe this process in the case of same-sign W pair production. We find that the use of the Matrix Element Method increases the significance with which the Higgs sector can be probed in this channel. Read More

The importance of the H -> ZZ -> 4l "golden" channel was shown by its major role in the discovery, by the ATLAS and CMS collaborations, of a Higgs-like boson with mass near 125 GeV. We analyze the discrimination power of the matrix element method both for separating the signal from the irreducible ZZ background and for distinguishing various spin and parity hypotheses describing a signal in this channel. We show that the proper treatment of interference effects associated with permutations of identical leptons in the four electron and four muon final states plays an important role in achieving the best sensitivity in measuring the properties of the newly discovered boson. Read More

The final state obtained when a Higgs boson decays to a photon and a Z boson has been mostly overlooked in current searches for a light Higgs boson. However, when the Z boson decays leptonically, all final state particles in this channel can be measured, allowing for accurate reconstructions of the Higgs mass and angular correlations. We determine the sensitivity of the Large Hadron Collider (LHC) running at center of masses energies of 8 and 14 TeV to Standard Model (SM) Higgs bosons with masses in the 120 - 130 GeV range. Read More

Supersymmetric SO(10) Grand Unified Theories with Yukawa unification represent an appealing possibility for physics beyond the Standard Model. However Yukawa unification is made difficult by large threshold corrections to the bottom mass. Generally one is led to consider models where the sfermion masses are large in order to suppress these corrections. Read More

Leptonic decays of the Higgs boson in the ZZ* channel yield what is known as the golden channel due to its clean signature and good total invariant mass resolution. In addition, the full kinematic distribution of the decay products can be reconstructed, which, nonetheless, is not taken into account in traditional search strategy relying only on measurements of the total invariant mass. In this work we implement a type of multivariate analysis known as the matrix element method, which exploits differences in the full production and decay matrix elements between the Higgs boson and the dominant irreducible background from q bar{q} -> ZZ*. Read More

2011May
Authors: Daniele Alves1, Nima Arkani-Hamed2, Sanjay Arora3, Yang Bai4, Matthew Baumgart5, Joshua Berger6, Matthew Buckley7, Bart Butler8, Spencer Chang9, Hsin-Chia Cheng10, Clifford Cheung11, R. Sekhar Chivukula12, Won Sang Cho13, Randy Cotta14, Mariarosaria D'Alfonso15, Sonia El Hedri16, Rouven Essig17, Jared A. Evans18, Liam Fitzpatrick19, Patrick Fox20, Roberto Franceschini21, Ayres Freitas22, James S. Gainer23, Yuri Gershtein24, Richard Gray25, Thomas Gregoire26, Ben Gripaios27, Jack Gunion28, Tao Han29, Andy Haas30, Per Hansson31, JoAnne Hewett32, Dmitry Hits33, Jay Hubisz34, Eder Izaguirre35, Jared Kaplan36, Emanuel Katz37, Can Kilic38, Hyung-Do Kim39, Ryuichiro Kitano40, Sue Ann Koay41, Pyungwon Ko42, David Krohn43, Eric Kuflik44, Ian Lewis45, Mariangela Lisanti46, Tao Liu47, Zhen Liu48, Ran Lu49, Markus Luty50, Patrick Meade51, David Morrissey52, Stephen Mrenna53, Mihoko Nojiri54, Takemichi Okui55, Sanjay Padhi56, Michele Papucci57, Michael Park58, Myeonghun Park59, Maxim Perelstein60, Michael Peskin61, Daniel Phalen62, Keith Rehermann63, Vikram Rentala64, Tuhin Roy65, Joshua T. Ruderman66, Veronica Sanz67, Martin Schmaltz68, Stephen Schnetzer69, Philip Schuster70, Pedro Schwaller71, Matthew D. Schwartz72, Ariel Schwartzman73, Jing Shao74, Jessie Shelton75, David Shih76, Jing Shu77, Daniel Silverstein78, Elizabeth Simmons79, Sunil Somalwar80, Michael Spannowsky81, Christian Spethmann82, Matthew Strassler83, Shufang Su84, Tim Tait85, Brooks Thomas86, Scott Thomas87, Natalia Toro88, Tomer Volansky89, Jay Wacker90, Wolfgang Waltenberger, Itay Yavin, Felix Yu, Yue Zhao, Kathryn Zurek
Affiliations: 1Editor, 2Editor, 3Editor, 4Editor, 5Editor, 6Editor, 7Editor, 8Editor, 9Editor, 10Editor, 11Editor, 12Editor, 13Editor, 14Editor, 15Editor, 16Editor, 17Editor, 18Editor, 19Editor, 20Editor, 21Editor, 22Editor, 23Editor, 24Editor, 25Editor, 26Editor, 27Editor, 28Editor, 29Editor, 30Editor, 31Editor, 32Editor, 33Editor, 34Editor, 35Editor, 36Editor, 37Editor, 38Editor, 39Editor, 40Editor, 41Editor, 42Editor, 43Editor, 44Editor, 45Editor, 46Editor, 47Editor, 48Editor, 49Editor, 50Editor, 51Editor, 52Editor, 53Editor, 54Editor, 55Editor, 56Editor, 57Editor, 58Editor, 59Editor, 60Editor, 61Editor, 62Editor, 63Editor, 64Editor, 65Editor, 66Editor, 67Editor, 68Editor, 69Editor, 70Editor, 71Editor, 72Editor, 73Editor, 74Editor, 75Editor, 76Editor, 77Editor, 78Editor, 79Editor, 80Editor, 81Editor, 82Editor, 83Editor, 84Editor, 85Editor, 86Editor, 87Editor, 88Editor, 89Editor, 90Editor

