J. -F. Muraz - LPSC/UJF-Grenoble 1/CNRS-IN2P3/IPG

J. -F. Muraz
Are you J. -F. Muraz?

Claim your profile, edit publications, add additional information:

Contact Details

Name
J. -F. Muraz
Affiliation
LPSC/UJF-Grenoble 1/CNRS-IN2P3/IPG
Location

Pubs By Year

Pub Categories

 
Physics - Instrumentation and Detectors (8)
 
Nuclear Experiment (4)
 
Cosmology and Nongalactic Astrophysics (3)
 
Instrumentation and Methods for Astrophysics (3)
 
High Energy Physics - Experiment (2)
 
Physics - Accelerator Physics (1)

Publications Authored By J. -F. Muraz

The Polarized Electrons for Polarized Positrons experiment at the injector of the Continuous Electron Beam Accelerator Facility has demonstrated for the first time the efficient transfer of polarization from electrons to positrons produced by the polarized bremsstrahlung radiation induced by a polarized electron beam in a high-$Z$ target. Positron polarization up to 82\% have been measured for an initial electron beam momentum of 8.19~MeV/$c$, limited only by the electron beam polarization. Read More

2016Feb
Affiliations: 1LPSC Grenoble, 2LPSC Grenoble, 3LPSC Grenoble, 4LPSC Grenoble, 5LPSC Grenoble, 6LPSC Grenoble, 7LPSC Grenoble, 8LPSC Grenoble, 9IRSN Cadarache, 10IRSN Cadarache, 11IRFU Saclay, 12IRFU Saclay, 13CPPM Marseille, 14CPPM Marseille, 15CPPM Marseille, 16CPPM Marseille

MIMAC (MIcro-TPC MAtrix of Chambers) is a directional WIMP Dark Matter detector project. Direct dark matter experiments need a high level of electron/recoil discrimination to search for nuclear recoils produced by WIMP-nucleus elastic scattering. In this paper, we proposed an original method for electron event rejection based on a multivariate analysis applied to experimental data acquired using monochromatic neutron fields. Read More

2015Apr
Affiliations: 1LPSC Grenoble, 2LPSC Grenoble, 3LPSC Grenoble, 4LPSC Grenoble, 5LPSC Grenoble, 6LPSC Grenoble, 7LPSC Grenoble, 8LPSC Grenoble, 9IRFU Saclay, 10IRFU Saclay, 11IRFU Saclay, 12CPPM Marseille, 13CPPM Marseille, 14CPPM Marseille, 15IRSN Cadarache, 16IRSN Cadarache

The MIMAC experiment is a $\mu$-TPC matrix project for directional dark matter search. Directional detection is a strategy based on the measurement of the WIMP flux anisotropy due to the solar system motion with respect to the dark matter halo. The main purpose of MIMAC project is the measurement of the energy and the direction of nuclear recoils in 3D produced by elastic scattering of WIMPs. Read More

2013Nov
Affiliations: 1LPSC/UJF-Grenoble 1/CNRS-IN2P3/IPG, 2LPSC/UJF-Grenoble 1/CNRS-IN2P3/IPG, 3LPSC/UJF-Grenoble 1/CNRS-IN2P3/IPG, 4LPSC/UJF-Grenoble 1/CNRS-IN2P3/IPG, 5LPSC/UJF-Grenoble 1/CNRS-IN2P3/IPG, 6LPSC/UJF-Grenoble 1/CNRS-IN2P3/IPG, 7LPSC/UJF-Grenoble 1/CNRS-IN2P3/IPG, 8LPSC/UJF-Grenoble 1/CNRS-IN2P3/IPG, 9LPSC/UJF-Grenoble 1/CNRS-IN2P3/IPG, 10LPSC/UJF-Grenoble 1/CNRS-IN2P3/IPG, 11LPSC/UJF-Grenoble 1/CNRS-IN2P3/IPG, 12LNE-IRSN-Cadarache, 13LNE-IRSN-Cadarache, 14CPPM/CNRS-IN2P3/Marseille, 15CPPM/CNRS-IN2P3/Marseille, 16CPPM/CNRS-IN2P3/Marseille

