I. Lewis - Editor

I. Lewis
Are you I. Lewis?

Claim your profile, edit publications, add additional information:

Contact Details

Name
I. Lewis
Affiliation
Editor
City
Missoula
Country
United States

Pubs By Year

External Links

Pub Categories

 
High Energy Physics - Phenomenology (27)
 
Astrophysics (10)
 
High Energy Physics - Experiment (8)
 
Cosmology and Nongalactic Astrophysics (7)
 
Instrumentation and Methods for Astrophysics (6)
 
Astrophysics of Galaxies (6)
 
Quantitative Biology - Subcellular Processes (1)
 
Quantitative Biology - Biomolecules (1)
 
Quantitative Biology - Cell Behavior (1)

Publications Authored By I. Lewis

The simplest extension of the Standard Model is to add a gauge singlet scalar, $S$: the singlet extended Standard Model. In the absence of a $Z_2$ symmetry $S\rightarrow -S$ and if the new scalar is sufficiently heavy, this model can lead to resonant double Higgs production, significantly increasing the production rate over the Standard Model prediction. While searches for this signal are being performed, it is important to have benchmark points and models with which to compare the experimental results. Read More

2016Oct
Authors: D. de Florian1, C. Grojean2, F. Maltoni3, C. Mariotti4, A. Nikitenko5, M. Pieri6, P. Savard7, M. Schumacher8, R. Tanaka9, R. Aggleton10, M. Ahmad11, B. Allanach12, C. Anastasiou13, W. Astill14, S. Badger15, M. Badziak16, J. Baglio17, E. Bagnaschi18, A. Ballestrero19, A. Banfi20, D. Barducci21, M. Beckingham22, C. Becot23, G. Bélanger24, J. Bellm25, N. Belyaev26, F. U. Bernlochner27, C. Beskidt28, A. Biekötter29, F. Bishara30, W. Bizon31, N. E. Bomark32, M. Bonvini33, S. Borowka34, V. Bortolotto35, S. Boselli36, F. J. Botella37, R. Boughezal38, G. C. Branco39, J. Brehmer40, L. Brenner41, S. Bressler42, I. Brivio43, A. Broggio44, H. Brun45, G. Buchalla46, C. D. Burgard47, A. Calandri48, L. Caminada49, R. Caminal Armadans50, F. Campanario51, J. Campbell52, F. Caola53, C. M. Carloni Calame54, S. Carrazza55, A. Carvalho56, M. Casolino57, O. Cata58, A. Celis59, F. Cerutti60, N. Chanon61, M. Chen62, X. Chen63, B. Chokoufé Nejad64, N. Christensen65, M. Ciuchini66, R. Contino67, T. Corbett68, D. Curtin69, M. Dall'Osso70, A. David71, S. Dawson72, J. de Blas73, W. de Boer74, P. de Castro Manzano75, C. Degrande76, R. L. Delgado77, F. Demartin78, A. Denner79, B. Di Micco80, R. Di Nardo81, S. Dittmaier82, A. Dobado83, T. Dorigo84, F. A. Dreyer85, M. Dührssen86, C. Duhr87, F. Dulat88, K. Ecker89, K. Ellis90, U. Ellwanger91, C. Englert92, D. Espriu93, A. Falkowski94, L. Fayard95, R. Feger96, G. Ferrera97, A. Ferroglia98, N. Fidanza99, T. Figy100, M. Flechl101, D. Fontes102, S. Forte103, P. Francavilla104, E. Franco105, R. Frederix106, A. Freitas107, F. F. Freitas108, F. Frensch109, S. Frixione110, B. Fuks111, E. Furlan112, S. Gadatsch113, J. Gao114, Y. Gao115, M. V. Garzelli116, T. Gehrmann117, R. Gerosa118, M. Ghezzi119, D. Ghosh120, S. Gieseke121, D. Gillberg122, G. F. Giudice123, E. W. N. Glover124, F. Goertz125, D. Gonçalves126, J. Gonzalez-Fraile127, M. Gorbahn128, S. Gori129, C. A. Gottardo130, M. Gouzevitch131, P. Govoni132, D. Gray133, M. Grazzini134, N. Greiner135, A. Greljo136, J. Grigo137, A. V. Gritsan138, R. Gröber139, S. Guindon140, H. E. Haber141, C. Han142, T. Han143, R. Harlander144, M. A. Harrendorf145, H. B. Hartanto146, C. Hays147, S. Heinemeyer148, G. Heinrich149, M. Herrero150, F. Herzog151, B. Hespel152, V. Hirschi153, S. Hoeche154, S. Honeywell155, S. J. Huber156, C. Hugonie157, J. Huston158, A. Ilnicka159, G. Isidori160, B. Jäger161, M. Jaquier162, S. P. Jones163, A. Juste164, S. Kallweit165, A. Kaluza166, A. Kardos167, A. Karlberg168, Z. Kassabov169, N. Kauer170, D. I. Kazakov171, M. Kerner172, W. Kilian173, F. Kling174, K. Köneke175, R. Kogler176, R. Konoplich177, S. Kortner178, S. Kraml179, C. Krause180, F. Krauss181, M. Krawczyk182, A. Kulesza183, S. Kuttimalai184, R. Lane185, A. Lazopoulos186, G. Lee187, P. Lenzi188, I. M. Lewis189, Y. Li190, S. Liebler191, J. Lindert192, X. Liu193, Z. Liu194, F. J. Llanes-Estrada195, H. E. Logan196, D. Lopez-Val197, I. Low198, G. Luisoni199, P. Maierhöfer200, E. Maina201, B. Mansoulié202, H. Mantler203, M. Mantoani204, A. C. Marini205, V. I. Martinez Outschoorn206, S. Marzani207, D. Marzocca208, A. Massironi209, K. Mawatari210, J. Mazzitelli211, A. McCarn212, B. Mellado213, K. Melnikov214, S. B. Menari215, L. Merlo216, C. Meyer217, P. Milenovic218, K. Mimasu219, S. Mishima220, B. Mistlberger221, S. -O. Moch222, A. Mohammadi223, P. F. Monni224, G. Montagna225, M. Moreno Llácer226, N. Moretti227, S. Moretti228, L. Motyka229, A. Mück230, M. Mühlleitner231, S. Munir232, P. Musella233, P. Nadolsky234, D. Napoletano235, M. Nebot236, C. Neu237, M. Neubert238, R. Nevzorov239, O. Nicrosini240, J. Nielsen241, K. Nikolopoulos242, J. M. No243, C. O'Brien244, T. Ohl245, C. Oleari246, T. Orimoto247, D. Pagani248, C. E. Pandini249, A. Papaefstathiou250, A. S. Papanastasiou251, G. Passarino252, B. D. Pecjak253, M. Pelliccioni254, G. Perez255, L. Perrozzi256, F. Petriello257, G. Petrucciani258, E. Pianori259, F. Piccinini260, M. Pierini261, A. Pilkington262, S. Plätzer263, T. Plehn264, R. Podskubka265, C. T. Potter266, S. Pozzorini267, K. Prokofiev268, A. Pukhov269, I. Puljak270, M. Queitsch-Maitland271, J. Quevillon272, D. Rathlev273, M. Rauch274, E. Re275, M. N. Rebelo276, D. Rebuzzi277, L. Reina278, C. Reuschle279, J. Reuter280, M. Riembau281, F. Riva282, A. Rizzi283, T. Robens284, R. Röntsch285, J. Rojo286, J. C. Romão287, N. Rompotis288, J. Roskes289, R. Roth290, G. P. Salam291, R. Salerno292, R. Santos293, V. Sanz294, J. J. Sanz-Cillero295, H. Sargsyan296, U. Sarica297, P. Schichtel298, J. Schlenk299, T. Schmidt300, C. Schmitt301, M. Schönherr302, U. Schubert303, M. Schulze304, S. Sekula305, M. Sekulla306, E. Shabalina307, H. S. Shao308, J. Shelton309, C. H. Shepherd-Themistocleous310, S. Y. Shim311, F. Siegert312, A. Signer313, J. P. Silva314, L. Silvestrini315, M. Sjodahl316, P. Slavich317, M. Slawinska318, L. Soffi319, M. Spannowsky320, C. Speckner321, D. M. Sperka322, M. Spira323, O. Stål324, F. Staub325, T. Stebel326, T. Stefaniak327, M. Steinhauser328, I. W. Stewart329, M. J. Strassler330, J. Streicher331, D. M. Strom332, S. Su333, X. Sun334, F. J. Tackmann335, K. Tackmann336, A. M. Teixeira337, R. Teixeira