Ion Stoica

Ion Stoica
Are you Ion Stoica?

Claim your profile, edit publications, add additional information:

Contact Details

Name
Ion Stoica
Affiliation
Location

Pubs By Year

Pub Categories

 
Computer Science - Databases (7)
 
Computer Science - Distributed; Parallel; and Cluster Computing (7)
 
Computer Science - Learning (5)
 
Quantitative Biology - Genomics (1)
 
Mathematics - Optimization and Control (1)
 
Computer Science - Data Structures and Algorithms (1)
 
Statistics - Machine Learning (1)
 
Computer Science - Artificial Intelligence (1)
 
Computer Science - Networking and Internet Architecture (1)
 
Computer Science - Neural and Evolutionary Computing (1)

Publications Authored By Ion Stoica

Augmenting an agent's control with useful higher-level behaviors called options can greatly reduce the sample complexity of reinforcement learning, but manually designing options is infeasible in high-dimensional and abstract state spaces. While recent work has proposed several techniques for automated option discovery, they do not scale to multi-level hierarchies and to expressive representations such as deep networks. We present Discovery of Deep Options (DDO), a policy-gradient algorithm that discovers parametrized options from a set of demonstration trajectories, and can be used recursively to discover additional levels of the hierarchy. Read More

Machine learning applications are increasingly deployed not only to serve predictions using static models, but also as tightly-integrated components of feedback loops involving dynamic, real-time decision making. These applications pose a new set of requirements, none of which are difficult to achieve in isolation, but the combination of which creates a challenge for existing distributed execution frameworks: computation with millisecond latency at high throughput, adaptive construction of arbitrary task graphs, and execution of heterogeneous kernels over diverse sets of resources. We assert that a new distributed execution framework is needed for such ML applications and propose a candidate approach with a proof-of-concept architecture that achieves a 63x performance improvement over a state-of-the-art execution framework for a representative application. Read More

Distributed computing remains inaccessible to a large number of users, in spite of many open source platforms and extensive commercial offerings. While distributed computation frameworks have moved beyond a simple map-reduce model, many users are still left to struggle with complex cluster management and configuration tools, even for running simple embarrassingly parallel jobs. We argue that stateless functions represent a viable platform for these users, eliminating cluster management overhead, fulfilling the promise of elasticity. Read More

Machine learning is being deployed in a growing number of applications which demand real-time, accurate, and robust predictions under heavy query load. However, most machine learning frameworks and systems only address model training and not deployment. In this paper, we introduce Clipper, a general-purpose low-latency prediction serving system. Read More

An increasing amount of analytics is performed on data that is procured in a real-time fashion to make real-time decisions. Such tasks include simple reporting on streams to sophisticated model building. However, the practicality of such analyses are impeded in several domains because they are faced with a fundamental trade-off between data collection latency and analysis accuracy. Read More

Training deep networks is a time-consuming process, with networks for object recognition often requiring multiple days to train. For this reason, leveraging the resources of a cluster to speed up training is an important area of work. However, widely-popular batch-processing computational frameworks like MapReduce and Spark were not designed to support the asynchronous and communication-intensive workloads of existing distributed deep learning systems. Read More

Scalable distributed dataflow systems have recently experienced widespread adoption, with commodity dataflow engines such as Hadoop and Spark, and even commodity SQL engines routinely supporting increasingly sophisticated analytics tasks (e.g., support vector machines, logistic regression, collaborative filtering). Read More

From social networks to language modeling, the growing scale and importance of graph data has driven the development of numerous new graph-parallel systems (e.g., Pregel, GraphLab). Read More

Minimizing coordination, or blocking communication between concurrently executing operations, is key to maximizing scalability, availability, and high performance in database systems. However, uninhibited coordination-free execution can compromise application correctness, or consistency. When is coordination necessary for correctness? The classic use of serializable transactions is sufficient to maintain correctness but is not necessary for all applications, sacrificing potential scalability. Read More

To minimize network latency and remain online during server failures and network partitions, many modern distributed data storage systems eschew transactional functionality, which provides strong semantic guarantees for groups of multiple operations over multiple data items. In this work, we consider the problem of providing Highly Available Transactions (HATs): transactional guarantees that do not suffer unavailability during system partitions or incur high network latency. We introduce a taxonomy of highly available systems and analyze existing ACID isolation and distributed data consistency guarantees to identify which can and cannot be achieved in HAT systems. Read More

Shark is a new data analysis system that marries query processing with complex analytics on large clusters. It leverages a novel distributed memory abstraction to provide a unified engine that can run SQL queries and sophisticated analytics functions (e.g. Read More

Data store replication results in a fundamental trade-off between operation latency and data consistency. In this paper, we examine this trade-off in the context of quorum-replicated data stores. Under partial, or non-strict quorum replication, a data store waits for responses from a subset of replicas before answering a query, without guaranteeing that read and write replica sets intersect. Read More

In this paper, we present BlinkDB, a massively parallel, sampling-based approximate query engine for running ad-hoc, interactive SQL queries on large volumes of data. The key insight that BlinkDB builds on is that one can often make reasonable decisions in the absence of perfect answers. For example, reliably detecting a malfunctioning server using a distributed collection of system logs does not require analyzing every request processed by the system. Read More

We present the Scalable Nucleotide Alignment Program (SNAP), a new short and long read aligner that is both more accurate (i.e., aligns more reads with fewer errors) and 10-100x faster than state-of-the-art tools such as BWA. Read More