J. Ball - The CLAS Collaboration

J. Ball
Are you J. Ball?

Claim your profile, edit publications, add additional information:

Contact Details

Name
J. Ball
Affiliation
The CLAS Collaboration
Location

Pubs By Year

Pub Categories

 
Nuclear Experiment (18)
 
Physics - Plasma Physics (10)
 
Mathematics - Analysis of PDEs (9)
 
Mathematics - Functional Analysis (7)
 
Mathematics - Classical Analysis and ODEs (5)
 
High Energy Physics - Experiment (4)
 
Physics - Materials Science (2)
 
Physics - Soft Condensed Matter (2)
 
Mathematics - Optimization and Control (2)
 
Physics - Instrumentation and Detectors (1)
 
Mathematics - Geometric Topology (1)
 
Nuclear Theory (1)
 
Mathematics - Complex Variables (1)
 
High Energy Physics - Phenomenology (1)
 
Mathematics - Operator Algebras (1)

Publications Authored By J. Ball

2017May
Authors: D. Ho, P. Peng, C. Bass, P. Collins, A. D'Angelo, A. Deur, J. Fleming, C. Hanretty, T. Kageya, M. Khandaker, F. J. Klein, E. Klempt, V. Laine, M. M. Lowry, H. Lu, C. Nepali, V. A. Nikonov, T. O'Connell, A. M. Sandorfi, A. V. Sarantsev, R. A. Schumacher, I. I. Strakovsky, A. Švarc, N. K. Walford, X. Wei, C. S. Whisnant, R. L. Workman, I. Zonta, K. P. Adhikari, D. Adikaram, Z. Akbar, M. J. Amaryan, S. Anefalos Pereira, H. Avakian, J. Ball, M. Bashkanov, M. Battaglieri, V. Batourine, I. Bedlinskiy, W. J. Briscoe, V. D. Burkert, D. S. Carman, A. Celentano, G. Charles, T. Chetry, G. Ciullo, L. Clark, L. Colaneri, P. L. Cole, M. Contalbrigo, V. Crede, N. Dashyan, E. De Sanctis, R. De Vita, C. Djalali, R. Dupre, A. El Alaoui, L. El Fassi, L. Elouadrhiri, G. Fedotov, S. Fegan, R. Fersch, A. Filippi, A. Fradi, Y. Ghandilyan, G. P. Gilfoyle, F. X. Girod, D. I. Glazier, C. Gleason, W. Gohn, E. Golovatch, R. W. Gothe, K. A. Griffioen, M. Guidal, L. Guo, H. Hakobyan, N. Harrison, K. Hicks, M. Holtrop, S. M. Hughes, Y. Ilieva, D. G. Ireland, B. S. Ishkhanov, E. L. Isupov, D. Jenkins, H. Jiang, H. S. Jo, K. Joo, S. Joosten, D. Keller, G. Khachatryan, A. Kim, W. Kim, A. Klein, V. Kubarovsky, S. V. Kuleshov, L. Lanza, P. Lenisa, K. Livingston, I . J . D. MacGregor, N. Markov, B. McKinnon, T. Mineeva, V. Mokeev, R. A. Montgomery, A Movsisyan, C. Munoz Camacho, G. Murdoch, S. Niccolai, G. Niculescu, M. Osipenko, M. Paolone, R. Paremuzyan, K. Park, E. Pasyuk, W. Phelps, O. Pogorelko, J. W. Price, S. Procureur, D. Protopopescu, M. Ripani, D. Riser, B. G. Ritchie, A. Rizzo, G. Rosner, F. Sabatié, C. Salgado, Y. G. Sharabian, Iu. Skorodumina, G. D. Smith, D. I. Sober, D. Sokhan, N. Sparveris, S. Strauch, Ye Tian, B. Torayev, M. Ungaro, H. Voskanyan, D. P. Watts, M. H. Wood, N. Zachariou, J. Zhang, Z. W. Zhao

We report the first beam-target double-polarization asymmetries in the $\gamma + n(p) \rightarrow \pi^- + p(p)$ reaction spanning the nucleon resonance region from invariant mass $W$= $1500$ to $2300$ MeV. Circularly polarized photons and longitudinally polarized deuterons in $H\!D$ have been used with the CLAS detector at Jefferson Lab. The exclusive final state has been extracted using three very different analyses that show excellent agreement, and these have been used to deduce the {\it{E}} polarization observable for an effective neutron target. Read More

2017Mar
Authors: CLAS Collaboration, I. Bedlinskiy, V. Kubarovsky, P. Stoler, K. P. Adhikari, Z. Akbar, S. Anefalos Pereira, H. Avakian, J. Ball, N. A. Baltzell, M. Battaglieri, V. Batourine, A. S. Biselli, S. Boiarinov, W. J. Briscoe, V. D. Burkert, T. Cao, D. S. Carman, A. Celentano, S. Chandavar, G. Charles, G. Ciullo, L. Clark, L. Colaneri, P. L. Cole, M. Contalbrigo, V. Crede, A. D'Angelo, N. Dashyan, R. De Vita, E. De Sanctis, A. Deur, C. Djalali, R. Dupre, A. El Alaoui, L. El Fassi, L. Elouadrhiri, P. Eugenio, E. Fanchini, G. Fedotov, R. Fersch, A. Filippi, J. A. Fleming, T. A. Forest, M. Garçon, N. Gevorgyan, Y. Ghandilyan, G. P. Gilfoyle, K. L. Giovanetti, F. X. Girod, C. Gleason, E. Golovatch, R. W. Gothe, K. A. Griffioen, M. Guidal, L. Guo, K. Hafidi, H. Hakobyan, C. Hanretty, N. Harrison, M. Hattawy, K. Hicks, S. M. Hughes, C. E. Hyde, Y. Ilieva, D. G. Ireland, B. S. Ishkhanov, E. L. Isupov, D. Jenkins, H. Jiang, H. S. Jo, K. Joo, S. Joosten, D. Keller, G. Khachatryan, M. Khachatryan, M. Khandaker, A. Kim, W. Kim, F. J. Klein, S. E. Kuhn, S. V. Kuleshov, L. Lanza, P. Lenisa, K. Livingston, I. J. D. MacGregor, N. Markov, B. McKinnon, Z. E. Meziani, M. Mirazita, V. Mokeev, R. A. Montgomery, A. Movsisyan, C. Munoz Camacho, P. Nadel-Turonski, L. A. Net, A. Ni, S. Niccolai, G. Niculescu, M. Osipenko, A. I. Ostrovidov, M. Paolone, R. Paremuzyan, K. Park, E. Pasyuk, P. Peng, W. Phelps, S. Pisano, O. Pogorelko, J. W. Price, Y. Prok, D. Protopopescu, A. J. R. Puckett, B. A. Raue, M. Ripani, A. Rizzo, G. Rosner, P. Rossi, P. Roy, F. Sabatié, M. S. Saini, C. Salgado, R. A. Schumacher, Y. G. Sharabian, Iu. Skorodumina, G. D. Smith, D. Sokhan, N. Sparveris, S. Stepanyan, I. I. Strakovsky, S. Strauch, M. Taiuti, Ye Tian, B. Torayev, M. Turisini, M. Ungaro, H. Voskanyan, E. Voutier, N. K. Walford, D. P. Watts, X. Wei, L. B. Weinstein, M. H. Wood, M. Yurov, N. Zachariou, J. Zhang, I. Zonta

The cross section of the exclusive $\eta$ electroproduction reaction $ep\to e^\prime p^\prime \eta$ was measured at Jefferson Lab with a 5.75-GeV electron beam and the CLAS detector. Differential cross sections $d^4\sigma/dtdQ^2dx_Bd\phi_\eta$ and structure functions $\sigma_U = \sigma_T+\epsilon\sigma_L, \sigma_{TT}$ and $\sigma_{LT}$, as functions of $t$ were obtained over a wide range of $Q^2$ and $x_B$. Read More

We present a solution of the operator-valued Schur-function realization problem on the right-half plane by developing the corresponding de Branges-Rovnyak canonical conservative simple functional model. This model corresponds to the closely connected unitary model in the disk setting, but we work the theory out directly in the right-half plane, which allows us to exhibit structure which is absent in the disk case. A main feature of the study is that the connecting operator is unbounded, and so we need to make use of the theory of well-posed continuous-time systems. Read More

Breaking the up-down symmetry of the tokamak poloidal cross-section can significantly increase the spontaneous rotation due to turbulent momentum transport. In this work, we optimize the shape of flux surfaces with both tilted elongation and tilted triangularity in order to maximize this drive of intrinsic rotation. Nonlinear gyrokinetic simulations demonstrate that adding optimally-tilted triangularity can double the momentum transport of a tilted elliptical shape. Read More

2017Mar
Authors: P. Collins, B. G. Ritchie, M. Dugger, A. V. Anisovich, M. Döring, E. Klempt, V. A. Nikonov, D. Rönchen, D. Sadasivan, A. Sarantsev, K. P. Adhikaria, Z. Akbar, M. J. Amaryana, S. Anefalos Pereira, H. Avakiana, J. Ball, I. Balossino, M. Bashkanova, M. Battaglieri, I. Bedlinskiy, A. S. Bisellik, W. J. Briscoe, W. K. Brooks, V. D. Burkert, Frank Thanh Cao, D. S. Carman, A. Celentano, S. Chandavar, G. Charles, T. Chetry, G. Ciullo, L. Clark, L. Colaneri, P. L. Cole, N. Compton, M. Contalbrigo, O. Cortes, V. Crede, A. D'Angelo, N. Dashyan, R. De Vita, E. De Sanctis, A. Deur, C. Djalali, R. Dupre, H. Egiyan, A. El Alaoui, L. El Fassi, L. Elouadrhiri, P. Eugenio, E. Fanchini, G. Fedotov, A. Filippi, J. A. Fleming, Y. Ghandilyan, G. P. Gilfoyle, K. L. Giovanetti, F. X. Girod, D. I. Glazier, C. Gleason, E. Golovatch, R. W. Gothe, K. A. Griffioen, L. Guo, K. Hafidi, H. Hakobyan, C. Hanretty, N. Harrison, D. Heddle, K. Hicks, M. Holtrop, S. M. Hughes, Y. Ilieva, D. G. Ireland, B. S. Ishkhanov, E. L. Isupov, D. Jenkins, H. S. Jo, S. Joosten, D. Keller, G. Khachatryan, M. Khachatryan, M. Khandaker, A. Kim, W. Kim, A. Klein, F. J. Klein, V. Kubarovsky, L. Lanza, P. Lenisa, K. Livingston, I. J. D. MacGregor, N. Markov, B. McKinnon, C. A. Meyer, M. Mirazita, V. Mokeev, R. A. Montgomery, A Movsisyan, C. Munoz Camacho, G. Murdoch, P. Nadel-Turonski, S. Niccolai, G. Niculescu, I. Niculescu, M. Osipenko, A. I. Ostrovidov, M. Paolone, R. Paremuzyan, K. Park, E. Pasyuk, W. Phelps, S. Pisano, O. Pogorelko, J. W. Price, Y. Prok, D. Protopopescu, B. A. Raue, M. Ripani, A. Rizzo, G. Rosner, P. Roy, F. Sabatié, C. Salgado, R. A. Schumacher, Y. G. Sharabian, Iu. Skorodumina, G. D. Smith, D. Sokhan, N. Sparveris, S. Stepanyan, I. I. Strakovsky, S. Strauch, M. Taiuti, Ye Tian, B. Torayev, M. Ungaro, H. Voskanyan, E. Voutier, N. K. Walford, X. Wei, N. Zachariou, J. Zhang

Measurements of the linearly-polarized photon beam asymmetry $\Sigma$ for photoproduction from the proton of $\eta$ and $\eta^\prime$ mesons are reported. A linearly-polarized tagged photon beam produced by coherent bremsstrahlung was incident on a cryogenic hydrogen target within the CEBAF Large Acceptance Spectrometer. Results are presented for the $\gamma p \to \eta p$ reaction for incident photon energies from 1. Read More

A review is given of some mathematical contributions, ideas and questions concerning liquid crystals. Read More

Introducing up-down asymmetry into the tokamak magnetic equilibria appears to be a feasible method to drive fast intrinsic toroidal rotation in future large devices. In this paper we investigate how the intrinsic momentum transport generated by up-down asymmetric shaping scales with the mode number of the shaping effects. Making use the gyrokinetic tilting symmetry (Ball et al (2016) Plasma Phys. Read More

Bulk toroidal rotation has proven capable of stabilising both dangerous MHD modes and turbulence. In this thesis, we explore a method to drive rotation in large tokamaks: up-down asymmetry in the magnetic equilibrium. We seek to maximise this rotation by finding optimal up-down asymmetric flux surface shapes. Read More

We revisit four approaches to the BiTangential Operator Argument Nevanlinna-Pick (BTOA-NP) interpolation theorem on the right half plane: (1) the state-space approach of Ball-Gohberg-Rodman, (2) the Fundamental Matrix Inequality approach of the Potapov school, (3) a reproducing kernel space interpretation for the solution criterion, and (4) the Grassmannian/Kre\u{\i}n-space geometry approach of Ball-Helton. These four approaches lead to three distinct solution criteria which therefore must be equivalent to each other. We give alternative concrete direct proofs of each of these latter equivalences. Read More