de Lima338, V. Theeuwes339, R. Thorne340, D. Tommasini341, P. Torrielli342, M. Tosi343, F. Tramontano344, Z. Trócsányi345, M. Trott346, I. Tsinikos347, M. Ubiali348, P. Vanlaer349, W. Verkerke350, A. Vicini351, L. Viliani352, E. Vryonidou353, D. Wackeroth354, C. E. M. Wagner355, J. Wang356, S. Wayand357, G. Weiglein358, C. Weiss359, M. Wiesemann360, C. Williams361, J. Winter362, D. Winterbottom363, R. Wolf364, M. Xiao365, L. L. Yang366, R. Yohay367, S. P. Y. Yuen368, G. Zanderighi369, M. Zaro370, D. Zeppenfeld371, R. Ziegler372, T. Zirke373, J. Zupan374
Affiliations: 1eds., 2eds., 3eds., 4eds., 5eds., 6eds., 7eds., 8eds., 9eds., 10The LHC Higgs Cross Section Working Group, 11The LHC Higgs Cross Section Working Group, 12The LHC Higgs Cross Section Working Group, 13The LHC Higgs Cross Section Working Group, 14The LHC Higgs Cross Section Working Group, 15The LHC Higgs Cross Section Working Group, 16The LHC Higgs Cross Section Working Group, 17The LHC Higgs Cross Section Working Group, 18The LHC Higgs Cross Section Working Group, 19The LHC Higgs Cross Section Working Group, 20The LHC Higgs Cross Section Working Group, 21The LHC Higgs Cross Section Working Group, 22The LHC Higgs Cross Section Working Group, 23The LHC Higgs Cross Section Working Group, 24The LHC Higgs Cross Section Working Group, 25The LHC Higgs Cross Section Working Group, 26The LHC Higgs Cross Section Working Group, 27The LHC Higgs Cross Section Working Group, 28The LHC Higgs Cross Section Working Group, 29The LHC Higgs Cross Section Working Group, 30The LHC Higgs Cross Section Working Group, 31The LHC Higgs Cross Section Working Group, 32The LHC Higgs Cross Section Working Group, 33The LHC Higgs Cross Section Working Group, 34The LHC Higgs Cross Section Working Group, 35The LHC Higgs Cross Section Working Group, 36The LHC Higgs Cross Section Working Group, 37The LHC Higgs Cross Section Working Group, 38The LHC Higgs Cross Section Working Group, 39The LHC Higgs Cross Section Working Group, 40The LHC Higgs Cross Section Working Group, 41The LHC Higgs Cross Section Working Group, 42The LHC Higgs Cross Section Working Group, 43The LHC Higgs Cross Section Working Group, 44The LHC Higgs Cross Section Working Group, 45The LHC Higgs Cross Section Working Group, 46The LHC Higgs Cross Section Working Group, 47The LHC Higgs Cross Section Working Group, 48The LHC Higgs Cross Section Working Group, 49The LHC Higgs Cross Section Working Group, 50The LHC Higgs Cross Section Working Group, 51The LHC Higgs Cross Section Working Group, 52The LHC Higgs Cross Section Working Group, 53The LHC Higgs Cross Section Working Group, 54The LHC Higgs Cross Section Working Group, 55The LHC Higgs Cross Section Working Group, 56The LHC Higgs Cross Section Working Group, 57The LHC Higgs Cross Section Working Group, 58The LHC Higgs Cross Section Working Group, 59The LHC Higgs Cross Section Working Group, 60The LHC Higgs Cross Section Working Group, 61The LHC Higgs Cross Section Working Group, 62The LHC Higgs Cross Section Working Group, 63The LHC Higgs Cross Section Working Group, 64The LHC Higgs Cross Section Working Group, 65The LHC Higgs Cross Section Working Group, 66The LHC Higgs Cross Section Working Group, 67The LHC Higgs Cross Section Working Group, 68The LHC Higgs Cross Section Working Group, 69The LHC Higgs Cross Section Working Group, 70The LHC Higgs Cross Section Working Group, 71The LHC Higgs Cross Section Working Group, 72The LHC Higgs Cross Section Working Group, 73The LHC Higgs Cross Section Working Group, 74The LHC Higgs Cross Section Working Group, 75The LHC Higgs Cross Section Working Group, 76The LHC Higgs Cross Section Working Group, 77The LHC Higgs Cross Section Working Group, 78The LHC Higgs Cross Section Working Group, 79The LHC Higgs Cross Section Working Group, 80The LHC Higgs Cross Section Working Group, 81The LHC Higgs Cross Section Working Group, 82The LHC Higgs Cross Section Working Group, 83The LHC Higgs Cross Section Working Group, 84The LHC Higgs Cross Section Working Group, 85The LHC Higgs Cross Section Working Group, 86The LHC Higgs Cross Section Working Group, 87The LHC Higgs Cross Section Working Group, 88The LHC Higgs Cross Section Working Group, 89The LHC Higgs Cross Section Working Group, 90The LHC Higgs Cross Section Working Group, 91The LHC Higgs Cross Section Working Group, 92The LHC Higgs Cross Section Working Group, 93The LHC Higgs Cross Section Working Group, 94The LHC Higgs Cross Section Working Group, 95The LHC Higgs Cross Section Working Group, 96The LHC Higgs Cross Section Working Group, 97The LHC Higgs Cross Section Working Group, 98The LHC Higgs Cross Section Working Group, 99The LHC Higgs Cross Section Working Group, 100The LHC Higgs Cross Section Working Group, 101The LHC Higgs Cross Section Working Group, 102The LHC Higgs Cross Section Working Group, 103The LHC Higgs Cross Section Working Group, 104The LHC Higgs Cross Section Working Group, 105The LHC Higgs Cross Section Working Group, 106The LHC Higgs Cross Section Working Group, 107The LHC Higgs Cross Section Working Group, 108The LHC Higgs Cross Section Working Group, 109The LHC Higgs Cross Section Working Group, 110The LHC Higgs Cross Section Working Group, 111The LHC Higgs Cross Section Working Group, 112The LHC Higgs Cross Section Working Group, 113The LHC Higgs Cross Section Working Group, 114The LHC Higgs Cross Section Working Group, 115The LHC Higgs Cross Section Working Group, 116The LHC Higgs Cross Section Working Group, 117The LHC Higgs Cross Section