Directional detection of non-baryonic Dark Matter is a promising search strategy for discriminating WIMP events from neutrons, the ultimate background for dark matter direct detection. This strategy requires both a precise measurement of the energy down to a few keV and 3D reconstruction of tracks down to a few mm. The MIMAC (MIcro-tpc MAtrix of Chambers) collaboration has developed in the last years an original prototype detector based on the direct coupling of large pixelized micromegas with a special developed fast self-triggered electronics showing the feasibility of a new generation of directional detectors. Read More

In order to measure the energy of neutron fields, with energy ranging from 8 keV to 1 MeV, a new primary standard is being developed at the IRSN (Institute for Radioprotection and Nuclear Safety). This project, micro-TPC (Micro Time Projection Chamber), carried out in collaboration with the LPSC (Laboratoire de Physique Subatomique et de Cosmologie), is based on the nuclear recoil detector principle. The instrument is presented with the associated method to measure the neutron energy. Read More

In order to measure energy and fluence of neutron fields, with energy ranging from 8 keV to 1 MeV, a new primary standard is being developed at the IRSN (Institute for Radioprotection and Nuclear Safety). This project, micro-TPC (Micro Time Projection Chamber), carried out in collaboration with the LPSC, is based on the nucleus recoil detector principle. The measurement strategy requires track reconstruction of recoiling nuclei down to a few keV, which can be achieved with a low pressure gaseous detector using a micro-pattern gaseous detector. Read More