2016Nov
Authors: P. E. Bosted1, A. Kim2, K. P. Adhikari3, D. Adikaram4, Z. Akbar5, M. J. Amaryan6, S. Anefalos Pereira7, H. Avakian8, R. A. Badui9, J. Ball10, I. Balossino11, M. Battaglieri12, I. Bedlinskiy13, A. S. Biselli14, S. Boiarinov15, W. J. Briscoe16, W. K. Brooks17, S. Bültmann18, V. D. Burkert19, T. Cao20, D. S. Carman21, A. Celentano22, S. Chandavar23, G. Charles24, T. Chetry25, G. Ciullo26, L. Clark27, L. Colaneri28, P. L. Cole29, M. Contalbrigo30, O. Cortes31, V. Crede32, A. D'Angelo33, N. Dashyan34, R. De Vita35, E. De Sanctis36, A. Deur37, C. Djalali38, R. Dupre39, H. Egiyan40, A. El Alaoui41, L. El Fassi42, L. Elouadrhiri43, P. Eugenio44, E. Fanchini45, G. Fedotov46, S. Fegan47, R. Fersch48, A. Filippi49, J. A. Fleming50, T. A. Forest51, A. Fradi52, Y. Ghandilyan53, G. P. Gilfoyle54, F. X. Girod55, D. I. Glazier56, W. Gohn57, E. Golovatch58, R. W. Gothe59, K. A. Griffioen60, M. Guidal61, N. Guler62, H. Hakobyan63, L. Guo64, K. Hafidi65, H. Hakobyan66, C. Hanretty67, N. Harrison68, M. Hattawy69, D. Heddle70, K. Hicks71, G. Hollis72, M. Holtrop73, S. M. Hughes74, D. G. Ireland75, E. L. Isupov76, D. Jenkins77, H. Jiang78, H. S. Jo79, K. Joo80, D. Keller81, G. Khachatryan82, M. Khandaker83, W. Kim84, A. Klei85, F. J. Klein86, S. Koirala87, V. Kubarovsky88, S. E. Kuhn89, L. Lanza90, P. Lenisa91, K. Livingston92, H. Y. Lu93, I. J. D. MacGregor94, N. Markov95, M. Mayer96, M. E. McCracken97, B. McKinnon98, T. Mineeva99, M. Mirazita100, V. I. Mokeev101, R. A. Montgomery102, A Movsisyan103, C. Munoz Camacho104, G. Murdoch105, P. Nadel-Turonski106, A. Ni107, S. Niccolai108, G. Niculescu109, M. Osipenko110, A. I. Ostrovidov111, M. Paolone112, R. Paremuzyan113, K. Park114, E. Pasyuk115, W. Phelps116, S. Pisano117, O. Pogorelko118, J. W. Price119, Y. Prok120, D. Protopopescu121, A. J. R. Puckett122, B. A. Raue123, M. Ripani124, A. Rizzo125, G. Rosner126, P. Rossi127, P. Roy128, F. Sabatié129, M. S. Saini130, R. A. Schumacher131, E. Seder132, Y. G. Sharabian133, Iu. Skorodumina134, G. D. Smith135, D. Sokhan136, N. Sparveris137, I. Stankovic138, S. Stepanyan139, P. Stoler140, I. I. Strakovsky141, S. Strauch142, M. Taiuti143, Ye Tian144, B. Torayev145, M. Ungaro146, H. Voskanyan147, E. Voutier148, N. K. Walford149, D. P. Watts150, X. Wei151, L. B. Weinstein152, N. Zachariou153, J. Zhang154, Z. W. Zhao155, I. Zonta156
Affiliations: 1The CLAS Collaboration, 2The CLAS Collaboration, 3The CLAS Collaboration, 4The CLAS Collaboration, 5The CLAS Collaboration, 6The CLAS Collaboration, 7The CLAS Collaboration, 8The CLAS Collaboration, 9The CLAS Collaboration, 10The CLAS Collaboration, 11The CLAS Collaboration, 12The CLAS Collaboration, 13The CLAS Collaboration, 14The CLAS Collaboration, 15The CLAS Collaboration, 16The CLAS Collaboration, 17The CLAS Collaboration, 18The CLAS Collaboration, 19The CLAS Collaboration, 20The CLAS Collaboration, 21The CLAS Collaboration, 22The CLAS Collaboration, 23The CLAS Collaboration, 24The CLAS Collaboration, 25The CLAS Collaboration, 26The CLAS Collaboration, 27The CLAS Collaboration, 28The CLAS Collaboration, 29The CLAS Collaboration, 30The CLAS Collaboration, 31The CLAS Collaboration, 32The CLAS Collaboration, 33The CLAS Collaboration, 34The CLAS Collaboration, 35The CLAS Collaboration, 36The CLAS Collaboration, 37The CLAS Collaboration, 38The CLAS Collaboration, 39The CLAS Collaboration, 40The CLAS Collaboration, 41The CLAS Collaboration, 42The CLAS Collaboration, 43The CLAS Collaboration, 44The CLAS Collaboration, 45The CLAS Collaboration, 46The CLAS Collaboration, 47The CLAS Collaboration, 48The CLAS Collaboration, 49The CLAS Collaboration, 50The CLAS Collaboration, 51The CLAS Collaboration, 52The CLAS Collaboration, 53The CLAS Collaboration, 54The CLAS Collaboration, 55The CLAS Collaboration, 56The CLAS Collaboration, 57The CLAS Collaboration, 58The CLAS Collaboration, 59The CLAS Collaboration, 60The CLAS Collaboration, 61The CLAS Collaboration, 62The CLAS Collaboration, 63The CLAS Collaboration, 64The CLAS Collaboration, 65The CLAS Collaboration, 66The CLAS Collaboration, 67The CLAS Collaboration, 68The CLAS Collaboration, 69The CLAS Collaboration, 70The CLAS Collaboration, 71The CLAS Collaboration, 72The CLAS Collaboration, 73The CLAS Collaboration, 74The CLAS Collaboration, 75The CLAS Collaboration, 76The CLAS Collaboration, 77The CLAS Collaboration, 78The CLAS Collaboration, 79The CLAS Collaboration, 80The CLAS Collaboration, 81The CLAS Collaboration, 82The CLAS Collaboration, 83The CLAS Collaboration, 84The CLAS Collaboration, 85The CLAS Collaboration, 86The CLAS Collaboration, 87The CLAS Collaboration, 88The CLAS Collaboration, 89The CLAS Collaboration, 90The CLAS Collaboration, 91The CLAS Collaboration, 92The CLAS Collaboration, 93The CLAS Collaboration, 94The CLAS Collaboration, 95The CLAS Collaboration, 96The CLAS Collaboration, 97The CLAS Collaboration, 98The CLAS Collaboration, 99The CLAS Collaboration, 100The CLAS Collaboration, 101The CLAS Collaboration, 102The CLAS Collaboration, 103The CLAS Collaboration, 104The CLAS Collaboration, 105The CLAS Collaboration, 106The CLAS Collaboration, 107The CLAS Collaboration, 108The CLAS Collaboration, 109The CLAS Collaboration, 110The CLAS Collaboration, 111The CLAS Collaboration, 112The CLAS Collaboration, 113The CLAS Collaboration, 114The CLAS Collaboration, 115The CLAS Collaboration, 116The CLAS Collaboration, 117The CLAS Collaboration, 118The CLAS Collaboration, 119The CLAS Collaboration, 120The CLAS Collaboration, 121The CLAS Collaboration, 122The CLAS Collaboration, 123The CLAS Collaboration, 124The CLAS Collaboration, 125The CLAS Collaboration, 126The CLAS Collaboration, 127The CLAS Collaboration, 128The CLAS Collaboration, 129The CLAS Collaboration, 130The CLAS Collaboration, 131The CLAS Collaboration, 132The CLAS Collaboration, 133The CLAS Collaboration, 134The CLAS Collaboration, 135The CLAS Collaboration, 136The CLAS Collaboration, 137The CLAS Collaboration, 138The CLAS Collaboration, 139The CLAS Collaboration, 140The CLAS Collaboration, 141The CLAS Collaboration, 142The CLAS Collaboration, 143The CLAS Collaboration, 144The CLAS Collaboration, 145The CLAS Collaboration, 146The CLAS Collaboration, 147The CLAS Collaboration, 148The CLAS Collaboration, 149The CLAS Collaboration, 150The CLAS Collaboration, 151The CLAS Collaboration, 152The CLAS Collaboration, 153The CLAS Collaboration, 154The CLAS Collaboration, 155The CLAS Collaboration, 156The CLAS Collaboration

Beam-target double-spin asymmetries and target single-spin asymmetries were measured for the exclusive $\pi^0$ electroproduction reaction $\gamma^* p \to p \pi^0$, expanding an analysis of the $\gamma^* p \to n \pi^+$ reaction from the same experiment. The results were obtained from scattering of 6 GeV longitudinally polarized electrons off longitudinally polarized protons using the CEBAF Large Acceptance Spectrometer at Jefferson Lab. The kinematic range covered is $1. Read More

2016Jul
Authors: P. E. Bosted1, M. J. Amaryan2, S. Anefalos Pereira3, H. Avakian4, R. A. Badui5, J. Ball6, N. A. Baltzell7, M. Battaglieri8, V. Batourine9, I. Bedlinskiy10, A. S. Biselli11, W. J. Briscoe12, S. Bültmann13, V. D. Burkert14, D. S. Carman15, A. Celentano16, S. Chandavar17, G. Charles18, L. Clark19, L. Colaneri20, P. L. Cole21, M. Contalbrigo22, V. Crede23, A. D'Angelo24, R. De Vita25, A. Deur26, E. De Sanctis27, C. Djalali28, R. Dupre29, H. Egiyan30, A. El Alaoui31, L. El Fassi32, L. Elouadrhiri33, P. Eugenio34, E. Fanchini35, G. Fedotov36, A. Filippi37, J. A. Fleming38, T. Forest39, A. Fradi40, N. Gevorgyan41, G. P. Gilfoyle42, F. X. Girod43, C. Gleason44, W. Gohn45, E. Golovatch46, R. W. Gothe47, K. A. Griffioen48, M. Guidal49, H. Hakobyan50, M. Hattawy51, K. Hicks52, M. Holtrop53, S. M. Hughes54, Y. Ilieva55, D. G. Ireland56, B. S. Ishkhanov57, E. L. Isupov58, H. Jiang59, H. S. Jo60, K. Joo61, S. Joosten62, G. Khachatryan63, M. Khandaker64, A. Kim65, W. Kim66, F. J. Klein67, S. Koirala68, V. Kubarovsky69, S. E. Kuhn70, L. Lanza71, L. A. Net72, P. Lenisa73, K. Livingston74, I. J. D. MacGregor75, M. E. McCracken76, B. McKinnon77, C. A. Meyer78, M. Mirazita79, V. I. Mokeev80, R. A. Montgomery81, E. Munevar82, C. Munoz Camacho83, G. Murdoch84, P. Nadel-Turonski85, S. Niccolai86, M. Osipenko87, A. I. Ostrovidov88, K. Park89, E. Pasyuk90, P. Peng91, W. Phelps92, S. Pisano93, O. Pogorelko94, J. W. Price95, Y. Prok96, D. Protopopescu97, B. A. Raue98, M. Ripani99, G. Rosner100, P. Rossi101, R. A. Schumacher102, Iu. Skorodumina103, G. D. Smith104, D. Sokhan105, N. Sparveris106, I. Stankovic107, I. I. Strakovsky108, S. Strauch109, M. Taiuti110, B. Torayev111, M. Ungaro112, H. Voskanyan113, E. Voutier114, X. Wei115, L. B. Weinstein116, J. Zhang117, I. Zonta118
Affiliations: 1CLAS Collaboration, 2CLAS Collaboration, 3CLAS Collaboration, 4CLAS Collaboration, 5CLAS Collaboration, 6CLAS Collaboration, 7CLAS Collaboration, 8CLAS Collaboration, 9CLAS Collaboration, 10CLAS Collaboration, 11CLAS Collaboration, 12CLAS Collaboration, 13CLAS Collaboration, 14CLAS Collaboration, 15CLAS Collaboration, 16CLAS Collaboration, 17CLAS Collaboration, 18CLAS Collaboration, 19CLAS Collaboration, 20CLAS Collaboration, 21CLAS Collaboration, 22CLAS Collaboration, 23CLAS Collaboration, 24CLAS Collaboration, 25CLAS Collaboration, 26CLAS Collaboration, 27CLAS Collaboration, 28CLAS Collaboration, 29CLAS Collaboration, 30CLAS Collaboration, 31CLAS Collaboration, 32CLAS Collaboration, 33CLAS Collaboration, 34CLAS Collaboration, 35CLAS Collaboration, 36CLAS Collaboration, 37CLAS Collaboration, 38CLAS Collaboration, 39CLAS Collaboration, 40CLAS Collaboration, 41CLAS Collaboration, 42CLAS Collaboration, 43CLAS Collaboration, 44CLAS Collaboration, 45CLAS Collaboration, 46CLAS Collaboration, 47CLAS Collaboration, 48CLAS Collaboration, 49CLAS Collaboration, 50CLAS Collaboration, 51CLAS Collaboration, 52CLAS Collaboration, 53CLAS Collaboration, 54CLAS Collaboration, 55CLAS Collaboration, 56CLAS Collaboration, 57CLAS Collaboration, 58CLAS Collaboration, 59CLAS Collaboration, 60CLAS Collaboration, 61CLAS Collaboration, 62CLAS Collaboration, 63CLAS Collaboration, 64CLAS Collaboration, 65CLAS Collaboration, 66CLAS Collaboration, 67CLAS Collaboration, 68CLAS Collaboration, 69CLAS Collaboration, 70CLAS Collaboration, 71CLAS Collaboration, 72CLAS Collaboration, 73CLAS Collaboration, 74CLAS Collaboration, 75CLAS Collaboration, 76CLAS Collaboration, 77CLAS Collaboration, 78CLAS Collaboration, 79CLAS Collaboration, 80CLAS Collaboration, 81CLAS Collaboration, 82CLAS Collaboration, 83CLAS Collaboration, 84CLAS Collaboration, 85CLAS Collaboration, 86CLAS Collaboration, 87CLAS Collaboration, 88CLAS Collaboration, 89CLAS Collaboration, 90CLAS Collaboration, 91CLAS Collaboration, 92CLAS Collaboration, 93CLAS Collaboration, 94CLAS Collaboration, 95CLAS Collaboration, 96CLAS Collaboration, 97CLAS Collaboration, 98CLAS Collaboration, 99CLAS Collaboration, 100CLAS Collaboration, 101CLAS Collaboration, 102CLAS Collaboration, 103CLAS Collaboration, 104CLAS Collaboration, 105CLAS Collaboration, 106CLAS Collaboration, 107CLAS Collaboration, 108CLAS Collaboration, 109CLAS Collaboration, 110CLAS Collaboration, 111CLAS Collaboration, 112CLAS Collaboration, 113CLAS Collaboration, 114CLAS Collaboration, 115CLAS Collaboration, 116CLAS Collaboration, 117CLAS Collaboration, 118CLAS Collaboration