Working Group, 118The LHC Higgs Cross Section Working Group, 119The LHC Higgs Cross Section Working Group, 120The LHC Higgs Cross Section Working Group, 121The LHC Higgs Cross Section Working Group, 122The LHC Higgs Cross Section Working Group, 123The LHC Higgs Cross Section Working Group, 124The LHC Higgs Cross Section Working Group, 125The LHC Higgs Cross Section Working Group, 126The LHC Higgs Cross Section Working Group, 127The LHC Higgs Cross Section Working Group, 128The LHC Higgs Cross Section Working Group, 129The LHC Higgs Cross Section Working Group, 130The LHC Higgs Cross Section Working Group, 131The LHC Higgs Cross Section Working Group, 132The LHC Higgs Cross Section Working Group, 133The LHC Higgs Cross Section Working Group, 134The LHC Higgs Cross Section Working Group, 135The LHC Higgs Cross Section Working Group, 136The LHC Higgs Cross Section Working Group, 137The LHC Higgs Cross Section Working Group, 138The LHC Higgs Cross Section Working Group, 139The LHC Higgs Cross Section Working Group, 140The LHC Higgs Cross Section Working Group, 141The LHC Higgs Cross Section Working Group, 142The LHC Higgs Cross Section Working Group, 143The LHC Higgs Cross Section Working Group, 144The LHC Higgs Cross Section Working Group, 145The LHC Higgs Cross Section Working Group, 146The LHC Higgs Cross Section Working Group, 147The LHC Higgs Cross Section Working Group, 148The LHC Higgs Cross Section Working Group, 149The LHC Higgs Cross Section Working Group, 150The LHC Higgs Cross Section Working Group, 151The LHC Higgs Cross Section Working Group, 152The LHC Higgs Cross Section Working Group, 153The LHC Higgs Cross Section Working Group, 154The LHC Higgs Cross Section Working Group, 155The LHC Higgs Cross Section Working Group, 156The LHC Higgs Cross Section Working Group, 157The LHC Higgs Cross Section Working Group, 158The LHC Higgs Cross Section Working Group, 159The LHC Higgs Cross Section Working Group, 160The LHC Higgs Cross Section Working Group, 161The LHC Higgs Cross Section Working Group, 162The LHC Higgs Cross Section Working Group, 163The LHC Higgs Cross Section Working Group, 164The LHC Higgs Cross Section Working Group, 165The LHC Higgs Cross Section Working Group, 166The LHC Higgs Cross Section Working Group, 167The LHC Higgs Cross Section Working Group, 168The LHC Higgs Cross Section Working Group, 169The LHC Higgs Cross Section Working Group, 170The LHC Higgs Cross Section Working Group, 171The LHC Higgs Cross Section Working Group, 172The LHC Higgs Cross Section Working Group, 173The LHC Higgs Cross Section Working Group, 174The LHC Higgs Cross Section Working Group, 175The LHC Higgs Cross Section Working Group, 176The LHC Higgs Cross Section Working Group, 177The LHC Higgs Cross Section Working Group, 178The LHC Higgs Cross Section Working Group, 179The LHC Higgs Cross Section Working Group, 180The LHC Higgs Cross Section Working Group, 181The LHC Higgs Cross Section Working Group, 182The LHC Higgs Cross Section Working Group, 183The LHC Higgs Cross Section Working Group, 184The LHC Higgs Cross Section Working Group, 185The LHC Higgs Cross Section Working Group, 186The LHC Higgs Cross Section Working Group, 187The LHC Higgs Cross Section Working Group, 188The LHC Higgs Cross Section Working Group, 189The LHC Higgs Cross Section Working Group, 190The LHC Higgs Cross Section Working Group, 191The LHC Higgs Cross Section Working Group, 192The LHC Higgs Cross Section Working Group, 193The LHC Higgs Cross Section Working Group, 194The LHC Higgs Cross Section Working Group, 195The LHC Higgs Cross Section Working Group, 196The LHC Higgs Cross Section Working Group, 197The LHC Higgs Cross Section Working Group, 198The LHC Higgs Cross Section Working Group, 199The LHC Higgs Cross Section Working Group, 200The LHC Higgs Cross Section Working Group, 201The LHC Higgs Cross Section Working Group, 202The LHC Higgs Cross Section Working Group, 203The LHC Higgs Cross Section Working Group, 204The LHC Higgs Cross Section Working Group, 205The LHC Higgs Cross Section Working Group, 206The LHC Higgs Cross Section Working Group, 207The LHC Higgs Cross Section Working Group, 208The LHC Higgs Cross Section Working Group, 209The LHC Higgs Cross Section Working Group, 210The LHC Higgs Cross Section Working Group, 211The LHC Higgs Cross Section Working Group, 212The LHC Higgs Cross Section Working Group, 213The LHC Higgs Cross Section Working Group, 214The LHC Higgs Cross Section Working Group, 215The LHC Higgs Cross Section Working Group, 216The LHC Higgs Cross Section Working Group, 217The LHC Higgs Cross Section Working Group, 218The LHC Higgs Cross Section Working Group, 219The LHC Higgs Cross Section Working Group, 220The LHC Higgs Cross Section Working Group, 221The LHC Higgs Cross Section Working Group, 222The LHC Higgs Cross Section Working Group, 223The LHC Higgs Cross Section Working Group, 224The LHC Higgs Cross Section Working Group, 225The LHC Higgs Cross Section Working Group, 226The LHC Higgs Cross Section Working Group, 227The LHC Higgs Cross Section Working Group, 228The LHC Higgs Cross Section Working Group, 229The LHC Higgs Cross Section Working Group, 230The LHC Higgs Cross Section Working Group, 231The LHC Higgs Cross Section Working Group, 232The LHC Higgs Cross Section Working Group, 233The LHC Higgs Cross Section Working Group, 234The LHC Higgs Cross Section Working Group, 235The LHC Higgs Cross Section Working Group, 236The LHC Higgs Cross Section Working Group, 237The LHC Higgs Cross Section Working Group, 238The LHC Higgs Cross Section Working Group, 239The LHC Higgs Cross Section Working Group, 240The LHC Higgs Cross Section Working Group, 241The LHC Higgs Cross Section Working Group, 242The LHC Higgs Cross Section Working Group, 243The LHC Higgs Cross Section Working Group, 244The LHC Higgs Cross Section Working Group, 245The LHC Higgs Cross Section Working Group, 246The LHC Higgs