This document proposes a collection of simplified models relevant to the design of new-physics searches at the LHC and the characterization of their results. Both ATLAS and CMS have already presented some results in terms of simplified models, and we encourage them to continue and expand this effort, which supplements both signature-based results and benchmark model interpretations. A simplified model is defined by an effective Lagrangian describing the interactions of a small number of new particles. Read More

We investigate the model independent nature of the Supersymmetry search strategies at the 7 TeV LHC. To this end, we study the missing-transverse-energy-based searches developed by the ATLAS Collaboration that were essentially designed for mSUGRA. We simulate the signals for ~71k models in the 19-dimensional parameter space of the pMSSM. Read More

The discovery and exploration of Supersymmetry in a model-independent fashion will be a daunting task due to the large number of soft-breaking parameters in the MSSM. In this paper, we explore the capability of the ATLAS detector at the LHC ($\sqrt s=14$ TeV, 1 fb$^{-1}$) to find SUSY within the 19-dimensional pMSSM subspace of the MSSM using their standard transverse missing energy and long-lived particle searches that were essentially designed for mSUGRA. To this end, we employ a set of $\sim 71$k previously generated model points in the 19-dimensional parameter space that satisfy all of the existing experimental and theoretical constraints. Read More

The recent positron excess in cosmic rays (CR) observed by the PAMELA satellite may be a signal for dark matter (DM) annihilation. When these measurements are combined with those from FERMI on the total ($e^++e^-$) flux and from PAMELA itself on the $\bar p/p$ ratio, these and other results are difficult to reconcile with traditional models of DM, including the conventional mSUGRA version of Supersymmetry even if boosts as large as $10^{3-4}$ are allowed. In this paper, we combine the results of a previously obtained scan over a more general 19-parameter subspace of the MSSM with a corresponding scan over astrophysical parameters that describe the propagation of CR. Read More

Recently we examined a large number of points in a 19-dimensional parameter subspace of the CP-conserving MSSM with Minimal Flavor Violation. We determined whether each of these points satisfied existing theoretical, experimental, and observational constraints. Here we discuss the properties of the parameter space points allowed by existing data that are relevant for dark matter searches. Read More

We present a summary of recent results obtained from a scan of the 19-dimensional parameter space of the pMSSM and its implications for dark matter searches. Read More

We have recently examined a large number of points in the parameter space of the phenomenological MSSM, the 19-dimensional parameter space of the CP-conserving MSSM with Minimal Flavor Violation. We determined whether each of these points satisfied existing experimental and theoretical constraints. This analysis provides insight into general features of the MSSM without reference to a particular SUSY breaking scenario or any other assumptions at the GUT scale. Read More

We begin an exploration of the physics associated with the general CP-conserving MSSM with Minimal Flavor Violation, the pMSSM. The 19 soft SUSY breaking parameters in this scenario are chosen so as to satisfy all existing experimental and theoretical constraints assuming that the WIMP is a conventional thermal relic, ie, the lightest neutralino. We scan this parameter space twice using both flat and log priors for the soft SUSY breaking mass parameters and compare the results which yield similar conclusions. Read More

The generic unparticle propagator may be modified in two ways. Breaking the conformal symmetry effectively adds a mass term to the propagator, while considering vacuum polarization corrections adds a width-like term. Both of these modifications result naturally from the coupling of the unparticle to standard model (SM) fields. Read More

We present the first detailed, large-scale study of the Minimal Supersymmetric Standard Model (MSSM) at a $\sqrt s=500$ GeV International Linear Collider, including full Standard Model backgrounds and detector simulation. We investigate 242 points in the MSSM parameter space, which we term models, that have been shown by Arkani-Hamed et al to be difficult to study at the LHC. In fact, these points in MSSM parameter space correspond to 162 pairs of models which give indistinguishable signatures at the LHC, giving rise to the so-called LHC Inverse Problem. Read More

We address the question whether the ILC can resolve the LHC Inverse Problem within the framework of the MSSM. We examine 242 points in the MSSM parameter space which were generated at random and were found to give indistinguishable signatures at the LHC. After a realistic simulation including full Standard Model backgrounds and a fast detector simulation, we find that roughly only one third of these scenarios lead to visible signatures of some kind with a significance $\geq 5$ at the ILC with $\sqrt s=500$ GeV. Read More