2013Jun
Authors: SuperB Collaboration, M. Baszczyk, P. Dorosz, J. Kolodziej, W. Kucewicz, M. Sapor, A. Jeremie, E. Grauges Pous, G. E. Bruno, G. De Robertis, D. Diacono, G. Donvito, P. Fusco, F. Gargano, F. Giordano, F. Loddo, F. Loparco, G. P. Maggi, V. Manzari, M. N. Mazziotta, E. Nappi, A. Palano, B. Santeramo, I. Sgura, L. Silvestris, V. Spinoso, G. Eigen, J. Zalieckas, Z. Zhuo, L. Jenkovszky, G. Balbi, M. Boldini, D. Bonacorsi, V. Cafaro, I. D'Antone, G. M. Dallavalle, R. Di Sipio, F. Fabbri, L. Fabbri, A. Gabrielli, D. Galli, P. Giacomelli, V. Giordano, F. M. Giorgi, C. Grandi, I. Lax, S. Lo Meo, U. Marconi, A. Montanari, G. Pellegrini, M. Piccinini, T. Rovelli, N. Semprini Cesari, G. Torromeo, N. Tosi, R. Travaglini, V. M. Vagnoni, S. Valentinetti, M. Villa, A. Zoccoli, J. -F. Caron, C. Hearty, P. F. -T. Lu, T. S. Mattison, J. A. McKenna, R. Y. -C. So, M. Yu. Barnyakov, V. E. Blinov, A. A. Botov, V. P. Druzhinin, V. B. Golubev, S. A. Kononov, E. A. Kravchenko, E. B. Levichev, A. P. Onuchin, S. I. Serednyakov, D. A. Shtol, Y. I. Skovpen, E. P. Solodov, A. Cardini, M. Carpinelli, D. S. -T. Chao, C. H. Cheng, D. A. Doll, B. Echenard, K. Flood, J. Hanson, D. G. Hitlin, P. Ongmongkolkul, F. C. Porter, R. Y. Zhu, N. Randazzo, E. De La Cruz Burelo, Y. Zheng, P. Campos, M. De Silva, A. Kathirgamaraju, B. Meadows, B. Pushpawela, Y. Shi, M. Sokoloff, G. Lopez Castro, V. Ciaschini, P. Franchini, F. Giacomini, A. Paolini, G. A. Calderon Polania, S. Laczek, P. Romanowicz, B. Szybinski, M. Czuchry, L. Flis, D. Harezlak, J. Kocot, M. Radecki, M. Sterzel, T. Szepieniec, T. Szymocha, P. Wójcik, M. Andreotti, W. Baldini, R. Calabrese, V. Carassiti, G. Cibinetto, A. Cotta Ramusino, F. Evangelisti, A. Gianoli, E. Luppi, R. Malaguti, M. Manzali, M. Melchiorri, M. Munerato, C. Padoan, V. Santoro, L. Tomassetti, M. M. Beretta, M. Biagini, M. Boscolo, E. Capitolo, R. de Sangro, M. Esposito, G. Felici, G. Finocchiaro, M. Gatta, C. Gatti, S. Guiducci, S. Lauciani, P. Patteri, I. Peruzzi, M. Piccolo, P. Raimondi, M. Rama, C. Sanelli, S. Tomassini, P. Fabbricatore, D. Delepine, M. A. Reyes Santos, M. Chrzaszcz, R. Grzymkowski, P. Knap, J. Kotula, T. Lesiak, J. Ludwin, J. Michalowski, B. Pawlik, B. Rachwal, M. Stodulski, J. Wiechczynski, M. Witek, L. Zawiejski, M. Zdybal, V. Y. Aushev, A. Ustynov, N. Arnaud, P. Bambade, C. Beigbeder, F. Bogard, M. Borsato, D. Breton, J. Brossard, L. Burmistrov, D. Charlet, V. Chaumat, O. Dadoun, M. El Berni, J. Maalmi, V. Puill, C. Rimbault, A. Stocchi, V. Tocut, A. Variola, S. Wallon, G. Wormser, F. Grancagnolo, E. Ben-Haim, S. Sitt, M. Baylac, O. Bourrion, J. -M. Deconto, Y. Gomez Martinez, N. Monseu, J. -F. Muraz, J. -S. Real, C. Vescovi, R. Cenci, A. Jawahery, D. Roberts, E. W. Twedt, R. Cheaib, D. Lindemann, S. Nderitu, P. Patel, S. H. Robertson, D. Swersky, A. Warburton, E. Cuautle Flores, G. Toledo Sanchez, P. Biassoni, L. Bombelli, M. Citterio, S. Coelli, C. Fiorini, V. Liberali, M. Monti, B. Nasri, N. Neri, F. Palombo, F. Sabatini, A. Stabile, A. Berra, A. Giachero, C. Gotti, D. Lietti, M. Maino, G. Pessina, M. Prest, J. -P. Martin, M. Simard, N. Starinski, P. Taras, A. Drutskoy, S. Makarychev, A. V. Nefediev, A. Aloisio, S. Cavaliere, G. De Nardo, M. Della Pietra, A. Doria, R. Giordano, A. Ordine, S. Pardi, G. Russo, C. Sciacca, I. I. Bigi, C. P. Jessop, W. Wang, M. Bellato, M. Benettoni, M. Corvo, A. Crescente, F. Dal Corso, U. Dosselli, C. Fanin, A. Gianelle, S. Longo, M. Michelotto, F. Montecassiano, M. Morandin, R. Pengo, M. Posocco, M. Rotondo, G. Simi, R. Stroili, L. Gaioni, A. Manazza, M. Manghisoni, L. Ratti, V. Re, G. Traversi, S. Zucca, S. Bizzaglia, M. Bizzarri, C. Cecchi, S. Germani, M. Lebeau, P. Lubrano, E. Manoni, A. Papi, A. Rossi, G. Scolieri, G. Batignani, S. Bettarini, G. Casarosa, A. Cervelli, A. Fella, F. Forti, M. Giorgi, L. Lilli, A. Lusiani, B. Oberhof, A. Paladino, F. Pantaleo, E. Paoloni, A. L. Perez Perez, G. Rizzo, J. Walsh, A. Fernández Téllez, G. Beck, M. Berman, A. Bevan, F. Gannaway, G. Inguglia, A. J. Martin, J. Morris, V. Bocci, M. Capodiferro, G. Chiodi, I. Dafinei, N. V. Drenska, R. Faccini, F. Ferroni, C. Gargiulo, P. Gauzzi, C. Luci, R. Lunadei, G. Martellotti, F. Pellegrino, V. Pettinacci, D. Pinci, L. Recchia, D. Ruggeri, A. Zullo, P. Camarri, R. Cardarelli, C. De Santis, A. Di Ciaccio, V. Di Felice, F. Di Palma, A. Di Simone, L. Marcelli, R. Messi, D. Moricciani, R. Sparvoli, S. Tammaro, P. Branchini, A. Budano, S. Bussino, M. Ciuchini, F. Nguyen, A. Passeri, F. Ruggieri, E. Spiriti, F. Wilson, I. Leon Monzon, J. R. Millan-Almaraz, P. L. M. Podesta-Lerma, D. Aston, B. Dey, A. Fisher, P. D. Jackson, D. W. G. S. Leith, S. Luitz, D. MacFarlane, M. McCulloch, S. Metcalfe, A. Novokhatski, S. Osier, R. Prepost, B. Ratcliff, J. Seeman, M. Sullivan, J. Va'vra, U. Wienands, W. Wisniewski, B. D. Altschul, M. V. Purohit, J. Baudot, I. Ripp-Baudot, G. A. P. Cirrone, G. Cuttone, O. Bezshyyko, G. Dolinska, A. Soffer, F. Bianchi, F. De Mori, A. Filippi, D. Gamba, S. Marcello, M. Bomben, L. Bosisio, P. Cristaudo, L. Lanceri, B. Liberti, I. Rashevskaya, C. Stella, E. S. Vallazza, L. Vitale, G. Auriemma, C. Satriano, F. Martinez Vidal, J. Mazorra de Cos, A. Oyanguren, P. Ruiz Valls, A. Beaulieu, S. Dejong, J. Franta, M. J. Lewczuk, M. Roney, R. Sobie