Cross Section Working Group, 247The LHC Higgs Cross Section Working Group, 248The LHC Higgs Cross Section Working Group, 249The LHC Higgs Cross Section Working Group, 250The LHC Higgs Cross Section Working Group, 251The LHC Higgs Cross Section Working Group, 252The LHC Higgs Cross Section Working Group, 253The LHC Higgs Cross Section Working Group, 254The LHC Higgs Cross Section Working Group, 255The LHC Higgs Cross Section Working Group, 256The LHC Higgs Cross Section Working Group, 257The LHC Higgs Cross Section Working Group, 258The LHC Higgs Cross Section Working Group, 259The LHC Higgs Cross Section Working Group, 260The LHC Higgs Cross Section Working Group, 261The LHC Higgs Cross Section Working Group, 262The LHC Higgs Cross Section Working Group, 263The LHC Higgs Cross Section Working Group, 264The LHC Higgs Cross Section Working Group, 265The LHC Higgs Cross Section Working Group, 266The LHC Higgs Cross Section Working Group, 267The LHC Higgs Cross Section Working Group, 268The LHC Higgs Cross Section Working Group, 269The LHC Higgs Cross Section Working Group, 270The LHC Higgs Cross Section Working Group, 271The LHC Higgs Cross Section Working Group, 272The LHC Higgs Cross Section Working Group, 273The LHC Higgs Cross Section Working Group, 274The LHC Higgs Cross Section Working Group, 275The LHC Higgs Cross Section Working Group, 276The LHC Higgs Cross Section Working Group, 277The LHC Higgs Cross Section Working Group, 278The LHC Higgs Cross Section Working Group, 279The LHC Higgs Cross Section Working Group, 280The LHC Higgs Cross Section Working Group, 281The LHC Higgs Cross Section Working Group, 282The LHC Higgs Cross Section Working Group, 283The LHC Higgs Cross Section Working Group, 284The LHC Higgs Cross Section Working Group, 285The LHC Higgs Cross Section Working Group, 286The LHC Higgs Cross Section Working Group, 287The LHC Higgs Cross Section Working Group, 288The LHC Higgs Cross Section Working Group, 289The LHC Higgs Cross Section Working Group, 290The LHC Higgs Cross Section Working Group, 291The LHC Higgs Cross Section Working Group, 292The LHC Higgs Cross Section Working Group, 293The LHC Higgs Cross Section Working Group, 294The LHC Higgs Cross Section Working Group, 295The LHC Higgs Cross Section Working Group, 296The LHC Higgs Cross Section Working Group, 297The LHC Higgs Cross Section Working Group, 298The LHC Higgs Cross Section Working Group, 299The LHC Higgs Cross Section Working Group, 300The LHC Higgs Cross Section Working Group, 301The LHC Higgs Cross Section Working Group, 302The LHC Higgs Cross Section Working Group, 303The LHC Higgs Cross Section Working Group, 304The LHC Higgs Cross Section Working Group, 305The LHC Higgs Cross Section Working Group, 306The LHC Higgs Cross Section Working Group, 307The LHC Higgs Cross Section Working Group, 308The LHC Higgs Cross Section Working Group, 309The LHC Higgs Cross Section Working Group, 310The LHC Higgs Cross Section Working Group, 311The LHC Higgs Cross Section Working Group, 312The LHC Higgs Cross Section Working Group, 313The LHC Higgs Cross Section Working Group, 314The LHC Higgs Cross Section Working Group, 315The LHC Higgs Cross Section Working Group, 316The LHC Higgs Cross Section Working Group, 317The LHC Higgs Cross Section Working Group, 318The LHC Higgs Cross Section Working Group, 319The LHC Higgs Cross Section Working Group, 320The LHC Higgs Cross Section Working Group, 321The LHC Higgs Cross Section Working Group, 322The LHC Higgs Cross Section Working Group, 323The LHC Higgs Cross Section Working Group, 324The LHC Higgs Cross Section Working Group, 325The LHC Higgs Cross Section Working Group, 326The LHC Higgs Cross Section Working Group, 327The LHC Higgs Cross Section Working Group, 328The LHC Higgs Cross Section Working Group, 329The LHC Higgs Cross Section Working Group, 330The LHC Higgs Cross Section Working Group, 331The LHC Higgs Cross Section Working Group, 332The LHC Higgs Cross Section Working Group, 333The LHC Higgs Cross Section Working Group, 334The LHC Higgs Cross Section Working Group, 335The LHC Higgs Cross Section Working Group, 336The LHC Higgs Cross Section Working Group, 337The LHC Higgs Cross Section Working Group, 338The LHC Higgs Cross Section Working Group, 339The LHC Higgs Cross Section Working Group, 340The LHC Higgs Cross Section Working Group, 341The LHC Higgs Cross Section Working Group, 342The LHC Higgs Cross Section Working Group, 343The LHC Higgs Cross Section Working Group, 344The LHC Higgs Cross Section Working Group, 345The LHC Higgs Cross Section Working Group, 346The LHC Higgs Cross Section Working Group, 347The LHC Higgs Cross Section Working Group, 348The LHC Higgs Cross Section Working Group, 349The LHC Higgs Cross Section Working Group, 350The LHC Higgs Cross Section Working Group, 351The LHC Higgs Cross Section Working Group, 352The LHC Higgs Cross Section Working Group, 353The LHC Higgs Cross Section Working Group, 354The LHC Higgs Cross Section Working Group, 355The LHC Higgs Cross Section Working Group, 356The LHC Higgs Cross Section Working Group, 357The LHC Higgs Cross Section Working Group, 358The LHC Higgs Cross Section Working Group, 359The LHC Higgs Cross Section Working Group, 360The LHC Higgs Cross Section Working Group, 361The LHC Higgs Cross Section Working Group, 362The LHC Higgs Cross Section Working Group, 363The LHC Higgs Cross Section Working Group, 364The LHC Higgs Cross Section Working Group, 365The LHC Higgs Cross Section Working Group, 366The LHC Higgs Cross Section Working Group, 367The LHC Higgs Cross Section Working Group, 368The LHC Higgs Cross Section Working Group, 369The LHC Higgs Cross Section Working Group, 370The LHC Higgs Cross Section Working Group, 371The LHC Higgs Cross Section Working Group, 372The LHC Higgs Cross Section Working Group, 373The LHC Higgs Cross Section Working Group, 374The LHC Higgs Cross Section Working Group