Beam-target double-spin asymmetries and target single-spin asymmetries were measured for the exclusive $\pi^+$ electroproduction reaction $\gamma^* p \to n \pi^+$. The results were obtained from scattering of 6 GeV longitudinally polarized electrons off longitudinally polarized protons using the CEBAF Large Acceptance Spectrometer at Jefferson Lab. The kinematic range covered is $1. Read More

Tokamaks with up-down asymmetric poloidal cross-sections spontaneously rotate due to turbulent transport of momentum. In this work, we investigate the effect of the Shafranov shift on this intrinsic rotation, primarily by analyzing tokamaks with tilted elliptical flux surfaces. By expanding the Grad-Shafranov equation in the large aspect ratio limit we calculate the magnitude and direction of the Shafranov shift in tilted elliptical tokamaks. Read More

2016Jul
Authors: X. Zheng1, K. P. Adhikari2, P. Bosted3, A. Deur4, V. Drozdov5, L. El Fassi6, Hyekoo Kang7, K. Kovacs8, S. Kuhn9, E. Long10, S. K. Phillips11, M. Ripani12, K. Slifer13, L. C. Smith14, D. Adikaram15, Z. Akbar16, M. J. Amaryan17, S. Anefalos Pereira18, G. Asryan19, H. Avakian20, R. A. Badui21, J. Ball22, N. A. Baltzell23, M. Battaglieri24, V. Batourine25, I. Bedlinskiy26, A. S. Biselli27, W. J. Briscoe28, S. Bültmann29, V. D. Burkert30, D. S. Carman31, A. Celentano32, S. Chandavar33, G. Charles34, J. -P. Chen35, T. Chetry36, Seonho Choi37, G. Ciullo38, L. Clark39, L. Colaneri40, P. L. Cole41, N. Compton42, M. Contalbrigo43, V. Crede44, A. D'Angelo45, N. Dashyan46, R. De Vita47, E. De Sanctis48, C. Djalali49, G. E. Dodge50, R. Dupre51, H. Egiyan52, A. El Alaoui53, L. Elouadrhiri54, P. Eugenio55, E. Fanchini56, G. Fedotov57, R. Fersch58, A. Filippi59, J. A. Fleming60, N. Gevorgyan61, Y. Ghandilyan62, G. P. Gilfoyle63, K. L. Giovanetti64, F. X. Girod65, C. Gleason66, E. Golovach67, R. W. Gothe68, K. A. Griffioen69, M. Guidal70, N. Guler71, L. Guo72, C. Hanretty73, N. Harrison74, M. Hattawy75, K. Hicks76, M. Holtrop77, S. M. Hughes78, Y. Ilieva79, D. G. Ireland80, B. S. Ishkhanov81, E. L. Isupov82, D. Jenkins83, H. Jiang84, H. S. Jo85, S. Joosten86, D. Keller87, G. Khachatryan88, M. Khandaker89, A. Kim90, W. Kim91, F. J. Klein92, V. Kubarovsky93, L. Lanza94, P. Lenisa95, K. Livingston96, I . J . D. MacGregor97, N. Markov98, B. McKinnon99, M. Mirazita100, V. Mokeev101, A. Movsisyan102, E. Munevar103, C. Munoz Camacho104, G. Murdoch105, P. Nadel-Turonski106, L. A. Net107, A. Ni108, S. Niccolai109, G. Niculescu110, I. Niculescu111, M. Osipenko112, A. I. Ostrovidov113, M. Paolone114, R. Paremuzyan115, K. Park116, E. Pasyuk117, P. Peng118, S. Pisano119, O. Pogorelko120, J. W. Price121, A. J. R. Puckett122, B. A. Raue123, A. Rizzo124, G. Rosner125, P. Rossi126, P. Roy127, F. Sabatié128, C. Salgado129, R. A. Schumacher130, Y. G. Sharabian131, Iu. Skorodumina132, G. D. Smith133, D. Sokhan134, N. Sparveris135, I. Stankovic136, I. I. Strakovsky137, S. Strauch138, M. Taiuti139, Ye Tian140, M. Ungaro141, H. Voskanyan142, E. Voutier143, N. K. Walford144, D. P. Watts145, X. Wei146, L. B. Weinstein147, M. H. Wood148, N. Zachariou149, J. Zhang150
Affiliations: 1The CLAS Collaboration, 2The CLAS Collaboration, 3The CLAS Collaboration, 4The CLAS Collaboration, 5The CLAS Collaboration, 6The CLAS Collaboration, 7The CLAS Collaboration, 8The CLAS Collaboration, 9The CLAS Collaboration, 10The CLAS Collaboration, 11The CLAS Collaboration, 12The CLAS Collaboration, 13The CLAS Collaboration, 14The CLAS Collaboration, 15The CLAS Collaboration, 16The CLAS Collaboration, 17The CLAS Collaboration, 18The CLAS Collaboration, 19The CLAS Collaboration, 20The CLAS Collaboration, 21The CLAS Collaboration, 22The CLAS Collaboration, 23The CLAS Collaboration, 24The CLAS Collaboration, 25The CLAS Collaboration, 26The CLAS Collaboration, 27The CLAS Collaboration, 28The CLAS Collaboration, 29The CLAS Collaboration, 30The CLAS Collaboration, 31The CLAS Collaboration, 32The CLAS Collaboration, 33The CLAS Collaboration, 34The CLAS Collaboration, 35The CLAS Collaboration, 36The CLAS Collaboration, 37The CLAS Collaboration, 38The CLAS Collaboration, 39The CLAS Collaboration, 40The CLAS Collaboration, 41The CLAS Collaboration, 42The CLAS Collaboration, 43The CLAS Collaboration, 44The CLAS Collaboration, 45The CLAS Collaboration, 46The CLAS Collaboration, 47The CLAS Collaboration, 48The CLAS Collaboration, 49The CLAS Collaboration, 50The CLAS Collaboration, 51The CLAS Collaboration, 52The CLAS Collaboration, 53The CLAS Collaboration, 54The CLAS Collaboration, 55The CLAS Collaboration, 56The CLAS Collaboration, 57The CLAS Collaboration, 58The CLAS Collaboration, 59The CLAS Collaboration, 60The CLAS Collaboration, 61The CLAS Collaboration, 62The CLAS Collaboration, 63The CLAS Collaboration, 64The CLAS Collaboration, 65The CLAS Collaboration, 66The CLAS Collaboration, 67The CLAS Collaboration, 68The CLAS Collaboration, 69The CLAS Collaboration, 70The CLAS Collaboration, 71The CLAS Collaboration, 72The CLAS Collaboration, 73The CLAS Collaboration, 74The CLAS Collaboration, 75The CLAS Collaboration, 76The CLAS Collaboration, 77The CLAS Collaboration, 78The CLAS Collaboration, 79The CLAS Collaboration, 80The CLAS Collaboration, 81The CLAS Collaboration, 82The CLAS Collaboration, 83The CLAS Collaboration, 84The CLAS Collaboration, 85The CLAS Collaboration, 86The CLAS Collaboration, 87The CLAS Collaboration, 88The CLAS Collaboration, 89The CLAS Collaboration, 90The CLAS Collaboration, 91The CLAS Collaboration, 92The CLAS Collaboration, 93The CLAS Collaboration, 94The CLAS Collaboration, 95The CLAS Collaboration, 96The CLAS Collaboration, 97The CLAS Collaboration, 98The CLAS Collaboration, 99The CLAS Collaboration, 100The CLAS Collaboration, 101The CLAS Collaboration, 102The CLAS Collaboration, 103The CLAS Collaboration, 104The CLAS Collaboration, 105The CLAS Collaboration, 106The CLAS Collaboration, 107The CLAS Collaboration, 108The CLAS Collaboration, 109The CLAS Collaboration, 110The CLAS Collaboration, 111The CLAS Collaboration, 112The CLAS Collaboration, 113The CLAS Collaboration, 114The CLAS Collaboration, 115The CLAS Collaboration, 116The CLAS Collaboration, 117The CLAS Collaboration, 118The CLAS Collaboration, 119The CLAS Collaboration, 120The CLAS Collaboration, 121The CLAS Collaboration, 122The CLAS Collaboration, 123The CLAS Collaboration, 124The CLAS Collaboration, 125The CLAS Collaboration, 126The CLAS Collaboration, 127The CLAS Collaboration, 128The CLAS Collaboration, 129The CLAS Collaboration, 130The CLAS Collaboration, 131The CLAS Collaboration, 132The CLAS Collaboration, 133The CLAS Collaboration, 134The CLAS Collaboration, 135The CLAS Collaboration, 136The CLAS Collaboration, 137The CLAS Collaboration, 138The CLAS Collaboration, 139The CLAS Collaboration, 140The CLAS Collaboration, 141The CLAS Collaboration, 142The CLAS Collaboration, 143The CLAS Collaboration, 144The CLAS Collaboration, 145The CLAS Collaboration, 146The CLAS Collaboration, 147The CLAS Collaboration, 148The CLAS Collaboration, 149The CLAS Collaboration, 150The CLAS Collaboration

We report measurements of target- and double-spin asymmetries for the exclusive channel $\vec e\vec p\to e\pi^+ (n)$ in the nucleon resonance region at Jefferson Lab using the CEBAF Large Acceptance Spectrometer (CLAS). These asymmetries were extracted from data obtained using a longitudinally polarized NH$_3$ target and a longitudinally polarized electron beam with energies 1.1, 1. Read More

