Igor Aharonovich

Igor Aharonovich
Are you Igor Aharonovich?

Claim your profile, edit publications, add additional information:

Contact Details

Igor Aharonovich

Pubs By Year

Pub Categories

Physics - Materials Science (34)
Physics - Optics (26)
Quantum Physics (14)
Physics - Mesoscopic Systems and Quantum Hall Effect (11)
Physics - Biological Physics (2)
Quantitative Biology - Biomolecules (1)
Physics - Atomic Physics (1)
Physics - Instrumentation and Detectors (1)

Publications Authored By Igor Aharonovich

Realization of integrated photonic circuits on a single chip requires controlled manipulation and integration of solid-state quantum emitters with nanophotonic components. Previous works focused on emitters embedded in a three-dimensional crystals -- such as nanodiamonds or quantum dots. In contrast, in this work we demonstrate coupling of a single emitter in a two-dimensional (2D) material, namely hexagonal boron nitride (hBN), with a tapered optical fiber and find a collection efficiency of the system is found to be 10~\%. Read More

Two dimensional systems offer a unique platform to study light matter interaction at the nanoscale. In this work we report on robust quantum emitters fabricated by thermal oxidation of tungsten disulphide multilayers. The emitters show robust, optically stable, linearly polarized luminescence at room temperature, can be modeled using a three level system, and exhibit moderate bunching. Read More

Two-dimensional van der Waals materials have emerged as promising platforms for solid-state quantum information processing devices with unusual potential for heterogeneous assembly. Recently, bright and photostable single photon emitters were reported from atomic defects in layered hexagonal boron nitride (hBN), but controlling inhomogeneous spectral distribution and reducing multi-photon emission presented open challenges. Here, we demonstrate that strain control allows spectral tunability of hBN single photon emitters over 6 meV, and material processing sharply improves the single-photon purity. Read More

Realization of Quantum information and communications technologies requires robust, stable solid state single photon sources. However, most existing sources cease to function above cryogenic or room temperature due to thermal ionization or strong phonon coupling which impede their emissive and quantum properties. Here we present an efficient single photon source based on a defect in a van der Waals crystal that is optically stable and operates at elevated temperatures of up to 800 K. Read More

Single photon emitters play a central role in many photonic quantum technologies. A promising class of single photon emitters consists of atomic color centers in wide-bandgap crystals, such as diamond silicon carbide and hexagonal boron nitride. However, it is currently not possible to grow these materials as sub-micron thick films on low-refractive index substrates, which is necessary for mature photonic integrated circuit technologies. Read More

The ability to prepare, optically read out and coherently control single quantum states is a key requirement for quantum information processing. Optically active solid state emitters have emerged as promising candidates with their prospects for on chip integration as quantum nodes and sources of coherent photons for connecting these nodes. Under strongly driving resonant laser field, such quantum emitter can exhibit quantum behavior such as Autler-Townes splitting and Mollow triplet spectrum. Read More

Hexagonal boron nitride (hBN) is a wide bandgap van der Waals material that has recently emerged as promising platform for quantum photonics experiments. In this work we study the formation and localization of narrowband quantum emitters in large flakes (up to tens of microns wide) of hBN. The emitters can be activated in as-grown hBN by electron irradiation or high temperature annealing, and the emitter formation probability can be increased by ion implantation or focused laser irradiation of the as-grown material. Read More

Two-photon absorption is an important non-linear process employed for high resolution bio-imaging and non-linear optics. In this work we realize two-photon excitation of a quantum emitter embedded in a two-dimensional material. We examine defects in hexagonal boron nitride and show that the emitters exhibit similar spectral and quantum properties under one-photon and two-photon excitation. Read More

Arrays of fluorescent nanoparticles are highly sought after for applications in sensing and nanophotonics. Here we present a simple and robust method of assembling fluorescent nanodiamonds into macroscopic arrays. Remarkably, the yield of this directed assembly process is greater than 90% and the assembled patterns withstand ultra-sonication for more than three hours. Read More

Hexagonal boron nitride (hBN) is an emerging two dimensional material for quantum photonics owing to its large bandgap and hyperbolic properties. Here we report a broad range of multicolor room temperature single photon emissions across the visible and the near infrared spectral ranges from point defects in hBN multilayers. We show that the emitters can be categorized into two general groups, but most likely possess similar crystallographic structure. Read More