This Report summarizes the results of the activities of the LHC Higgs Cross Section Working Group in the period 2014-2016. The main goal of the working group was to present the state-of-the-art of Higgs physics at the LHC, integrating all new results that have appeared in the last few years. The first part compiles the most up-to-date predictions of Higgs boson production cross sections and decay branching ratios, parton distribution functions, and off-shell Higgs boson production and interference effects. Read More

One of the simplest extensions of the Standard Model (SM) is the addition of a scalar gauge singlet, S. If S is not forbidden by a symmetry from mixing with the Standard Model Higgs boson, the mixing will generate non-SM rates for Higgs production and decays. In general, there could also be unknown high energy physics that generates additional effective low energy interactions. Read More

We analyse the sizes, colour gradients, and resolved stellar mass distributions for 36 massive and passive galaxies in the cluster XMMUJ2235-2557 at z=1.39 using optical and near-infrared Hubble Space Telescope imaging. We derive light-weighted S\'ersic fits in five HST bands ($i_{775},z_{850},Y_{105},J_{125},H_{160}$), and find that the size decreases by ~20% going from $i_{775}$ to $H_{160}$ band, consistent with recent studies. Read More

WEAVE is a 1000-fiber multi-object spectroscopic facility for the 4.2~m William Herschel Telescope. It will feature a double-headed pick-and-place fiber positioning robot comprising commercially available robotic axes. Read More

Higgs pair production at the LHC from gluon fusion is small in the Standard Model, but can be enhanced in models where a resonant enhancement is allowed. We examine the effect of a resonant contribution from a second scalar arising in a model with a gauge singlet scalar field in addition to the usual SU(2) scalar doublet, with mass up to $M_H$~600 GeV and discuss the interference effects in double Higgs production. We compute the NLO QCD corrections in the large $m_t$ limit and show that they can significantly distort kinematic distributions near the resonance peak. Read More

We report the multi-wavelength identification of the X-ray sources found in the Subaru-XMM-Newton Deep Survey (SXDS) using deep imaging data covering the wavelength range between the far-UV to the mid-IR. We select a primary counterpart of each X-ray source by applying the likelihood ratio method to R-band, 3.6micron, near-UV, and 24micron source catalogs as well as matching catalogs of AGN candidates selected in 1. Read More

The Higgs + jet channel at the LHC is sensitive to the effects of new physics both in the total rate and in the transverse momentum distribution at high p_T. We examine the production process using an effective field theory (EFT) language and discuss the possibility of determining the nature of the underlying high scale physics from boosted Higgs production. The effects of heavy color triplet scalars and top partner fermions with TeV scale masses are considered as examples and Higgs-gluon couplings of dimension-5 and dimension-7 are included in the EFT. Read More

We present an overview of and status report on the WEAVE next-generation spectroscopy facility for the William Herschel Telescope (WHT). WEAVE principally targets optical ground-based follow up of upcoming ground-based (LOFAR) and space-based (Gaia) surveys. WEAVE is a multi-object and multi-IFU facility utilizing a new 2-degree prime focus field of view at the WHT, with a buffered pick-and-place positioner system hosting 1000 multi-object (MOS) fibres, 20 integral field units, or a single large IFU for each observation. Read More

We try to constrain the gas inflow and outflow rate of star-forming galaxies at $z\sim1.4$ by employing a simple analytic model for the chemical evolution of galaxies. The sample is constructed based on a large near-infrared (NIR) spectroscopic sample observed with Subaru/FMOS. Read More

We study the enhancement of the di-Higgs production cross section resulting from the resonant decay of a heavy Higgs boson at hadron colliders in a model with a Higgs singlet. This enhancement of the double Higgs production rate is crucial in understanding the structure of the scalar potential and we determine the maximum allowed enhancement such that the electroweak minimum is a global minimum. The di-Higgs production enhancement can be as large as a factor of ~ 18 (13) for the mass of the heavy Higgs around 270 (420) GeV relative to the Standard Model rate at 14 TeV for parameters corresponding to a global electroweak minimum. Read More

We use an effective field theory (EFT) which includes all possible gluon-Higgs dimension-5 and dimension-7 operators to study Higgs boson plus jet production in next-to-leading order QCD. The EFT sheds light on the effect of a finite top quark mass as well as any Beyond-the-Standard Model (BSM) modifications of Higgs-gluon effective couplings. In the gluon channel, the accuracy of the heavy-top approximation for differential distributions arises from the non-interference between the helicity amplitudes of the G^3 h and G^2 h operators in the m_h < p_T limit at lowest order. Read More

The Higgs boson is produced at the LHC through gluon fusion at roughly the Standard Model rate. New colored fermions, which can contribute to $gg\rightarrow h$, must have vector-like interactions in order not to be in conflict with the experimentally measured rate. We examine the size of the corrections to single and double Higgs production from heavy vector-like fermions in $SU(2)_L$ singlets and doublets and search for regions of parameter space where double Higgs production is enhanced relative to the Standard Model prediction. Read More

The insular nature of the Standard Model may be explained if the Higgs mass parameter is only sensitive to quantum corrections from physical states. Starting from a scale-free electroweak sector at tree-level, we postulate that quantum effects of heavy right-handed neutrinos induce a mass term for a scalar weak doublet that contains the dark matter particle. In turn, below the scale of heavy neutrinos, the dark matter sector sets the scale of the Higgs potential. Read More

2013Oct

This report summarizes the work of the Energy Frontier Higgs Boson working group of the 2013 Community Summer Study (Snowmass). We identify the key elements of a precision Higgs physics program and document the physics potential of future experimental facilities as elucidated during the Snowmass study. We study Higgs couplings to gauge boson and fermion pairs, double Higgs production for the Higgs self-coupling, its quantum numbers and $CP$-mixing in Higgs couplings, the Higgs mass and total width, and prospects for direct searches for additional Higgs bosons in extensions of the Standard Model. Read More