2016Apr
Authors: P. E. Bosted1, A. S. Biselli2, S. Careccia3, G. Dodge4, R. Fersch5, S. E. Kuhn6, J. Pierce7, Y. Prok8, X. Zheng9, K. P. Adhikari10, D. Adikaram11, Z. Akbar12, M. J. Amaryan13, S. Anefalos Pereira14, G. Asryan15, H. Avakian16, R. A. Badui17, J. Ball18, N. A. Baltzell19, M. Battaglieri20, V. Batourine21, I. Bedlinskiy22, S. Boiarinov23, W. J. Briscoe24, S. Bültmann25, V. D. Burkert26, T. Cao27, D. S. Carman28, A. Celentano29, S. Chandavar30, G. Charles31, T. Chetry32, G. Ciullo33, L. Clark34, L. Colaneri35, P. L. Cole36, M. Contalbrigo37, O. Cortes38, V. Crede39, A. D'Angelo40, N. Dashyan41, R. De Vita42, A. Deur43, C. Djalali44, R. Dupre45, H. Egiyan46, A. El Alaoui47, L. El Fassi48, P. Eugenio49, E. Fanchini50, G. Fedotov51, A. Filippi52, J. A. Fleming53, T. A. Forest54, A. Fradi55, M. Garçon56, N. Gevorgyan57, Y. Ghandilyan58, G. P. Gilfoyle59, K. L. Giovanetti60, F. X. Girod61, C. Gleason62, W. Gohn63, E. Golovatch64, R. W. Gothe65, K. A. Griffioen66, N. Guler67, L. Guo68, K. Hafidi69, C. Hanretty70, N. Harrison71, M. Hattawy72, D. Heddle73, K. Hicks74, M. Holtrop75, S. M. Hughes76, Y. Ilieva77, D. G. Ireland78, B. S. Ishkhanov79, E. L. Isupov80, D. Jenkins81, H. Jiang82, H. S. Jo83, K. Joo84, S. Joosten85, D. Keller86, M. Khandaker87, W. Kim88, A. Klein89, F. J. Klein90, V. Kubarovsky91, S. V. Kuleshov92, L. Lanza93, P. Lenisa94, K. Livingston95, H. Y. Lu96, I . J . D. MacGregor97, N. Markov98, M. E. McCracken99, B. McKinnon100, C. A. Meyer101, R. Minehart102, M. Mirazita103, V. Mokeev104, A Movsisyan105, E. Munevar106, C. Munoz Camacho107, P. Nadel-Turonski108, L. A. Net109, A. Ni110, S. Niccolai111, G. Niculescu112, I. Niculescu113, M. Osipenko114, A. I. Ostrovidov115, R. Paremuzyan116, K. Park117, E. Pasyuk118, P. Peng119, W. Phelps120, S. Pisano121, O. Pogorelko122, J. W. Price123, S. Procureur124, D. Protopopescu125, A. J. R. Puckett126, B. A. Raue127, M. Ripani128, A. Rizzo129, G. Rosner130, P. Rossi131, P. Roy132, F. Sabatié133, C. Salgado134, R. A. Schumacher135, E. Seder136, Y. G. Sharabian137, A. Simonyan138, Iu. Skorodumina139, G. D. Smith140, N. Sparveris141, Ivana Stankovic142, S. Stepanyan143, I. I. Strakovsky144, S. Strauch145, V. Sytnik146, M. Taiuti147, Ye Tian148, B. Torayev149, M. Ungaro150, H. Voskanyan151, E. Voutier152, N. K. Walford153, D. P. Watts154, X. Wei155, L. B. Weinstein156, M. H. Wood157, N. Zachariou158, L. Zana159, J. Zhang160, Z. W. Zhao161, I. Zonta162
Affiliations: 1CLAS Collaboration, 2CLAS Collaboration, 3CLAS Collaboration, 4CLAS Collaboration, 5CLAS Collaboration, 6CLAS Collaboration, 7CLAS Collaboration, 8CLAS Collaboration, 9CLAS Collaboration, 10CLAS Collaboration, 11CLAS Collaboration, 12CLAS Collaboration, 13CLAS Collaboration, 14CLAS Collaboration, 15CLAS Collaboration, 16CLAS Collaboration, 17CLAS Collaboration, 18CLAS Collaboration, 19CLAS Collaboration, 20CLAS Collaboration, 21CLAS Collaboration, 22CLAS Collaboration, 23CLAS Collaboration, 24CLAS Collaboration, 25CLAS Collaboration, 26CLAS Collaboration, 27CLAS Collaboration, 28CLAS Collaboration, 29CLAS Collaboration, 30CLAS Collaboration, 31CLAS Collaboration, 32CLAS Collaboration, 33CLAS Collaboration, 34CLAS Collaboration, 35CLAS Collaboration, 36CLAS Collaboration, 37CLAS Collaboration, 38CLAS Collaboration, 39CLAS Collaboration, 40CLAS Collaboration, 41CLAS Collaboration, 42CLAS Collaboration, 43CLAS Collaboration, 44CLAS Collaboration, 45CLAS Collaboration, 46CLAS Collaboration, 47CLAS Collaboration, 48CLAS Collaboration, 49CLAS Collaboration, 50CLAS Collaboration, 51CLAS Collaboration, 52CLAS Collaboration, 53CLAS Collaboration, 54CLAS Collaboration, 55CLAS Collaboration, 56CLAS Collaboration, 57CLAS Collaboration, 58CLAS Collaboration, 59CLAS Collaboration, 60CLAS Collaboration, 61CLAS Collaboration, 62CLAS Collaboration, 63CLAS Collaboration, 64CLAS Collaboration, 65CLAS Collaboration, 66CLAS Collaboration, 67CLAS Collaboration, 68CLAS Collaboration, 69CLAS Collaboration, 70CLAS Collaboration, 71CLAS Collaboration, 72CLAS Collaboration, 73CLAS Collaboration, 74CLAS Collaboration, 75CLAS Collaboration, 76CLAS Collaboration, 77CLAS Collaboration, 78CLAS Collaboration, 79CLAS Collaboration, 80CLAS Collaboration, 81CLAS Collaboration, 82CLAS Collaboration, 83CLAS Collaboration, 84CLAS Collaboration, 85CLAS Collaboration, 86CLAS Collaboration, 87CLAS Collaboration, 88CLAS Collaboration, 89CLAS Collaboration, 90CLAS Collaboration, 91CLAS Collaboration, 92CLAS Collaboration, 93CLAS Collaboration, 94CLAS Collaboration, 95CLAS Collaboration, 96CLAS Collaboration, 97CLAS Collaboration, 98CLAS Collaboration, 99CLAS Collaboration, 100CLAS Collaboration, 101CLAS Collaboration, 102CLAS Collaboration, 103CLAS Collaboration, 104CLAS Collaboration, 105CLAS Collaboration, 106CLAS Collaboration, 107CLAS Collaboration, 108CLAS Collaboration, 109CLAS Collaboration, 110CLAS Collaboration, 111CLAS Collaboration, 112CLAS Collaboration, 113CLAS Collaboration, 114CLAS Collaboration, 115CLAS Collaboration, 116CLAS Collaboration, 117CLAS Collaboration, 118CLAS Collaboration, 119CLAS Collaboration, 120CLAS Collaboration, 121CLAS Collaboration, 122CLAS Collaboration, 123CLAS Collaboration, 124CLAS Collaboration, 125CLAS Collaboration, 126CLAS Collaboration, 127CLAS Collaboration, 128CLAS Collaboration, 129CLAS Collaboration, 130CLAS Collaboration, 131CLAS Collaboration, 132CLAS Collaboration, 133CLAS Collaboration, 134CLAS Collaboration, 135CLAS Collaboration, 136CLAS Collaboration, 137CLAS Collaboration, 138CLAS Collaboration, 139CLAS Collaboration, 140CLAS Collaboration, 141CLAS Collaboration, 142CLAS Collaboration, 143CLAS Collaboration, 144CLAS Collaboration, 145CLAS Collaboration, 146CLAS Collaboration, 147CLAS Collaboration, 148CLAS Collaboration, 149CLAS Collaboration, 150CLAS Collaboration, 151CLAS Collaboration, 152CLAS Collaboration, 153CLAS Collaboration, 154CLAS Collaboration, 155CLAS Collaboration, 156CLAS Collaboration, 157CLAS Collaboration, 158CLAS Collaboration, 159CLAS Collaboration, 160CLAS Collaboration, 161CLAS Collaboration, 162CLAS Collaboration

Beam-target double spin asymmetries and target single-spin asymmetries in exclusive $\pi^+$ and $\pi^-$ electroproduction were obtained from scattering of 1.6 to 5.7 GeV longitudinally polarized electrons from longitudinally polarized protons (for $\pi^+$) and deuterons (for $\pi^-$) using the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. Read More

2016Mar
Authors: D. Rimal, D. Adikaram, B. A. Raue, L. B. Weinstein, J. Arrington, W. K. Brooks, M. Ungaro, K. P. Adhikari, Z. Akbar, S. Anefalos Pereira, R. A. Badui, J. Ball, N. A. Baltzell, M. Battaglieri, V. Batourine, I. Bedlinskiy, R. P. Bennett, A. S. Biselli, S. Boiarinov, W. J. Briscoe, S. Bültmann, D. S. Carman, A. Celentano, T. Chetry, G. Ciullo, L. Clark, L. Colaneri, P. L. Cole, N. Compton, M. Contalbrigo, O. Cortes, V. Crede, A. D'Angelo, N. Dashyan, R. De Vita, A. Deur, C. Djalali, R. Dupre, H. Egiyan, A. El Alaoui, L. El Fassi, P. Eugenio, G. Fedotov, R. Fersch, A. Filippi, J. A. Fleming, T. A. Forest, A. Fradi, N. Gevorgyan, Y. Ghandilyan, G. P. Gilfoyle, K. L. Giovanetti, F. X. Girod, C. Gleason, W. Gohn, E. Golovatch, R. W. Gothe, K. A. Griffioen, L. Guo, K. Hafidi, C. Hanretty, N. Harrison, M. Hattawy, D. Heddle, K. Hicks, M. Holtrop, S. M. Hughes, Y. Ilieva, D. G. Ireland, B. S. Ishkhanov, E. L. Isupov, D. Jenkins, H. Jiang, S. Joosten, D. Keller, P. Khetarpal, G. Khachatryan, M. Khandaker, W. Kim, A. Klein, F. J. Klein, V. Kubarovsky, S. E. Kuhn, S. V. Kuleshov, L. Lanza, P. Lenisa, K. Livingston, H. Y. Lu, I . J . D. MacGregor, N. Markov, B. McKinnon, M. D. Mestayer, M. Mirazita, V. Mokeev, A Movsisyan, E. Munevar, C. Munoz Camacho, P. Nadel-Turonski, A. Ni, S. Niccolai, G. Niculescu, I. Niculescu, M. Osipenko, A. I. Ostrovidov, M. Paolone, R. Paremuzyan, K. Park, E. Pasyuk, W. Phelps, S. Pisano, O. Pogorelko, J. W. Price, Y. Prok, D. Protopopescu, A. J. R. Puckett, A. Rizzo, G. Rosner, P. Rossi, P. Roy, F. Sabatié, C. Salgado, R. A. Schumacher, E. Seder, Y. G. Sharabian, Iu. Skorodumina, G. D. Smith, D. Sokhan, N. Sparveris, Ivana Stankovic, S. Stepanyan, S. Strauch, V. Sytnik, M. Taiuti, B. Torayev, H. Voskanyan, E. Voutier, N. K. Walford, D. P. Watts, X. Wei, M. H. Wood, N. Zachariou, L. Zana, J. Zhang, Z. W. Zhao, I. Zonta

[Background] The electromagnetic form factors of the proton measured by unpolarized and polarized electron scattering experiments show a significant disagreement that grows with the squared four momentum transfer ($Q^{2}$). Calculations have shown that the two measurements can be largely reconciled by accounting for the contributions of two-photon exchange (TPE). TPE effects are not typically included in the standard set of radiative corrections since theoretical calculations of the TPE effects are highly model dependent, and, until recently, no direct evidence of significant TPE effects has been observed. Read More

The theory of positive kernels and associated reproducing kernel Hilbert spaces, especially in the setting of holomorphic functions, has been an important tool for the last several decades in a number of areas of complex analysis and operator theory. An interesting generalization of holomorphic functions, namely free noncommutative functions (e.g. Read More

The Schur-Agler class consists of functions over a domain satisfying an appropriate von Neumann inequality. Originally defined over the polydisk, the idea has been extended to general domains in multivariable complex Euclidean space with matrix polynomial defining function as well as to certain multivariable noncommutative-operator domains with a noncommutative linear-pencil defining function. Still more recently there has emerged a free noncommutative function theory (functions of noncommuting matrix variables respecting direct sums and similaritytransformations). Read More

Breaking the up-down symmetry of tokamaks removes a constraint limiting intrinsic momentum transport, and hence toroidal rotation, to be small. Using gyrokinetic theory, we study the effect of different up-down asymmetric flux surface shapes on the turbulent transport of momentum. This is done by perturbatively expanding the gyrokinetic equation in large flux surface shaping mode number. Read More

A poloidal tilting symmetry of the local nonlinear $\delta f$ gyrokinetic model is demonstrated analytically and verified numerically. This symmetry shows that poloidally rotating all the flux surface shaping effects with large poloidal mode number by a single tilt angle has an exponentially small effect on the transport properties of a tokamak. This is shown using a generalization of the Miller local equilibrium model to specify an arbitrary flux surface geometry. Read More

It is a consequence of the Jacobi Inversion Theorem that a line bundle over a Riemann surface M of genus g has a meromorphic section having at most g poles, or equivalently, the divisor class of a divisor D over M contains a divisor having at most g poles (counting multiplicities). We explore various analogues of these ideas for vector bundles and associated matrix divisors over M. The most explicit results are for the genus 1 case. Read More

We investigate the geometry of polycrystals, showing that for polycrystals formed of convex grains the interior grains are polyhedral, while for polycrystals with general grain geometry the set of triple points is small. Then we investigate possible martensitic morphologies resulting from intergrain contact. For cubic-to-tetragonal transformations we show that homogeneous zero-energy microstructures matching a pure dilatation on a grain boundary necessarily involve more than four deformation gradients. Read More

2015Jul
Authors: M. E. McCracken, M. Bellis, K. P. Adhikari, D. Adikaram, Z. Akbar, S. Anefalos Pereira, R. A. Badui, J. Ball, N. A. Baltzell, M. Battaglieri, V. Batourine, I. Bedlinskiy, A. S. Biselli, S. Boiarinov, W. J. Briscoe, W. K. Brooks, V. D. Burkert, T. Cao, D. S. Carman, A. Celentano, S. Chandavar, G. Charles, L. Colaneri, P. L. Cole, M. Contalbrigo, O. Cortes, V. Crede, A. D'Angelo, N. Dashyan, R. De Vita, E. De Sanctis, A. Deur, C. Djalali, G. E. Dodge, R. Dupre, A. El Alaoui, L. El Fassi, E. Elouadrhiri, P. Eugenio, G. Fedotov, S. Fegan, R. Fersch, A. Filippi, J. A. Fleming, B. Garillon, N. Gevorgyan, G. P. Gilfoyle, K. L. Giovanetti, F. X. Girod, E. Golovatch, R. W. Gothe, K. A. Griffioen, M. Guidal, L. Guo, K. Hafidi, H. Hakobyan, C. Hanretty, M. Hattawy, K. Hicks, M. Holtrop, S. M. Hughes, Y. Ilieva, D. G. Ireland, B. S. Ishkhanov, E. L. Isupov, D. Jenkins, H. Jiang, H. S. Jo, D. Keller, G. Khachatryan, M. Khandaker, A. Kim, W. Kim, A. Klein, F. J. Klein, V. Kubarovsky, P. Lenisa, K. Livingston, H. Y. Lu, I. J. D. MacGregor, M. Mayer, B. McKinnon, M. D. Mestayer, C. A. Meyer, M. Mirazita, V. Mokeev, C. I. Moody, K. Moriya, C. Munoz Camacho, P. Nadel-Turonski, L. A. Net, S. Niccolai, M. Osipenko, A. I. Ostrovidov, K. Park, E. Pasyuk, S. Pisano, O. Pogorelko, J. W. Price, S. Procureur, Y. Prok, B. A. Raue, M. Ripani, A. Rizzo, G. Rosner, P. Roy, F. Sabatié, C. Salgado, R. A. Schumacher, E. Seder, Y. G. Sharabian, Iu. Skorodumina, D. Sokhan, N. Sparveris, P. Stoler, I. I. Strakovsky, S. Strauch, V. Sytnik, Ye Tian, M. Ungaro, H. Voskanyan, E. Voutier, N. K. Walford, D. P. Watts, X. Wei, M. H. Wood, N. Zachariou, L. Zana, J. Zhang, Z. W. Zhao, I. Zonta