Near transform-limited single photon sources are required for perfect photon indistinguishability in quantum networks. Having such sources in nanodiamonds is particularly important since it can enable engineering hybrid quantum photonic systems. In this letter, we report the generation of optically stable, nearly transform-limited single silicon vacancy emitters in nanodiamonds. Read More

Single photon sources are of paramount importance in quantum communication, quantum computation, and quantum metrology. In particular, there is great interest to realize scalable solid state platforms that can emit triggered photons on demand to achieve scalable nanophotonic networks. We report on a visible-spectrum single photon emitter in 4H-silicon carbide (SiC). Read More

Bulk hexagonal boron nitride (hBN) is a highly nonlinear natural hyperbolic material that attracts major attention in modern nanophotonics applications. However, studies of its optical properties in the visible part of the spectrum and quantum emitters hosted by bulk hBN have not been reported to date. In this work we study the emission properties of hBN crystals in the red spectral range using sub-bandgap optical excitation. Read More

Diamond nanocrystals that host room temperature narrowband single photon emitters are highly sought after for applications in nanophotonics and bio-imaging. However, current understanding of the origin of these emitters is extremely limited. In this work we demonstrate that the narrowband emitters are point defects localized at extended morphological defects in individual nanodiamonds. Read More

Spontaneous formation of geometric patterns is a fascinating, ubiquitous process that provides fundamental insights into the roles of symmetry breaking, anisotropy and nonlinear interactions in emergent phenomena. Here we report dynamic, highly ordered topographic patterns on the surface of diamond that span multiple length scales and have a symmetry controlled by the chemical species of a precursor gas used in electron beam induced etching (EBIE). This behavior reveals an underlying etch rate anisotropy and an electron energy transfer pathway that has been overlooked by existing EBIE theory. Read More

Efficient coupling between solid state quantum emitters and plasmonic waveguides is important for the realization of integrated circuits for quantum information, communication and sensing. However, realization of plasmonic circuits is still scarce, particularly due to challenges associated with accurate positioning of quantum emitters near plasmonic resonators. Current pathways for the construction of plasmonic circuits involve cumbersome and costly methods such as scanning atomic force microscopy or mechanical manipulation, where individual elements are physically relocated using the scanning tip. Read More

Atomically thin van der Waals crystals have recently enabled new scientific and technological breakthroughs across a variety of disciplines in materials science, nanophotonics and physics. However, non-classical photon emission from these materials has not been achieved to date. Here we report room temperature quantum emission from hexagonal boron nitride nanoflakes. Read More

Electrically driven emission from negatively charged silicon-vacancy, (SiV)- centres in single crystal diamond is demonstrated. The SiV centres were generated using ion implantation into an intrinsic (i) region of a p-i-n single crystal diamond diode. Both electroluminescence and the photoluminescence signals exhibit the typical emission that is attributed to the (SiV)- centres. Read More

Single photon sources are required for a wide range of applications in quantum information science, quantum cryptography and quantum communications. However, so far majority of room temperature emitters are only excited optically, which limits their proper integration into scalable devices. In this work, we overcome this limitation and present room temperature electrically triggered light emission from localized defects in zinc oxide (ZnO) nanoparticles and thin films. Read More

Fluorescent nanodiamonds are attracting major attention in the field of bio-sensing and biolabeling. In this work we demonstrate a robust approach to surface functionalize individual nanodiamonds with metal-phenolic networks that enhance the photoluminescence from single nitrogen vacancy (NV) centers. We show that single NV centres in the coated nanodiamonds also exhibit shorter lifetimes, opening another channel for high resolution sensing. Read More

Recent advances in focused ion beam technology have enabled high-resolution, direct-write nanofabrication using light ions. Studies with light ions to date have, however, focused on milling of materials where sub-surface ion beam damage does not inhibit device performance. Here we report on direct-write milling of single crystal diamond using a focused beam of oxygen ions. Read More

The negatively-charged nitrogen vacancy center (NV) in diamond has generated significant interest as a platform for quantum information processing and sensing in the solid state. For most applications, high quality optical cavities are required to enhance the NV zero-phonon line (ZPL) emission. An outstanding challenge in maximizing the degree of NV-cavity coupling is the deterministic placement of NVs within the cavity. Read More