We examine the possibility that dark matter may be the manifestation of dark forces of a hidden sector, i.e. "Dark Force = Dark Matter. Read More

The discovery of a Higgs boson at the LHC begins the era of directly measuring the mechanism of electroweak symmetry breaking (EWSB). Searching for extensions of the Standard Model (SM) EWSB sector at the LHC is of vital importance. An important extension of the SM with an extended EWSB sector is the Minimal Supersymmetric Standard Model (MSSM). Read More

We analyze experimental observations of microtubules undergoing small fluctuations about a "balance point" when mixed in solution of two different kinesin motor proteins, KLP61F and Ncd. It has been proposed that the microtubule movement is due to stochastic variations in the densities of the two species of motor proteins. We test this hypothesis here by showing how it maps onto a one-dimensional random walk in a random environment. Read More

The next-to-leading order (NLO) QCD radiative corrections to W+W- production at hadron colliders are well understood. We combine NLO perturbative QCD calculations with soft-gluon resummation of threshold logarithms to find a next-to-next-to leading logarithmic (NNLL) prediction for the total cross section and the invariant mass distribution at the LHC. We also obtain approximate next-to-next-to-leading order (NNLO) results for the total W+W- cross section at the LHC which includes all contributions from the scale dependent leading singular terms. Read More

A light vector boson, Z_d, associated with a "dark sector" U(1)_d gauge group has been introduced to explain certain astrophysical observations as well as low energy laboratory anomalies. In such models, the Higgs boson may decay into X+Z_d, where X=Z, Z_d or \gamma. Here, we provide estimates of those decay rates as functions of the Z_d coupling through either mass-mixing (e. Read More

We study the observability for a heavy Majorana neutrino N along with a new charged gauge boson W' at the LHC. We emphasize the complementarity of these two particles in their production and decay to unambiguously determine their properties. We show that the Majorana nature of N can be verified by the lepton-number violating like-sign dilepton process, and by polar and azimuthal angular distributions. Read More

We show that weak scale vector-like fermions with order one couplings to the Higgs can lead to a novel mechanism for a strongly first-order electroweak phase transition (EWPhT), through their tendency to drive the Higgs quartic coupling negative. These same fermions could also enhance the loop-induced branching fraction of the Higgs into two photons, as suggested by the recent discovery of a ~125 GeV Higgs-like state at the CERN Large Hadron Collider (LHC). Our results suggest that measurements of the diphoton decay rate of the Higgs and its self coupling, at the LHC or perhaps at a future lepton collider, could probe the EWPhT in the early Universe, with significant implications for the viability of electroweak baryogenesis scenarios. Read More

In order to investigate the growth of super-massive black holes (SMBHs), we construct the black hole mass function (BHMF) and Eddington ratio distribution function (ERDF) of X-ray-selected broad-line AGNs at z~1.4 in the Subaru XMM-Newton Deep Survey field. In this redshift range, a significant part of the accretion growth of SMBHs is thought to be taking place. Read More

In many new physics scenarios, the particle content of the Standard Model is extended and the Higgs couplings are modified, sometimes without affecting single Higgs production. We analyse two models with additional quarks. In these models, we compute double Higgs production from gluon fusion exactly at leading-order, and present analytical results in the heavy-quark mass ap- proximation. Read More

Fixed-order QCD radiative corrections to the vector-boson and Higgs associated production channels, pp -> VH (V=W, Z), at hadron colliders are well understood. We combine higher order perturbative QCD calculations with soft-gluon resummation of both threshold logarithms and logarithms which are important at low transverse momentum of the VH pair. We study the effects of both types of logarithms on the scale dependence of the total cross section and on various kinematic distributions. Read More

We study the observability of the Higgs boson in the "charming Higgs" model. In this model the Higgs boson primarily undergoes a cascade decay to four charm quarks via light intermediate pseudoscalars. Such a decay allows the Higgs boson to escape the most stringent LEP bounds on the Standard Model Higgs boson mass. Read More

If fermion condensation is a main source of electroweak symmetry breaking, an ultra-heavy Higgs doublet of mass ~10^8 GeV can yield naturally small Dirac neutrino masses. We show that such a scenario can lead to a new leptogenesis mechanism based on the decays of the ultra-heavy Higgs. Given its very large mass, the requisite Higgs doublet can be considered an elementary particle and would point to a cutoff scale ~10^10 GeV. Read More

2011May
Authors: Daniele Alves1, Nima Arkani-Hamed2, Sanjay Arora3, Yang Bai4, Matthew Baumgart5, Joshua Berger6, Matthew Buckley7, Bart Butler8, Spencer Chang9, Hsin-Chia Cheng10, Clifford Cheung11, R. Sekhar Chivukula12, Won Sang Cho13, Randy Cotta14, Mariarosaria D'Alfonso15, Sonia El Hedri16, Rouven Essig17, Jared A. Evans18, Liam Fitzpatrick19, Patrick Fox20, Roberto Franceschini21, Ayres Freitas22, James S. Gainer23, Yuri Gershtein24, Richard Gray25, Thomas Gregoire26, Ben Gripaios27, Jack Gunion28, Tao Han29, Andy Haas30, Per Hansson31, JoAnne Hewett32, Dmitry Hits33, Jay Hubisz34, Eder Izaguirre35, Jared Kaplan36, Emanuel Katz37, Can Kilic38, Hyung-Do Kim39, Ryuichiro Kitano40, Sue Ann Koay41, Pyungwon Ko42, David Krohn43, Eric Kuflik44, Ian Lewis45, Mariangela Lisanti46, Tao Liu47, Zhen Liu48, Ran Lu49, Markus Luty50, Patrick Meade51, David Morrissey52, Stephen Mrenna53, Mihoko Nojiri54, Takemichi Okui55, Sanjay Padhi56, Michele Papucci57, Michael Park58, Myeonghun Park59, Maxim Perelstein60, Michael Peskin61, Daniel Phalen62, Keith Rehermann63, Vikram Rentala64, Tuhin Roy65, Joshua T. Ruderman66, Veronica Sanz67, Martin Schmaltz68, Stephen Schnetzer69, Philip Schuster70, Pedro Schwaller71, Matthew D. Schwartz72, Ariel Schwartzman73, Jing Shao74, Jessie Shelton75, David Shih76, Jing Shu77, Daniel Silverstein78, Elizabeth Simmons79, Sunil Somalwar80, Michael Spannowsky81, Christian Spethmann82, Matthew Strassler83, Shufang Su84, Tim Tait85, Brooks Thomas86, Scott Thomas87, Natalia Toro88, Tomer Volansky89, Jay Wacker90, Wolfgang Waltenberger, Itay Yavin, Felix Yu, Yue Zhao, Kathryn Zurek
Affiliations: 1Editor, 2Editor, 3Editor, 4Editor, 5Editor, 6Editor, 7Editor, 8Editor, 9Editor, 10Editor, 11Editor, 12Editor, 13Editor, 14Editor, 15Editor, 16Editor, 17Editor, 18Editor, 19Editor, 20Editor, 21Editor, 22Editor, 23Editor, 24Editor, 25Editor, 26Editor, 27Editor, 28Editor, 29Editor, 30Editor, 31Editor, 32Editor, 33Editor, 34Editor, 35Editor, 36Editor, 37Editor, 38Editor, 39Editor, 40Editor, 41Editor, 42Editor, 43Editor, 44Editor, 45Editor, 46Editor, 47Editor, 48Editor, 49Editor, 50Editor, 51Editor, 52Editor, 53Editor, 54Editor, 55Editor, 56Editor, 57Editor, 58Editor, 59Editor, 60Editor, 61Editor, 62Editor, 63Editor, 64Editor, 65Editor, 66Editor, 67Editor, 68Editor, 69Editor, 70Editor, 71Editor, 72Editor, 73Editor, 74Editor, 75Editor, 76Editor, 77Editor, 78Editor, 79Editor, 80Editor, 81Editor, 82Editor, 83Editor, 84Editor, 85Editor, 86Editor, 87Editor, 88Editor, 89Editor, 90Editor