We present a search for ten baryon-number violating decay modes of $\Lambda$ hyperons using the CLAS detector at Jefferson Laboratory. Nine of these decay modes result in a single meson and single lepton in the final state ($\Lambda \rightarrow m \ell$) and conserve either the sum or the difference of baryon and lepton number ($B \pm L$). The tenth decay mode ($\Lambda \rightarrow \bar{p}\pi^+$) represents a difference in baryon number of two units and no difference in lepton number. Read More

2015Jul
Authors: I. Senderovich, B. T. Morrison, M. Dugger, B. G. Ritchie, E. Pasyuk, R. Tucker, J. Brock, C. Carlin, C. D. Keith, D. G. Meekins, M. L. Seely, D. R, M. D, P. Collins, K. P. Adhikari, D. Adikaram, Z. Akbar, M. D. Anderson, S. Anefalos Pereira, R. A. Badui, J. Ball, N. A. Baltzell, M. Battaglieri, V. Batourine, I. Bedlinskiy, A. S. Biselli, S. Boiarinov, W. J. Briscoe, W. K. Brooks, V. D. Burkert, D. S. Carman, A. Celentano, S. Chandavar, G. Charles, L. Colaneri, P. L. Cole, M. Contalbrigo, O. Cortes, V. Crede, A. D'Angelo, N. Dashyan, R. De Vita, E. De Sanctis, A. Deur, C. Djalali, R. Dupre, H. Egiyan, A. El Alaoui, L. El Fassi, A. Fradi, L. Elouadrhiri, P. Eugenio, G. Fedotov, S. Fegan, A. Filippi, J. A. Fleming, B. Garillon, Y. Ghandilyan, G. P. Gilfoyle, K. L. Giovanetti, F. -X. Girod, D. I. Glazier, J. T. Goetz, W. Gohn, E. Golovatch, R. W. Gothe, K. A. Griffioen, M. Guidal, L. Guo, K. Hafidi, H. Hakobyan, C. Hanretty, M. Hattawy, K. Hicks, D. Ho, M. Holtrop, S. M. Hughes, Y. Ilieva, D. G. Ireland, B. S. Ishkhanov, D. Jenkins, H. Jiang, H. S. Jo, K. Joo, S. Joosten, D. Keller, G. Khachatryan, M. Khandaker, A. Kim, F. J. Klein, V. Kubarovsky, M. C. Kunkel, P. Lenisa, K. Livingston, H. Y. Lu, I. J. D. MacGregor, P. Mattione, B. McKinnon, C. A. Meyer, T. Mineeva, V. Mokeev, R. A. Montgomery, A. Movsisyan, C. Munoz Camacho, P. Nadel-Turonski, L. A. Net, S. Niccolai, G. Niculescu, I. Niculescu, M. Osipenko, K. Park, S. Park, P. Peng, W. Phelps, S. Pisano, O. Pogorelko, J. W. Price, Y. Prok, A. J. R. Puckett, M. Ripani, A. Rizzo, G. Rosner, P. Roy, F. Sabatie, C. Salgado, D. Schott, R. A. Schumacher, E. Seder, A. Simonyan, Iu. Skorodumina, G. D. Smith, D. I. Sober, D. Sokhan, N. Sparveris, S. Stepanyan, P. Stoler, I. I. Strakovsky, S. Strauch, V. Sytnik, Ye Tian, M. Ungaro, H. Voskanyan, E. Voutier, N. K. Walford, X. Wei, M. H. Wood, N. Zachariou, L. Zana, J. Zhang, Z. W. Zhao, I. Zonta

Results are presented for the first measurement of the double-polarization helicity asymmetry E for the $\eta$ photoproduction reaction $\gamma p \rightarrow \eta p$. Data were obtained using the FROzen Spin Target (FROST) with the CLAS spectrometer in Hall B at Jefferson Lab, covering a range of center-of-mass energy W from threshold to 2.15 GeV and a large range in center-of-mass polar angle. Read More

2015May
Authors: N. Guler, R. G. Fersch, S. E. Kuhn, P. Bosted, K. A. Griffioen, C. Keith, R. Minehart, Y. Prok, K. P. Adhikari, D. Adikaram, M. J. Amaryan, M. D. Anderson, S. Anefalos Pereira, J. Ball, M. Battaglieri, V. Batourine, I. Bedlinskiy, W. J. Briscoe, W. K. Brooks, S. Bultmann, V. D. Burkert, D. S. Carman, A. Celentano, S. Chandavar, G. Charles, L. Colaneri, P. L. Cole, M. Contalbrigo, D. Crabb, V. Crede, A. D Angelo, N. Dashyan, A. Deur, C. Djalali, G. E. Dodge, R. Dupre, A. El Alaoui, L. El Fassi, L. Elouadrhiri, P. Eugenio, G. Fedotov, S. Fegan, A. Filippi, J. A. Fleming, T. A. Forest, B. Garillon, M. Garcon, N. Gevorgyan, G. P. Gilfoyle, K. L. Giovanetti, F. X. Girod, J. T. Goetz, E. Golovatch, R. W. Gothe, M. Guidal, L. Guo, K. Hafidi, H. Hakobyan, N. Harrison, M. Hattawy, K. Hicks, D. Ho, M. Holtrop, S. M. Hughes, C. E. Hyde, D. G. Ireland, B. S. Ishkhanov, E. L. Isupov, H. S. Jo, K. Joo, S. Joosten, D. Keller, M. Khandaker, A. Kim, W. Kim, A. Klein, F. J. Klein, V. Kubarovsky, S. V. Kuleshov, K. Livingston, H. Y. Lu, I. J. D. MacGregor, B. McKinnon, M. Mirazita, V. Mokeev, R. A. Montgomery, A Movsisyan, C. Munoz Camacho, P. Nadel-Turonski, L. A. Net, I. Niculescu, M. Osipenko, A. I. Ostrovidov, K. Park, E. Pasyuk, S. Pisano, O. Pogorelko, J. W. Price, S. Procureur, M. Ripani, A. Rizzo, G. Rosner, P. Rossi, P. Roy, F. Sabatie, C. Salgado, D. Schott, R. A. Schumacher, E. Seder, A. Simonyan, Iu. Skorodumina, D. Sokhan, N. Sparveris, I. I. Strakovsky, S. Strauch, V. Sytnik, Ye Tian, S. Tkachenko, M. Ungaro, E. Voutier, N. K. Walford, X. Wei, L. B. Weinstein, M. H. Wood, N. Zachariou, L. Zana, J. Zhang, Z. W. Zhao, I. Zonta

We present the final results for the deuteron spin structure functions obtained from the full data set collected with Jefferson Lab's CLAS in 2000-2001. Polarized electrons with energies of 1.6, 2. Read More

2015Mar
Authors: S. Strauch1, W. J. Briscoe2, M. Döring3, E. Klempt4, V. A. Nikonov5, E. Pasyuk6, D. Rönchen7, A. V. Sarantsev8, I. Strakovsky9, R. Workman10, K. P. Adhikari11, D. Adikaram12, M. D. Anderson13, S. Anefalos Pereira14, A. V. Anisovich15, R. A. Badui16, J. Ball17, V. Batourine18, M. Battaglieri19, I. Bedlinskiy20, N. Benmouna21, A. S. Biselli22, J. Brock23, W. K. Brooks24, V. D. Burkert25, T. Cao26, C. Carlin27, D. S. Carman28, A. Celentano29, S. Chandavar30, G. Charles31, L. Colaneri32, P. L. Cole33, N. Compton34, M. Contalbrigo35, O. Cortes36, V. Crede37, N. Dashyan38, A. D'Angelo39, R. De Vita40, E. De Sanctis41, A. Deur42, C. Djalali43, M. Dugger44, R. Dupre45, H. Egiyan46, A. El Alaoui47, L. El Fassi48, L. Elouadrhiri49, P. Eugenio50, G. Fedotov51, S. Fegan52, A. Filippi53, J. A. Fleming54, T. A. Forest55, A. Fradi56, N. Gevorgyan57, Y. Ghandilyan58, K. L. Giovanetti59, F. X. Girod60, D. I. Glazier61, W. Gohn62, E. Golovatch63, R. W. Gothe64, K. A. Griffioen65, M. Guidal66, L. Guo67, K. Hafidi68, H. Hakobyan69, C. Hanretty70, N. Harrison71, M. Hattawy72, K. Hicks73, D. Ho74, M. Holtrop75, S. M. Hughes76, Y. Ilieva77, D. G. Ireland78, B. S. Ishkhanov79, E. L. Isupov80, D. Jenkins81, H. Jiang82, H. S. Jo83, K. Joo84, S. Joosten85, C. D. Keith86, D. Keller87, G. Khachatryan88, M. Khandaker89, A. Kim90, W. Kim91, A. Klein92, F. J. Klein93, V. Kubarovsky94, S. E. Kuhn95, P. Lenisa96, K. Livingston97, H. Y. Lu98, I . J . D. MacGregor99, N. Markov100, B. McKinnon101, D. G. Meekins102, C. A. Meyer103, V. Mokeev104, R. A. Montgomery105, C. I. Moody106, H. Moutarde107, A Movsisyan108, E. Munevar109, C. Munoz Camacho110, P. Nadel-Turonski111, L. A. Net112, S. Niccolai113, G. Niculescu114, I. Niculescu115, M. Osipenko116, A. I. Ostrovidov117, K. Park118, P. Peng119, W. Phelps120, J. J. Phillips121, S. Pisano122, O. Pogorelko123, S. Pozdniakov124, J. W. Price125, S. Procureur126, Y. Prok127, D. Protopopescu128, A. J. R. Puckett129, B. A. Raue130, M. Ripani131, B. G. Ritchie132, A. Rizzo133, G. Rosner134, P. Roy135, F. Sabatié136, C. Salgado137, D. Schott138, R. A. Schumacher139, E. Seder140, M. L. Seely141, I Senderovich142, Y. G. Sharabian143, A. Simonyan144, Iu. Skorodumina145, G. D. Smith146, D. I. Sober147, D. Sokhan148, N. Sparveris149, P. Stoler150, S. Stepanyan151, V. Sytnik152, M. Taiuti153, Ye Tian154, A. Trivedi155, R. Tucker156, M. Ungaro157, H. Voskanyan158, E. Voutier159, N. K. Walford160, D. P. Watts161, X. Wei162, M. H. Wood163, N. Zachariou164, L. Zana165, J. Zhang166, Z. W. Zhao167, I. Zonta168
Affiliations: 1The CLAS Collaboration, 2The CLAS Collaboration, 3The CLAS Collaboration, 4The CLAS Collaboration, 5The CLAS Collaboration, 6The CLAS Collaboration, 7The CLAS Collaboration, 8The CLAS Collaboration, 9The CLAS Collaboration, 10The CLAS Collaboration, 11The CLAS Collaboration, 12The CLAS Collaboration, 13The CLAS Collaboration, 14The CLAS Collaboration, 15The CLAS Collaboration, 16The CLAS Collaboration, 17The CLAS Collaboration, 18The CLAS Collaboration, 19The CLAS Collaboration, 20The CLAS Collaboration, 21The CLAS Collaboration, 22The CLAS Collaboration, 23The CLAS Collaboration, 24The CLAS Collaboration, 25The CLAS Collaboration, 26The CLAS Collaboration, 27The CLAS Collaboration, 28The CLAS Collaboration, 29The CLAS Collaboration, 30The CLAS Collaboration, 31The CLAS Collaboration, 32The CLAS Collaboration, 33The CLAS Collaboration, 34The CLAS Collaboration, 35The CLAS Collaboration, 36The CLAS Collaboration, 37The CLAS Collaboration, 38The CLAS Collaboration, 39The CLAS Collaboration, 40The CLAS Collaboration, 41The CLAS Collaboration, 42The CLAS Collaboration, 43The CLAS Collaboration, 44The CLAS Collaboration, 45The CLAS Collaboration, 46The CLAS Collaboration, 47The CLAS Collaboration, 48The CLAS Collaboration, 49The CLAS Collaboration, 50The CLAS Collaboration, 51The CLAS Collaboration, 52The CLAS Collaboration, 53The CLAS Collaboration, 54The CLAS Collaboration, 55The CLAS Collaboration, 56The CLAS Collaboration, 57The CLAS Collaboration, 58The CLAS Collaboration, 59The CLAS Collaboration, 60The CLAS Collaboration, 61The CLAS Collaboration, 62The CLAS Collaboration, 63The CLAS Collaboration, 64The CLAS Collaboration, 65The CLAS Collaboration, 66The CLAS Collaboration, 67The CLAS Collaboration, 68The CLAS Collaboration, 69The CLAS Collaboration, 70The CLAS Collaboration, 71The CLAS Collaboration, 72The CLAS Collaboration, 73The CLAS Collaboration, 74The CLAS Collaboration, 75The CLAS Collaboration, 76The CLAS Collaboration, 77The CLAS Collaboration, 78The CLAS Collaboration, 79The CLAS Collaboration, 80The CLAS Collaboration, 81The CLAS Collaboration, 82The CLAS Collaboration, 83The CLAS Collaboration, 84The CLAS Collaboration, 85The CLAS Collaboration, 86The CLAS Collaboration, 87The CLAS Collaboration, 88The CLAS Collaboration, 89The CLAS Collaboration, 90The CLAS Collaboration, 91The CLAS Collaboration, 92The CLAS Collaboration, 93The CLAS Collaboration, 94The CLAS Collaboration, 95The CLAS Collaboration, 96The CLAS Collaboration, 97The CLAS Collaboration, 98The CLAS Collaboration, 99The CLAS Collaboration, 100The CLAS Collaboration, 101The CLAS Collaboration, 102The CLAS Collaboration, 103The CLAS Collaboration, 104The CLAS Collaboration, 105The CLAS Collaboration, 106The CLAS Collaboration, 107The CLAS Collaboration, 108The CLAS Collaboration, 109The CLAS Collaboration, 110The CLAS Collaboration, 111The CLAS Collaboration, 112The CLAS Collaboration, 113The CLAS Collaboration, 114The CLAS Collaboration, 115The CLAS Collaboration, 116The CLAS Collaboration, 117The CLAS Collaboration, 118The CLAS Collaboration, 119The CLAS Collaboration, 120The CLAS Collaboration, 121The CLAS Collaboration, 122The CLAS Collaboration, 123The CLAS Collaboration, 124The CLAS Collaboration, 125The CLAS Collaboration, 126The CLAS Collaboration, 127The CLAS Collaboration, 128The CLAS Collaboration, 129The CLAS Collaboration, 130The CLAS Collaboration, 131The CLAS Collaboration, 132The CLAS Collaboration, 133The CLAS Collaboration, 134The CLAS Collaboration, 135The CLAS Collaboration, 136The CLAS Collaboration, 137The CLAS Collaboration, 138The CLAS Collaboration, 139The CLAS Collaboration, 140The CLAS Collaboration, 141The CLAS Collaboration, 142The CLAS Collaboration, 143The CLAS Collaboration, 144The CLAS Collaboration, 145The CLAS Collaboration, 146The CLAS Collaboration, 147The CLAS Collaboration, 148The CLAS Collaboration, 149The CLAS Collaboration, 150The CLAS Collaboration, 151The CLAS Collaboration, 152The CLAS Collaboration, 153The CLAS Collaboration, 154The CLAS Collaboration, 155The CLAS Collaboration, 156The CLAS Collaboration, 157The CLAS Collaboration, 158The CLAS Collaboration, 159The CLAS Collaboration, 160The CLAS Collaboration, 161The CLAS Collaboration, 162The CLAS Collaboration, 163The CLAS Collaboration, 164The CLAS Collaboration, 165The CLAS Collaboration, 166The CLAS Collaboration, 167The CLAS Collaboration, 168The CLAS Collaboration