The burgeoning field of nanophotonics has grown to be a major research area, primarily because of the ability to control and manipulate single quantum systems (emitters) and single photons on demand. For many years studying nanophotonic phenomena was limited to traditional semiconductors (including silicon and GaAs) and experiments were carried out predominantly at cryogenic temperatures. In the last decade, however, diamond has emerged as a new contender to study photonic phenomena at the nanoscale. Read More

Quantum information processing and integrated nanophotonics require robust generation of single photon emitters on demand. In this work we demonstrate that diamond films grown by microwave plasma chemical vapour deposition on a silicon substrate host bright, narrowband single photon emitters in the visible to near infrared spectral range. The emitters possess fast lifetime, absolute photostability, and exhibit full polarization at excitation and emission. Read More

Controlled engineering of isolated solid state quantum systems is one of the most prominent goals in modern nanotechnology. In this letter we demonstrate a previously unknown quantum system namely silicon carbide tetrapods. The tetrapods have a cubic polytype core (3C) and hexagonal polytype legs (4H) a geometry that creates a spontaneous polarization within a single tetrapod. Read More

Low threshold lasers realized within compact, high quality optical cavities enable a variety of nanophotonics applications. Gallium nitride (GaN) materials containing indium gallium nitride (InGaN) quantum dots and quantum wells offer an outstanding platform to study light matter interactions and realize practical devices such as efficient light emitting diodes and nanolasers. Despite progress in the growth and characterization of InGaN quantum dots, their advantages as the gain medium in low threshold lasers have not been clearly demonstrated. Read More

We present a beam-directed chemical technique for controlling the charge states of near-surface luminescence centers in semiconductors. Specifically, we fluorinate the surface of H-terminated diamond by electron beam irradiation in the presence of NF3 vapor. The fluorination treatment acts as a local chemical switch that alters the charge state of nitrogen-vacancy luminescence centers from the neutral to the negative state. Read More

Diamond has recently attracted considerable attention as a promising platform for quantum technologies, photonics and high resolution sensing applications. Here we demonstrate a chemical approach that enables the fabrication of functional diamond structures using gas-mediated electron induced etching. The method achieves chemical etching at room temperature through the dissociation of surface-adsorbed H2O molecules by electron irradiation in a water vapor environment. Read More

Room temperature single photon emitters are very important resources for photonics and emerging quantum technologies. In this work we study single photon emission from defect centers in 20 nm zinc oxide (ZnO) nanoparticles. The emitters exhibit bright broadband fluorescence in the red spectral range centered at 640 nm with polarized excitation and emission. Read More

Lanthanides are vital components in lighting, imaging technologies and future quantum memory applications due to their narrow optical transitions and long spin coherence times. Recently, diamond has become a preeminent platform for realization of many experiments in quantum information science. In this work, we demonstrate a promising approach to incorporate Eu ions into single crystal diamond and nanodiamonds, providing a means to harness the exceptional characteristics of both lanthanides and diamond in a single material. Read More

We demonstrate that nanodiamonds fabricated to incorporate silicon-vacancy (Si-V) color centers provide bright, spectrally narrow, and stable cathodoluminescence (CL) in the near-infrared. Si-V color centers containing nanodiamonds are promising as non-bleaching optical markers for correlated CL and secondary electron microscopy, including applications to nanoscale bioimaging. Read More

Nanodiamonds (NDs) containing silicon vacancy (SiV) defects were evaluated as a potential biomarker for the labeling and fluorescent imaging of neural precursor cells (NPCs). SiV-containing NDs were synthesized using chemical vapor deposition and silicon ion implantation. Spectrally, SiV-containing NDs exhibited extremely stable fluorescence and narrow bandwidth emission with an excellent signal to noise ratio exceeding that of NDs containing nitrogen-vacancy (NV) centers. Read More

Engineering nanostructures from the bottom up enables the creation of carefully engineered complex structures that are not accessible via top down fabrication techniques, in particular, complex periodic structures for applications in photonics and sensing. In this work, we propose and demonstrate a bottom up approach that can be adopted and utilized to controllably build diamond nanostructures. A realization of periodic structures and optical wave-guiding is achieved by growing nanoscale single crystal diamond through a defined pattern. Read More