This document proposes a collection of simplified models relevant to the design of new-physics searches at the LHC and the characterization of their results. Both ATLAS and CMS have already presented some results in terms of simplified models, and we encourage them to continue and expand this effort, which supplements both signature-based results and benchmark model interpretations. A simplified model is defined by an effective Lagrangian describing the interactions of a small number of new particles. Read More

We study the colored resonance production at the LHC in a most general approach. We classify the possible colored resonances based on group theory decomposition, and construct their effective interactions with light partons. The production cross section from annihilation of valence quarks or gluons may be on the order of 400 - 1000 pb at LHC energies for a mass of 1 TeV with nominal couplings, leading to the largest production rates for new physics at the TeV scale, and simplest event topology with dijet final states. Read More

2010Sep
Affiliations: 1GEPI, Observatoire de Paris, CNRS, Univ. Paris Diderot, 2GEPI, Observatoire de Paris, CNRS, Univ. Paris Diderot, 3GEPI, Observatoire de Paris, CNRS, Univ. Paris Diderot, 4GEPI, Observatoire de Paris, CNRS, Univ. Paris Diderot, 5GEPI, Observatoire de Paris, CNRS, Univ. Paris Diderot, 6GEPI, Observatoire de Paris, CNRS, Univ. Paris Diderot, 7GEPI, Observatoire de Paris, CNRS, Univ. Paris Diderot, 8GEPI, Observatoire de Paris, CNRS, Univ. Paris Diderot, 9GEPI, Observatoire de Paris, CNRS, Univ. Paris Diderot, 10Observatoire astronomique de Strasbourg, 11GEPI, Observatoire de Paris, CNRS, Univ. Paris Diderot, 12Department of Astronomy and Astrophysics, University of Toronto, 13GEPI, Observatoire de Paris, CNRS, Univ. Paris Diderot, 14University of Oxford, Astrophysics, Department of Physics, 15Observatoire astronomique de Strasbourg, 16GEPI, Observatoire de Paris, CNRS, Univ. Paris Diderot, 17Royal Observatory Belgium, 18GEPI, Observatoire de Paris, CNRS, Univ. Paris Diderot, 19GEPI, Observatoire de Paris, CNRS, Univ. Paris Diderot, 20Univ. de Nice Sophia Antipolis, CNRS, Observatoire de la Côte d'Azur, Laboratoire Cassiopée, 21GEPI, Observatoire de Paris, CNRS, Univ. Paris Diderot, 22GEPI, Observatoire de Paris, CNRS, Univ. Paris Diderot, 23GEPI, Observatoire de Paris, CNRS, Univ. Paris Diderot, 24Institute for Astronomy, University of Hawaii at Manoa, 25LATMOS/IPSL, 26GEPI, Observatoire de Paris, CNRS, Univ. Paris Diderot, 27Univ. de Nice Sophia Antipolis, CNRS, Observatoire de la Côte d'Azur, Laboratoire Cassiopée, 28Kapteyn Astronomical Institute, 29University of Oxford, Astrophysics, Department of Physics, 30European Southern Observatory, 31Univ. de Nice Sophia Antipolis, CNRS, Observatoire de la Côte d'Azur, Laboratoire Fizeau, 32Univ. de Nice Sophia Antipolis, CNRS, Observatoire de la Côte d'Azur, Laboratoire Fizeau, 33Univ. de Nice Sophia Antipolis, CNRS, Observatoire de la Côte d'Azur, Laboratoire Fizeau, 34Univ. de Nice Sophia Antipolis, CNRS, Observatoire de la Côte d'Azur, Laboratoire Cassiopée, 35GEPI, Observatoire de Paris, CNRS, Univ. Paris Diderot, 36Observatoire de Besançon, 37GEPI, Observatoire de Paris, CNRS, Univ. Paris Diderot, 38Observatoire de Bordeaux, 39GEPI, Observatoire de Paris, CNRS, Univ. Paris Diderot, 40Department of Physics & Astronomy The University of Victoria, 41GEPI, Observatoire de Paris, CNRS, Univ. Paris Diderot

We have chosen the name of GYES, one of the mythological giants with one hundred arms, offspring of Gaia and Uranus, for our instrument study of a multifibre spectrograph for the prime focus of the Canada-France-Hawaii Telescope. Such an instrument could provide an excellent ground-based complement for the Gaia mission and a northern complement to the HERMES project on the AAT. The CFHT is well known for providing a stable prime focus environment, with a large field of view, which has hosted several imaging instruments, but has never hosted a multifibre spectrograph. Read More

The OPTIMOS-EVE instrument proposed for the E-ELT aims to use the maximum field of view available to the E-ELT in the limit of natural or ground-layer-corrected seeing for high multiplex fibre-fed multi-object spectroscopy in the visible and near-IR. At the bare nasmyth focus of the telescope, this field corresponds to a focal plane 2.3m in diameter, with a plate-scale of ~3mm/arcsec. Read More