First results from the longitudinally polarized frozen-spin target (FROST) program are reported. The double-polarization observable E, for the reaction $\vec \gamma \vec p \to \pi^+n$, has been measured using a circularly polarized tagged-photon beam, with energies from 0.35 to 2. Read More

2014Nov
Authors: O. Hen, M. Sargsian, L. B. Weinstein, E. Piasetzky, H. Hakobyan, D. W. Higinbotham, M. Braverman, W. K. Brooks, S. Gilad, K. P. Adhikari, J. Arrington, G. Asryan, H. Avakian, J. Ball, N. A. Baltzell, M. Battaglieri, A. Beck, S. May-Tal Beck, I. Bedlinskiy, W. Bertozzi, A. Biselli, V. D. Burkert, T. Cao, D. S. Carman, A. Celentano, S. Chandavar, L. Colaneri, P. L. Cole, V. Crede, A. DAngelo, R. De Vita, A. Deur, C. Djalali, D. Doughty, M. Dugger, R. Dupre, H. Egiyan, A. El Alaoui, L. El Fassi, L. Elouadrhiri, G. Fedotov, S. Fegan, T. Forest, B. Garillon, M. Garcon, N. Gevorgyan, Y. Ghandilyan, G. P. Gilfoyle, F. X. Girod, J. T. Goetz, R. W. Gothe, K. A. Griffioen, M. Guidal, L. Guo, K. Hafidi, C. Hanretty, M. Hattawy, K. Hicks, M. Holtrop, C. E. Hyde, Y. Ilieva, D. G. Ireland, B. I. Ishkanov, E. L. Isupov, H. Jiang, H. S. Jo, K. Joo, D. Keller, M. Khandaker, A. Kim, W. Kim, F. J. Klein, S. Koirala, I. Korover, S. E. Kuhn, V. Kubarovsky, P. Lenisa, W. I. Levine, K. Livingston, M. Lowry, H. Y. Lu, I. J. D. MacGregor, N. Markov, M. Mayer, B. McKinnon, T. Mineeva, V. Mokeev, A. Movsisyan, C. Munoz Camacho, B. Mustapha, P. Nadel-Turonski, S. Niccolai, G. Niculescu, I. Niculescu, M. Osipenko, L. L. Pappalardo, R. Paremuzyan, K. Park, E. Pasyuk, W. Phelps, S. Pisano, O. Pogorelko, J. W. Price, S. Procureur, Y. Prok, D. Protopopescu, A. J. R. Puckett, D. Rimal, M. Ripani, B. G. Ritchie, A. Rizzo, G. Rosner, P. Rossi, P. Roy, F. Sabatie, D. Schott, R. A. Schumacher, Y. G. Sharabian, G. D. Smith, R. Shneor, D. Sokhan, S. S. Stepanyan, S. Stepanyan, P. Stoler, S. Strauch, V. Sytnik, M. Taiuti, S. Tkachenko, M. Ungaro, A. V. Vlassov, E. Voutier, D. Watts, N. K. Walford, X. Wei, M. H. Wood, S. A. Wood, N. Zachariou, L. Zana, Z. W. Zhao, X. Zheng, I. Zonta

The atomic nucleus is composed of two different kinds of fermions, protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority fermions (usually neutrons) to have a higher average momentum. Our high-energy electron scattering measurements using 12C, 27Al, 56Fe and 208Pb targets show that, even in heavy neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Read More

2014Nov
Authors: D. Adikaram, D. Rimal, L. B. Weinstein, B. Raue, P. Khetarpal, R. P. Bennett, J. Arrington, W. K. Brooks, K. P. Adhikari, A. V. Afanasev, M. J. Amaryan, M. D. Anderson, J. Ball, M. Battaglieri, I. Bedlinskiy, A. S. Biselli, J. Bono, S. Boiarinov, W. J. Briscoe, V. D. Burkert, D. S. Carman, A. Celentano, S. Chandavar, G. Charles, L. Colaneri, P. L. Cole, M. Contalbrigo, A. D'Angelo, N. Dashyan, R. De Vita, E. De Sanctis, A. Deur, C. Djalali, G. E. Dodge, R. Dupre, H. Egiyan, A. El Alaoui, L. El Fassi, P. Eugenio, G. Fedotov, S. Fegan, A. Filippi, J. A. Fleming, A. Fradi, G. P. Gilfoyle, K. L. Giovanetti, F. X. Girod, J. T. Goetz, W. Gohn, E. Golovatch, R. W. Gothe, K. A. Griffioen, M. Guidal, L. Guo, K. Hafidi, H. Hakobyan, N. Harrison, M. Hattawy, K. Hicks, M. Holtrop, S. M. Hughes, C. E. Hyde, Y. Ilieva, D. G. Ireland, B. S. Ishkhanov, D. Jenkins, H. Jiang, K. Joo, S. Joosten, M. Khandaker, W. Kim, A. Klein, F. J. Klein, S. Koirala, V. Kubarovsky, S. E. Kuhn, H. Y. Lu, I . J . D. MacGregor, N. Markov, M. Mayer, B. McKinnon, M. D. Mestayer, C. A. Meyer, M. Mirazita, V. Mokeev, R. A. Montgomery, C. I. Moody, H. Moutarde, A Movsisyan, C. Munoz Camacho, P. Nadel-Turonski, S. Niccolai, G. Niculescu, M. Osipenko, A. I. Ostrovidov, K. Park, E. Pasyuk, S. Pisano, O. Pogorelko, S. Procureur, Y. Prok, D. Protopopescu, A. J. R. Puckett, M. Ripani, A. Rizzo, G. Rosner, P. Rossi, F. Sabatié, D. Schott, R. A. Schumacher, Y. G. Sharabian, A. Simonyan, I. Skorodumina, E. S. Smith, G. D. Smith, D. I. Sober, N. Sparveris, S. Stepanyan, S. Strauch, V. Sytnik, M. Taiuti, Ye Tian, A. Trivedi, M. Ungaro, H. Voskanyan, E. Voutier, N. K. Walford, D. P. Watts, X. Wei, M. H. Wood, N. Zachariou, L. Zana, J. Zhang, Z. W. Zhao, I. Zonta, The CLAS Collaboration

There is a significant discrepancy between the values of the proton electric form factor, $G_E^p$, extracted using unpolarized and polarized electron scattering. Calculations predict that small two-photon exchange (TPE) contributions can significantly affect the extraction of $G_E^p$ from the unpolarized electron-proton cross sections. We determined the TPE contribution by measuring the ratio of positron-proton to electron-proton elastic scattering cross sections using a simultaneous, tertiary electron-positron beam incident on a liquid hydrogen target and detecting the scattered particles in the Jefferson Lab CLAS detector. Read More

The paper is concerned with various issues surrounding the mathematical description of defects in models of liquid crystals, drawing on experience from solid mechanics. The roles played by a suitable choice of function space and by the growth properties of the free-energy density are highlighted. Models in which the director can jump across surfaces are formulated, and their relevance for nematic elastomers, order reconstruction and smectic A thin films discussed. Read More

The affordable, robust, compact (ARC) reactor conceptual design study aims to reduce the size, cost, and complexity of a combined fusion nuclear science facility (FNSF) and demonstration fusion Pilot power plant. ARC is a 200-250 MWe tokamak reactor with a major radius of 3.3 m, a minor radius of 1. Read More

Motivated by experimental observations of H. Seiner et al., we study the nucleation of austenite in a single crystal of a CuAlNi shape-memory alloy stabilized as a single variant of martensite. Read More

Using analytic calculations, the effects of the edge flux surface shape and the toroidal current profile on the penetration of flux surface shaping are investigated in a tokamak. It is shown that the penetration of shaping is determined by the poloidal variation of the poloidal magnetic field on the surface. This fact is used to investigate how different flux surface shapes penetrate from the edge. Read More

The structured singular value $\mu$ was introduced independently by Doyle and Safanov as a tool for analyzing robustness of system stability and performance in the presence of structured uncertainty in the system parameters. While the structured singular value provides a necessary and sufficient criterion for robustness with respect to a structured ball of uncertainty, it is notoriously difficult to actually compute. The method of diagonal (or simply "D") scaling, on the other hand, provides an easily computable upper bound (which we call $\hat \mu$) for the structured singular value, but provides an exact evaluation of $\mu$ (or even a useful upper bound for $\mu$) only in special cases. Read More

We give a mathematical analysis of a concept of metastability induced by incompatibility. The physical setting is a single parent phase, just about to undergo transformation to a product phase of lower energy density. Under certain conditions of incompatibility of the energy wells of this energy density, we show that the parent phase is metastable in a strong sense, namely it is a local minimizer of the free energy in an $L^1$ neighbourhood of its deformation. Read More

2014Jun
Authors: M. Gabrielyan, B. A. Raue, D. S. Carman, K. Park, K. P. Adhikari, D. Adikaram, M. J. Amaryan, S. Anefalos Pereira, H. Avakian, J. Ball, N. A. Baltzell, M. Battaglieri, V. Baturin, I. Bedlinskiy, A. S. Biselli, J. Bono, S. Boiarinov, W. J. Briscoe, W. K. Brooks, V. D. Burkert, T. Cao, A. Celentano, S. Chandavar, G. Charles, P. L. Cole, M. Contalbrigo, O. Cortes, V. Crede, A. DAngelo, N. Dashyan, R. De Vita, E. De Sanctis, A. Deur, C. Djalali, D. Doughty, R. Dupre, L. El Fassi, P. Eugenio, G. Fedotov, S. Fegan, J. A. Fleming, T. A. Forest, B. Garillon, N. Gevorgyan, Y. Ghandilyan, G. P. Gilfoyle, K. L. Giovanetti, F. X. Girod, J. T. Goetz, E. Golovatch, R. W. Gothe, K. A. Griffioen, M. Guidal, L. Guo, K. Hafidi, H. Hakobyan, M. Hattawy, K. Hicks, D. Ho, M. Holtrop, S. M. Hughes, Y. Ilieva, D. G. Ireland, B. S. Ishkhanov, D. Jenkins, H. Jiang, H. S. Jo, K. Joo, D. Keller, M. Khandaker, W. Kim, F. J. Klein, S. Koirala, V. Kubarovsky, S. E. Kuhn, S. V. Kuleshov, P. Lenisa, W. I. Levine, K. Livingston, I. J. D. MacGregor, M. Mayer, B. McKinnon, C. A. Meyer, M. D. Mestayer, M. Mirazita, V. Mokeev, C. I. Moody, H. Moutarde, A Movsisyan, E. Munevar, C. Munoz Camacho, P. Nadel-Turonski, S. Niccolai, G. Niculescu, M. Osipenko, L. L. Pappalardo, R. Paremuzyan, E. Pasyuk, P. Peng, W. Phelps, J. J. Phillips, S. Pisano, O. Pogorelko, S. Pozdniakov, J. W. Price, S. Procureur, D. Protopopescu, D. Rimal, M. Ripani, A. Rizzo, F. Sabatie, C. Salgado, D. Schott, R. A. Schumacher, A. Simonyan, G. D. Smith, D. I. Sober, D. Sokhan, S. S. Stepanyan, S. Stepanyan, I. I. Strakovsky, S. Strauch, V. Sytnik, W. Tang, M. Ungaro, A. V. Vlassov, H. Voskanyan, E. Voutier, N. K. Walford, D. P. Watts, X. Wei, L. B. Weinstein, N. Zachariou, L. Zana, J. Zhang

We have measured the induced polarization of the ${\Lambda}(1116)$ in the reaction $ep\rightarrow e'K^+{\Lambda}$, detecting the scattered $e'$ and $K^+$ in the final state along with the proton from the decay $\Lambda\rightarrow p\pi^-$.The present study used the CEBAF Large Acceptance Spectrometer (CLAS), which allowed for a large kinematic acceptance in invariant energy $W$ ($1.6\leq W \leq 2. Read More