Recently, significant research efforts have been made to develop complex nanostructures to provide more sophisticated control over the optical and electronic properties of nanomaterials. However, there are only a handful of semiconductors which allow control over their geometry via simple chemical processes. Here, we present a molecularly seeded synthesis of a complex nanostructure, SiC tetrapods, and report on their structural and optical properties. Read More

High quality, thin diamond membranes containing nitrogen-vacancy centers provide critical advantages in the fabrication of diamond-based structures for a variety of applications, including wide field magnetometry, photonics and bio-sensing. In this work we describe, in detail, the generation of thin, optically-active diamond membranes by means of ion implantation and overgrowth. To establish the suitability of our method for photonic applications, photonic crystal cavities with quality factor of 1000 are fabricated. Read More

InGaN-based active layers within microcavity resonators offer the potential of low threshold lasers in the blue spectral range. Here we demonstrate optically pumped, room temperature lasing in high quality factor GaN microdisk cavities containing InGaN quantum dots (QDs) with thresholds as low as 0.28 mJ/cm2. Read More

We report on the coherence properties of single photons from chromium-based colour centres in diamond. We use field-correlation and spectral lineshape measurements to reveal the interplay between slow spectral wandering and fast dephasing mechanisms as a function of temperature. We show that the zero-phonon transition frequency and its linewidth follow a power-law dependence on temperature indicating that the dominant fast dephasing mechanisms for these centres are direct electron-phonon coupling and phonon-modulated Coulomb coupling to nearby impurities. Read More

Effective, permanent tuning of the whispering gallery modes (WGMs) of p-i-n doped GaN microdisk cavity with embedded InGaN quantum dots over one free spectral range is successfully demonstrated by irradiating the microdisks with a ultraviolet laser (380nm) in DI water. For incident laser powers between 150 and 960 nW, the tuning rate varies linearly. Etching of the top surface of the cavity is proposed as the driving force for the observed shift in WGMs, and is supported by experiments. Read More

Optical coupling of an ensemble of silicon-vacancy (SiV) centers to single-crystal diamond microdisk cavities is demonstrated. The cavities are fabricated from a single-crystal diamond membrane generated by ion implantation and, electrochemical liftoff followed by homo-epitaxial overgrowth. Whispering gallery modes which spectrally overlap with the zero-phonon line (ZPL) of the SiV centers and exhibit quality factors ~2200 are measured. Read More

Fabrication of devices designed to fully harness the unique properties of quantum mechanics through their coupling to quantum bits (qubits) is a prominent goal in the field of quantum information processing (QIP). Among various qubit candidates, nitrogen vacancy (NV) centers in diamond have recently emerged as an outstanding platform for room temperature QIP. However, formidable challenges still remain in processing diamond and in the fabrication of thin diamond membranes, which are necessary for planar photonic device engineering. Read More

Controlled tuning of the whispering gallery modes of GaN/InGaN {\mu}-disk cavities is demonstrated. The whispering gallery mode (WGM) tuning is achieved at room temperature by immersing the {\mu}-disks in water and irradiating with ultraviolet (UV) laser. The tuning rate can be controlled by varying the laser excitation power, with a nanometer precision accessible at low excitation power (~ several {\mu}W). Read More

The formation of single-crystal diamond membranes is an important prerequisite for the fabrication of high-quality optical cavities in this material. Diamond membranes fabricated using lift-off processes involving the creation of a damaged layer through ion implantation often suffer from residual ion damage, which severely limits their usefulness for photonic structures. The current work demonstrates that strategic etch removal of the most highly defective material yields thin, single-crystal diamond membranes with strong photoluminescence and a Raman signature approaching that of single-crystal bulk diamond. Read More

Controlled fabrication and identification of bright single photon emitters is at the heart of quantum optics and materials science. Here we demonstrate a controlled engineering of a chromium bright single photon source in bulk diamond by ion implantation. The Cr center has fully polarized emission with a ZPL centered at 749 nm, FWHM of 4 nm, an extremely short lifetime of ~1 ns, and a count rate of 500 kcounts/s. Read More

Individual color centers in diamond are promising for near-term quantum technologies including quantum key distribution and metrology. Here we show fabrication of a new color center which has photophysical properties surpassing those of the two main-stay centers, namely the nitrogen vacancy and NE8 centers. The new center is fabricated using focused ion beam implantation of nickel into isolated chemical vapor deposited diamond micro-crystals. Read More