In this Technical Design Report (TDR) we describe the SuperB detector that was to be installed on the SuperB e+e- high luminosity collider. The SuperB asymmetric collider, which was to be constructed on the Tor Vergata campus near the INFN Frascati National Laboratory, was designed to operate both at the Upsilon(4S) center-of-mass energy with a luminosity of 10^{36} cm^{-2}s^{-1} and at the tau/charm production threshold with a luminosity of 10^{35} cm^{-2}s^{-1}. This high luminosity, producing a data sample about a factor 100 larger than present B Factories, would allow investigation of new physics effects in rare decays, CP Violation and Lepton Flavour Violation. Read More

2013Jun
Affiliations: 1LPSC Grenoble, 2LPSC Grenoble, 3LPSC Grenoble, 4LPSC Grenoble, 5LPSC Grenoble, 6LPSC Grenoble, 7LPSC Grenoble, 8LPSC Grenoble, 9LPSC Grenoble, 10LPSC Grenoble, 11IRSN Cadarache, 12IRSN Cadarache, 13CPPM Marseille, 14CPPM Marseille, 15CPPM Marseille

Directional detection is a promising direct Dark Matter (DM) search strategy. The angular distribution of the nuclear recoil tracks from WIMP events should present an anisotropy in galactic coordinates. This strategy requires both a measurement of the recoil energy with a threshold of about 5 keV and 3D recoil tracks down to few millimeters. Read More

The dark matter directional detection opens a new field in cosmology bringing the possibility to build a map of nuclear recoils that would be able to explore the galactic dark matter halo giving access to a particle characterization of such matter and the shape of the halo. The MIMAC (MIcro-tpc MAtrix of Chambers) collaboration has developed in the last years an original prototype detector based on the direct coupling of large pixelized micromegas with a devoted fast self-triggered electronics showing the feasibility of a new generation of directional detectors. The discovery potential of this search strategy is discussed and illustrated. Read More