The Sz.-Nagy--Foias model theory for $C_{\cdot 0}$ contraction operators combined with the Beurling-Lax theorem establishes a correspondence between any two of four kinds of objects: shift-invariant subspaces, operator-valued inner functions, conservative discrete-time input/state/output linear systems, and $C_{\cdot 0}$ Hilbert-space contraction operators. We discuss an analogue of all these ideas in the context of weighted Hardy spaces over the unit disk and an associated class of hypercontraction operators. Read More

For $S$ a contractive analytic operator-valued function on the unit disk ${\mathbb D}$, de Branges and Rovnyak associate a Hilbert space of analytic functions ${\mathcal H}(S)$ and related extension space ${\mathcal D(S)}$ consisting of pairs of analytic functions on the unit disk ${\mathbb D}$. This survey describes three equivalent formulations (the original geometric de Branges-Rovnyak definition, the Toeplitz operator characterization, and the characterization as a reproducing kernel Hilbert space) of the de Branges-Rovnyak space ${\mathcal H}(S)$, as well as its role as the underlying Hilbert space for the modeling of completely non-isometric Hilbert-space contraction operators. Also examined is the extension of these ideas to handle the modeling of the more general class of completely nonunitary contraction operators, where the more general two-component de Branges-Rovnyak model space ${\mathcal D}(S)$ and associated overlapping spaces play key roles. Read More

For $S$ a contractive analytic operator-valued function on the unit disk ${\mathbb D}$, de Branges and Rovnyak associate a Hilbert space of analytic functions ${\mathcal H}(S)$. A companion survey provides equivalent definitions and basic properties of these spaces as well as applications to function theory and operator theory. The present survey brings to the fore more recent applications to a variety of more elaborate function theory problems, including $H^\infty$-norm constrained interpolation, connections with the Potapov method of Fundamental Matrix Inequalities, parametrization for the set of all solutions of an interpolation problem, variants of the Abstract Interpolation Problem of Katsnelson, Kheifets, and Yuditskii, boundary behavior and boundary interpolation in de Branges-Rovnyak spaces themselves, and extensions to multivariable and Kre\u{\i}n-space settings. Read More

2014May
Authors: I. Bedlinskiy1, V. Kubarovsky2, S. Niccolai3, P. Stoler4, K. P. Adhikari5, M. D. Anderson6, S. Anefalos Pereira7, H. Avakian8, J. Ball9, N. A. Baltzell10, M. Battaglieri11, V. Batourine12, A. S. Biselli13, S. Boiarinov14, J. Bono15, W. J. Briscoe16, W. K. Brooks17, V. D. Burkert18, D. S. Carman19, A. Celentano20, S. Chandavar21, L. Colaneri22, P. L. Cole23, M. Contalbrigo24, O. Cortes25, V. Crede26, A. D'Angelo27, N. Dashyan28, R. De Vita29, E. De Sanctis30, A. Deur31, C. Djalali32, D. Doughty33, R. Dupre34, H. Egiyan35, A. El Alaoui36, L. El Fassi37, L. Elouadrhiri38, P. Eugenio39, G. Fedotov40, S. Fegan41, J. A. Fleming42, T. A. Forest43, B. Garillon44, M. Garçon45, G. Gavalian46, N. Gevorgyan47, Y. Ghandilyan48, G. P. Gilfoyle49, K. L. Giovanetti50, F. X. Girod51, E. Golovatch52, R. W. Gothe53, K. A. Griffioen54, B. Guegan55, L. Guo56, K. Hafidi57, H. Hakobyan58, N. Harrison59, M. Hattawy60, K. Hicks61, M. Holtrop62, D. G. Ireland63, B. S. Ishkhanov64, E. L. Isupov65, D. Jenkins66, H. S. Jo67, K. Joo68, D. Keller69, M. Khandaker70, A. Kim71, W. Kim72, A. Klein73, F. J. Klein74, S. Koirala75, S. E. Kuhn76, S. V. Kuleshov77, P. Lenisa78, W. I. Levine79, K. Livingston80, H. Y. Lu81, I . J . D. MacGregor82, N. Markov83, M. Mayer84, B. McKinnon85, M. Mirazita86, V. Mokeev87, R. A. Montgomery88, C. I. Moody89, H. Moutarde90, A Movsisyan91, C. Munoz Camacho92, P. Nadel-Turonski93, I. Niculescu94, M. Osipenko95, A. I. Ostrovidov96, L. L. Pappalardo97, K. Park98, S. Park99, E. Pasyuk100, E. Phelps101, W. Phelps102, J. J. Phillips103, S. Pisano104, O. Pogorelko105, J. W. Price106, Y. Prok107, D. Protopopescu108, S. Procureur109, A. J. R. Puckett110, B. A. Raue111, M. Ripani112, B. G. Ritchie113, A. Rizzo114, P. Rossi115, P. Roy116, F. Sabatié117, C. Salgado118, D. Schott119, R. A. Schumacher120, E. Seder121, I. Senderovich122, Y. G. Sharabian123, A. Simonyan124, G. D. Smith125, D. I. Sober126, D. Sokhan127, S. S. Stepanyan128, S. Strauch129, V. Sytnik130, W. Tang131, Ye Tian132, M. Ungaro133, A. V. Vlassov134, H. Voskanyan135, E. Voutier136, N. K. Walford137, D. Watts138, X. Wei139, L. B. Weinstein140, M. Yurov141, N. Zachariou142, L. Zana143, J. Zhang144, Z. W. Zhao145, I. Zonta146, for the CLAS Collaboration
Affiliations: 1Institute of Theoretical and Experimental Physics, 2Thomas Jefferson National Accelerator Facility, 3Institut de Physique Nucléaire ORSAY, 4Rensselaer Polytechnic Institute, 5Old Dominion University, 6University of Glasgow, 7INFN, 8Thomas Jefferson National Accelerator Facility, 9CEA, 10Argonne National Laboratory, 11INFN, 12Thomas Jefferson National Accelerator Facility, 13Thomas Jefferson National Accelerator Facility, 14Thomas Jefferson National Accelerator Facility, 15Florida International University, 16The George Washington University, 17Universidad Técnica Federico Santa María, 18Thomas Jefferson National Accelerator Facility, 19Thomas Jefferson National Accelerator Facility, 20INFN, 21Ohio University, 22INFN, 23Idaho State University, 24INFN, 25Idaho State University, 26Florida State University, 27INFN, 28Yerevan Physics Institute, 29INFN, 30INFN, 31Thomas Jefferson National Accelerator Facility, 32University of South Carolina, 33Christopher Newport University, 34Institut de Physique Nucléaire ORSAY, 35Thomas Jefferson National Accelerator Facility, 36Argonne National Laboratory, 37Old Dominion University, 38Thomas Jefferson National Accelerator Facility, 39Florida State University, 40University of South Carolina, 41INFN, 42Edinburgh University, 43Idaho State University, 44Institut de Physique Nucléaire ORSAY, 45CEA, 46Old Dominion University, 47Yerevan Physics Institute, 48Yerevan Physics Institute, 49University of Richmond, 50James Madison University, 51Thomas Jefferson National Accelerator Facility, 52Skobeltsyn Institute of Nuclear Physics, 53University of South Carolina, 54Institut de Physique Nucléaire ORSAY, 55Institut de Physique Nucléaire ORSAY, 56Florida International University, 57Argonne National Laboratory, 58Universidad Técnica Federico Santa María, 59University of Connecticut, 60Institut de Physique Nucléaire ORSAY, 61Ohio University, 62University of New Hampshire, 63University of Glasgow, 64Skobeltsyn Institute of Nuclear Physics, 65Skobeltsyn Institute of Nuclear Physics, 66Institut de Physique Nucléaire ORSAY, 67Institut de Physique Nucléaire ORSAY, 68University of Connecticut, 69University of Virginia, 70Idaho State University, 71University of Connecticut, 72Kyungpook National University, 73Old Dominion University, 74Catholic University of America, 75Old Dominion University, 76Old Dominion University, 77Universidad Técnica Federico Santa María, 78INFN, 79Carnegie Mellon University, 80University of Glasgow, 81University of South Carolina, 82University of Glasgow, 83University of Connecticut, 84Old Dominion University, 85University of Glasgow, 86INFN, 87Thomas Jefferson National Accelerator Facility, 88INFN, 89Argonne National Laboratory, 90CEA, 91INFN, 92Institut de Physique Nucléaire ORSAY, 93Thomas Jefferson National Accelerator Facility, 94James Madison University, 95INFN, 96Florida State University, 97INFN, 98Thomas Jefferson National Accelerator Facility, 99Florida State University, 100Thomas Jefferson National Accelerator Facility, 101University of South Carolina, 102Florida International University, 103University of Glasgow, 104INFN, 105Institute of Theoretical and Experimental Physics, 106California State University, 107Old Dominion University, 108University of Glasgow, 109CEA, 110University of Connecticut, 111Florida International University, 112INFN, 113Arizona State University, 114INFN, 115INFN, 116Florida State University, 117CEA, 118Norfolk State University, 119The George Washington University, 120Carnegie Mellon University, 121University of Connecticut, 122Arizona State University, 123Thomas Jefferson National Accelerator Facility, 124Yerevan Physics Institute, 125Edinburgh University, 126Catholic University of America, 127University of Glasgow, 128Kyungpook National University, 129University of South Carolina, 130Universidad Técnica Federico Santa María, 131Ohio University, 132University of South Carolina, 133Thomas Jefferson National Accelerator Facility, 134Institute of Theoretical and Experimental Physics, 135Yerevan Physics Institute, 136LPSC, 137Catholic University of America, 138University of Glasgow, 139Thomas Jefferson National Accelerator Facility, 140Old Dominion University, 141University of Virginia, 142University of South Carolina, 143Edinburgh University, 144Thomas Jefferson National Accelerator Facility, 145University of Virginia, 146INFN

Exclusive neutral-pion electroproduction ($ep\to e^\prime p^\prime \pi^0$) was measured at Jefferson Lab with a 5.75-GeV electron beam and the CLAS detector. Differential cross sections $d^4\sigma/dtdQ^2dx_Bd\phi_\pi$ and structure functions $\sigma_T+\epsilon\sigma_L, \sigma_{TT}$ and $\sigma_{LT}$ as functions of $t$ were obtained over a wide range of $Q^2$ and $x_B$. Read More

2014Apr
Authors: Y. Prok, P. Bosted, N. Kvaltine, K. P. Adhikari, D. Adikaram, M. Aghasyan, M. J. Amaryan, M. D. Anderson, S. Anefalos Pereira, H. Avakian, H. Baghdasaryan, J. Ball, N. A. Baltzell, M. Battaglieri, A. S. Biselli, J. Bono, W. J. Briscoe, J. Brock, W. K. Brooks, S. Bültmann, V. D. Burkert, C. Carlin, D. S. Carman, A. Celentano, S. Chandavar, L. Colaneri, P. L. Cole, M. Contalbrigo, O. Cortes, D. Crabb, V. Crede, A. D'Angelo, N. Dashyan, R. De Vita, E. De Sanctis, A. Deur, C. Djalali, G. E. Dodge, D. Doughty, R. Dupre, A. El Alaoui, L. El Fassi, L. Elouadrhiri, G. Fedotov, S. Fegan, R. Fersch, J. A. Fleming, T. A. Forest, M. Garcon, N. Gevorgyan, Y. Ghandilyan, G. P. Gilfoyle, F. X. Girod, K. L. Giovanetti, J. T. Goetz, W. Gohn, R. W. Gothe, K. A. Griffioen, B. Guegan, N. Guler, K. Haffidi, C. Hanretty, N. Harrison, M. Hattawy, K. Hicks, D. Ho, M. Holtrop, Y. Ilieva, D. G. Ireland, B. S. Ishkhanov, E. L. Isupov, S. Jawalkar, X. Jiang, H. S. Jo, K. Joo, N. Kalantarians, C. Keith, D. Keller, M. Khandaker, A. Kim, W. Kim, A. Klein, F. J. Klein, S. Koirala, V. Kubarovsky, S. E. Kuhn, S. V. Kuleshov, P. Lenisa, K. Livingston, H. Y. Lu, I . J. D. MacGregor, N. Markov, M. Mayee, B. McKinnon, D. Meekins, T. Mineeva, M. Mirazita, V. Mokeev, R. A. Montgomery, H. Moutarde, A Movsisyan, E. Munevar, C. Munoz Camacho, P. Nadel-Turonski, S. Niccolai, G. Niculescu, I. Niculescu, M. Osipenko, A. I. Ostrovidov, L. L. Pappalardo, R. Paremuzyan, K. Park, P. Peng, J. J. Phillips, J. Pierce, S. Pisano, O. Pogorelko, S. Pozdniakov, J. W. Price, S. Procureur, D. Protopopescu, A. J. R. Puckett, B. A. Raue, D. Rimal, M. Ripani, A. Rizzo, G. Rosner, P. Rossi, P. Roy, F. Sabatié, M. S. Saini, C. Salgado, D. Schott, R. A. Schumacher, E. Seder, Y. G. Sharabian, A. Simonyan, C. Smith, G. Smith, D. I. Sober, D. Sokhan, S. S. Stepanyan, S. Stepanyan, I. I. Strakovsky, S. Strauch, V. Sytnik, M. Taiuti, W. Tang, S. Tkachenko, M. Ungaro, B . Vernarsky, A. V. Vlassov, H. Voskanyan, E. Voutier, N. K. Walford, D . P. Watts, L. B. Weinstein, N. Zachariou, L. Zana, J. Zhang, B. Zhao, Z. W. Zhao, I. Zonta, for the CLAS collaboration

The inclusive polarized structure functions of the proton and deuteron, g1p and g1d, were measured with high statistical precision using polarized 6 GeV electrons incident on a polarized ammonia target in Hall B at Jefferson Laboratory. Electrons scattered at lab angles between 18 and 45 degrees were detected using the CEBAF Large Acceptance Spectrometer (CLAS). For the usual DIS kinematics, Q^2>1 GeV^2 and the final-state invariant mass W>2 GeV, the ratio of polarized to unpolarized structure functions g1/F1 is found to be nearly independent of Q^2 at fixed x. Read More

Recent work demonstrated that breaking the up-down symmetry of tokamak flux surfaces removes a constraint that limits intrinsic momentum transport, and hence toroidal rotation, to be small. We show, through MHD analysis, that ellipticity is most effective at introducing up-down asymmetry throughout the plasma. We detail an extension to GS2, a local $\delta f$ gyrokinetic code that self-consistently calculates momentum transport, to permit up-down asymmetric configurations. Read More

2014Feb
Authors: S. Tkachenko1, N. Baillie2, S. E. Kuhn3, J. Zhang4, J. Arrington5, P. Bosted6, S. Bültmann7, M. E. Christy8, D. Dutta9, R. Ent10, H. Fenker11, K. A. Griffioen12, M. Ispiryan13, N. Kalantarians14, C. E. Keppel15, W. Melnitchouk16, V. Tvaskis17, K. P. Adhikari18, M. Aghasyan19, M. J. Amaryan20, S. Anefalos Pereira21, H. Avakian22, J. Ball23, N. A. Baltzell24, M. Battaglieri25, I. Bedlinskiy26, A. S. Biselli27, W. J. Briscoe28, W. K. Brooks29, V. D. Burkert30, D. S. Carman31, A. Celentano32, S. Chandavar33, G. Charles34, P. L. Cole35, M. Contalbrigo36, O. Cortes37, V. Crede38, A. D'Angelo39, N. Dashyan40, R. De Vita41, E. De Sanctis42, A. Deur43, C. Djalali44, G. E. Dodge45, D. Doughty46, R. Dupre47, H. Egiyan48, A. El Alaoui49, L. El Fassi50, L. Elouadrhiri51, P. Eugenio52, G. Fedotov53, J. A. Fleming54, B. Garillon55, N. Gevorgyan56, Y. Ghandilyan57, G. P. Gilfoyle58, K. L. Giovanetti59, F. X. Girod60, J. T. Goetz61, E. Golovatch62, R. W. Gothe63, M. Guidal64, L. Guo65, K. Hafidi66, H. Hakobyan67, C. Hanretty68, N. Harrison69, M. Hattawy70, K. Hicks71, D. Ho72, M. Holtrop73, C . E. Hyde74, Y. Ilieva75, D. G. Ireland76, B. S. Ishkhanov77, H. S. Jo78, D. Keller79, M. Khandaker80, A. Kim81, W. Kim82, P. M. King83, A. Klein84, F. J. Klein85, S. Koirala86, V. Kubarovsky87, S. V. Kuleshov88, P. Lenisa89, S. Lewis90, K. Livingston91, H. Lu92, M. MacCormick93, I. J. D. MacGregor94, N. Markov95, M. Mayer96, B. McKinnon97, T. Mineeva98, M. Mirazita99, V. Mokeev100, R. A. Montgomery101, H. Moutarde102, C. Munoz Camacho103, P. Nadel-Turonski104, S. Niccolai105, G. Niculescu106, I. Niculescu107, M. Osipenko108, L. L. Pappalardo109, R. Paremuzyan110, K. Park111, E. Pasyuk112, J. J. Phillips113, S. Pisano114, O. Pogorelko115, S. Pozdniakov116, J. W. Price117, S. Procureur118, D. Protopopescu119, A. J . R. Puckett120, D. Rimal121, M. Ripani122, A. Rizzo123, G. Rosner124, P. Rossi125, P. Roy126, F. Sabatié127, D. Schott128, R. A. Schumacher129, E. Seder130, I. Senderovich131, Y. G. Sharabian132, A. Simonyan133, G. D. Smith134, D. I. Sober135, D. Sokhan136, S. Stepanyan137, S. S. Stepanyan138, S. Strauch139, W. Tang140, M. Ungaro141, A. V. Vlassov142, H. Voskanyan143, E. Voutier144, N. K. Walford145, D. Watts146, X. Wei147, L. B. Weinstein148, M. H. Wood149, L. Zana150, I. Zonta151
Affiliations: 1The CLAS collaboration, 2The CLAS collaboration, 3The CLAS collaboration, 4The CLAS collaboration, 5The CLAS collaboration, 6The CLAS collaboration, 7The CLAS collaboration, 8The CLAS collaboration, 9The CLAS collaboration, 10The CLAS collaboration, 11The CLAS collaboration, 12The CLAS collaboration, 13The CLAS collaboration, 14The CLAS collaboration, 15The CLAS collaboration, 16The CLAS collaboration, 17The CLAS collaboration, 18The CLAS collaboration, 19The CLAS collaboration, 20The CLAS collaboration, 21The CLAS collaboration, 22The CLAS collaboration, 23The CLAS collaboration, 24The CLAS collaboration, 25The CLAS collaboration, 26The CLAS collaboration, 27The CLAS collaboration, 28The CLAS collaboration, 29The CLAS collaboration, 30The CLAS collaboration, 31The CLAS collaboration, 32The CLAS collaboration, 33The CLAS collaboration, 34The CLAS collaboration, 35The CLAS collaboration, 36The CLAS collaboration, 37The CLAS collaboration, 38The CLAS collaboration, 39The CLAS collaboration, 40The CLAS collaboration, 41The CLAS collaboration, 42The CLAS collaboration, 43The CLAS collaboration, 44The CLAS collaboration, 45The CLAS collaboration, 46The CLAS collaboration, 47The CLAS collaboration, 48The CLAS collaboration, 49The CLAS collaboration, 50The CLAS collaboration, 51The CLAS collaboration, 52The CLAS collaboration, 53The CLAS collaboration, 54The CLAS collaboration, 55The CLAS collaboration, 56The CLAS collaboration, 57The CLAS collaboration, 58The CLAS collaboration, 59The CLAS collaboration, 60The CLAS collaboration, 61The CLAS collaboration, 62The CLAS collaboration, 63The CLAS collaboration, 64The CLAS collaboration, 65The CLAS collaboration, 66The CLAS collaboration, 67The CLAS collaboration, 68The CLAS collaboration, 69The CLAS collaboration, 70The CLAS collaboration, 71The CLAS collaboration, 72The CLAS collaboration, 73The CLAS collaboration, 74The CLAS collaboration, 75The CLAS collaboration, 76The CLAS collaboration, 77The CLAS collaboration, 78The CLAS collaboration, 79The CLAS collaboration, 80The CLAS collaboration, 81The CLAS collaboration, 82The CLAS collaboration, 83The CLAS collaboration, 84The CLAS collaboration, 85The CLAS collaboration, 86The CLAS collaboration, 87The CLAS collaboration, 88The CLAS collaboration, 89The CLAS collaboration, 90The CLAS collaboration, 91The CLAS collaboration, 92The CLAS collaboration, 93The CLAS collaboration, 94The CLAS collaboration, 95The CLAS collaboration, 96The CLAS collaboration, 97The CLAS collaboration, 98The CLAS collaboration, 99The CLAS collaboration, 100The CLAS collaboration, 101The CLAS collaboration, 102The CLAS collaboration, 103The CLAS collaboration, 104The CLAS collaboration, 105The CLAS collaboration, 106The CLAS collaboration, 107The CLAS collaboration, 108The CLAS collaboration, 109The CLAS collaboration, 110The CLAS collaboration, 111The CLAS collaboration, 112The CLAS collaboration, 113The CLAS collaboration, 114The CLAS collaboration, 115The CLAS collaboration, 116The CLAS collaboration, 117The CLAS collaboration, 118The CLAS collaboration, 119The CLAS collaboration, 120The CLAS collaboration, 121The CLAS collaboration, 122The CLAS collaboration, 123The CLAS collaboration, 124The CLAS collaboration, 125The CLAS collaboration, 126The CLAS collaboration, 127The CLAS collaboration, 128The CLAS collaboration, 129The CLAS collaboration, 130The CLAS collaboration, 131The CLAS collaboration, 132The CLAS collaboration, 133The CLAS collaboration, 134The CLAS collaboration, 135The CLAS collaboration, 136The CLAS collaboration, 137The CLAS collaboration, 138The CLAS collaboration, 139The CLAS collaboration, 140The CLAS collaboration, 141The CLAS collaboration, 142The CLAS collaboration, 143The CLAS collaboration, 144The CLAS collaboration, 145The CLAS collaboration, 146The CLAS collaboration, 147The CLAS collaboration, 148The CLAS collaboration, 149The CLAS collaboration, 150The CLAS collaboration, 151The CLAS collaboration

Much less is known about neutron structure than that of the proton due to the absence of free neutron targets. Neutron information is usually extracted from data on nuclear targets such as deuterium, requiring corrections for nuclear binding and nucleon off-shell effects. These corrections are model dependent and have significant uncertainties, especially for large values of the Bjorken scaling variable x. Read More

We consider the equation of motion for one-dimensional nonlinear viscoelasticity of strain-rate type under the assumption that the stored-energy function is $\lambda$-convex, which allows for solid phase transformations. We formulate this problem as a gradient flow, leading to existence and uniqueness of solutions. By approximating general initial data by those in which the deformation gradient takes only finitely many values, we show that under suitable hypotheses on the stored-energy function the deformation gradient is instantaneously bounded and bounded away from zero. Read More

For a bounded domain $\Omega\subset\mathbb{R}^m, m\geq 2,$ of class $C^0$, the properties are studied of fields of `good directions', that is the directions with respect to which $\partial\Omega$ can be locally represented as the graph of a continuous function. For any such domain there is a canonical smooth field of good directions defined in a suitable neighbourhood of $\partial\Omega$, in terms of which a corresponding flow can be defined. Using this flow it is shown that $\Omega$ can be approximated from the inside and the outside by diffeomorphic domains of class $C^\infty$. Read More

A Schur-class function in $d$ variables is defined to be an analytic contractive-operator valued function on the unit polydisk. Such a function is said to be in the Schur--Agler class if it is contractive when evaluated on any commutative $d$-tuple of strict contractions on a Hilbert space. It is known that the Schur--Agler class is a strictly proper subclass of the Schur class if the number of variables $d$ is more than two. Read More

Partial differential equations are ubiquitous in almost all applications of mathematics, where they provide a natural mathematical description of many phenomena involving change in physical, chemical, biological, and social processes. The concept of entropy originated in thermodynamics and statistical physics during the 19th century to describe the heat exchanges that occur in the thermal processes in a thermodynamic system, while the original notion of convexity is for sets and functions in mathematics. Since then, entropy and convexity have become two of the most important concepts in mathematics. Read More

Motivated by experimental observations on CuAlNi single crystals, we present a theoretical investigation of non-planar austenite-martensite interfaces. Our analysis is based on the nonlinear elasticity model for martensitic transformations and we show that, under suitable assumptions on the lattice parameters, non-planar interfaces are possible, in particular for transitions with cubic austenite. Read More

The nucleation of bcc austenite in a single crystal of a mechanically stabilized 2H-martensite of Cu-Al-Ni shape-memory alloy is studied. The nucleation process is induced by localized heating and observed by optical microscopy. It is observed that nucleation occurs after a time delay and that the nucleation points are always located at one of the corners of the sample (a rectangular bar in the austenite), regardless of where the localized heating is applied. Read More

We discuss transfer-function realization for multivariable holomorphic functions mapping the unit polydisk or the right polyhalfplane into the operator analogue of either the unit disk or the right halfplane (Schur/Herglotz functions over either the unit polydisk or the right polyhalfplane) which satisfy the appropriate stronger contractive/positive real part condition for the values of these functions on commutative tuples of strict contractions/strictly accretive operators (Schur--Agler/Herglotz--Agler functions over either the unit polydisk or the right polyhalfplane). As originally shown by Agler, the first case (polydisk to disk) can be solved via unitary extensions of a partially defined isometry constructed in a canonical way from a kernel decomposition for the function (the {\em lurking-isometry method}). We show how a geometric reformulation of the lurking-isometry method (embedding of a given isotropic subspace of a Kre\u{\i}n space into a Lagrangian subspace---the {\em lurking-isotropic-subspace method}) can be used to handle the second two cases (polydisk to halfplane and polyhalfplane to disk), as well as the last case (polyhalfplane to halfplane) if an additional growth condition at $\infty$ is imposed. Read More

The Bessmertny\u{\i} class consists of rational matrix-valued functions of $d$ complex variables representable as the Schur complement of a block of a linear pencil $A(z)=z_1A_1+\cdots+z_dA_d$ whose coefficients $A_k$ are positive semidefinite matrices. We show that it coincides with the subclass of rational functions in the Herglotz-Agler class over the right poly-halfplane which are homogeneous of degree one and which are Cayley inner. The latter means that such a function is holomorphic on the right poly-halfplane and takes skew-Hermitian matrix values on $(i\mathbb{R})^d$, or equivalently, is the double Cayley transform (over the variables and over the matrix values) of an inner function on the unit polydisk. Read More

A local magnetic equilibrium solution is sought around the magnetic axis in order to identify the key parameters defining the magnetic-surface's up-down asymmetry in the core of tokamak plasmas. The asymmetry is found to be determined essentially by the ratio of the toroidal current density flowing on axis to the fraction of the external field's odd perturbation that manages to propagate from the plasma boundary into the core. The predictions are tested and illustrated first with an analytical Solovev equilibrium and then using experimentally relevant numerical equilibria. Read More