If a TeV-scale charged gauge boson (W') is discovered at the Large Hadron Collider (LHC), it will become imperative to determine its chiral couplings to standard model (SM) fermions in order to learn about the underlying theory containing the W'. We describe the reconstruction of the t, b decay mode of the W' at the LHC, and identify various kinematic observables such as the angular distributions of the top quark and the lepton resulting from top decay that can be used to disentangle the chiral couplings of the W' to SM fermions. We demonstrate by presenting analytical expressions, numerical simulations, as well as intuitive illustrations for these observables at the LHC that among the SM fermions, the polarized top quark can most directly probe the chirality of such couplings. Read More

2010Aug
Affiliations: 1Isaac Newton Group of Telescopes, La Palma, Spain, 2Isaac Newton Group of Telescopes, La Palma, Spain, 3Astrophysics Research Institute, Liverpool John Moores University, UK, 4Physics Department, University of Oxford, UK, 5Kapteyn Astronomical Institute, University of Groningen, The Netherlands, 6Lund Observatory, Sweden, 7Kapteyn Astronomical Institute, University of Groningen, The Netherlands, 8Centre for Astrophysics Research, University of Hertfordshire, UK, 9Institute of Cosmology and Gravitation, University of Portsmouth, UK, 10Isaac Newton Group of Telescopes, La Palma, Spain, 11Isaac Newton Group of Telescopes, La Palma, Spain, 12Leiden Observatory, Leiden University, The Netherlands, 13Isaac Newton Group of Telescopes, La Palma, Spain, 14UK Astronomy Technology Centre, Edinburgh, UK, 15Kapteyn Astronomical Institute, University of Groningen, The Netherlands, 16Physics Department, University of Oxford, UK, 17UK Astronomy Technology Centre, Edinburgh, UK, 18Kapteyn Astronomical Institute, University of Groningen, The Netherlands, 19Instituto de Astrofísica de Canarias, Tenerife, Spain, 20Centre for Advanced Instrumentation, University of Durham, UK, 21STFC-Rutherford-Appleton Laboratory, UK, 22Instituto de Astrofísica de Canarias, Tenerife, Spain, 23Institute of Astronomy, University of Cambridge, UK, 24Kapteyn Astronomical Institute, University of Groningen, The Netherlands

Wide-field multi-object spectroscopy is a high priority for European astronomy over the next decade. Most 8-10m telescopes have a small field of view, making 4-m class telescopes a particularly attractive option for wide-field instruments. We present a science case and design drivers for a wide-field multi-object spectrograph (MOS) with integral field units for the 4. Read More

Fibre Multi-Object Spectrograph (FMOS) is the first near-infrared instrument with a wide field of view capable of acquiring spectra simultaneously from up to 400 objects. It has been developed as a common-use instrument for the F/2 prime-focus of the Subaru Telescope. The field coverage of 30' diameter is achieved using a new 3-element corrector optimized in the near-infrared (0. Read More

Motivated by large nu_mu-nu_tau flavor mixing, we consider mu-tau production at hadron colliders via dimension-6 effective operators, which can be attributed to new physics in the flavor sector at a higher scale Lambda. Current bounds on many of these operators from low energy experiments are very weak or nonexistent, and they may lead to clean mu+tau- and mu-tau+ signals at hadron colliders. At the Tevatron with 8 inverse femtobarns, one can exceed current bounds for most operators, with most 2 sigma sensitivities being in the 6-24 TeV range. Read More

We calculate the next-to-leading order QCD corrections to quark-quark annihilation to a scalar resonant state ("diquark") in a color representation of antitriplet or sextet at the Tevatron and LHC energies. At the LHC, we find the enhancement (K-factor) for the antitriplet diquark is typically about 1.31--1. Read More

We calculate cosmological and astrophysical bounds on the couplings between standard model fields and tensor unparticles. The present day density of tensor unparticles from neutrino-neutrino and photon-photon annihilation is calculated. Also, the supernovae volume energy loss rates from electron-positron and photon-photon annihilation to tensor unparticles are calculated. Read More

We investigate the correlated predictions of singlet extended MSSM models for direct detection of the lightest neutralino with its cosmological relic density. To illustrate the general effects of the singlet, we take heavy sleptons and squarks. We apply LEP, $(g-2)_\mu$ and perturbativity constraints. Read More

We investigate the systematic variation of the [OII]3727/Halpha flux line ratio as a function of various galaxy properties, i.e., luminosity, metallicity, reddening, and excitation state, for a sample of 1124 emission-line galaxies, with a mean redshift z ~ 0. Read More

The ROSAT-ESO Flux Limited X-ray (REFLEX) galaxy cluster survey and the 2dF Galaxy Redshift Survey (2dFGRS) respectively comprise the largest, homogeneous X-ray selected cluster catalogue and completed galaxy redshift survey. In this work we combine these two outstanding datasets in order to study the effect of the large-scale cluster environment, as traced by X-ray luminosity, on the properties of the cluster member galaxies. We measure the LX-sigma relation from the correlated dataset and find it to be consistent with recent results found in the literature. Read More

2005Jan
Affiliations: 1Durham University, UK, 2Durham University, UK, 3Durham University, UK, 4Carnegie Observatories, Pasadena, USA, 5Carnegie Observatories, Pasadena, USA, 6University of Toronto, Canada, 7Durham University, UK, 8Oxford University, UK, 9Durham University, UK, 10Durham University, UK
Category: Astrophysics

We compare deep Magellan spectroscopy of 26 groups at 0.3 <= z <= 0.55, selected from the Canadian Network for Observational Cosmology 2 field survey (CNOC2), with a large sample of nearby groups from the 2PIGG catalogue (Eke et al. Read More

2005Jan
Affiliations: 1Durham, 2ROE, 3ROE, 4ETH, Zurich, 5Durham, 6Durham, 7The 2dFGRS Team, 8The 2dFGRS Team, 9The 2dFGRS Team, 10The 2dFGRS Team, 11The 2dFGRS Team, 12The 2dFGRS Team, 13The 2dFGRS Team, 14The 2dFGRS Team, 15The 2dFGRS Team, 16The 2dFGRS Team, 17The 2dFGRS Team, 18The 2dFGRS Team, 19The 2dFGRS Team, 20The 2dFGRS Team, 21The 2dFGRS Team, 22The 2dFGRS Team, 23The 2dFGRS Team, 24The 2dFGRS Team, 25The 2dFGRS Team, 26The 2dFGRS Team, 27The 2dFGRS Team, 28The 2dFGRS Team, 29The 2dFGRS Team, 30The 2dFGRS Team, 31The 2dFGRS Team
Category: Astrophysics

We present a power spectrum analysis of the final 2dF Galaxy Redshift Survey, employing a direct Fourier method. The sample used comprises 221,414 galaxies with measured redshifts. We investigate in detail the modelling of the sample selection. Read More

We select a sample of low-redshift (z ~ 0.1) E+A galaxies from the 2dF Galaxy Redshift Survey (2dFGRS). The spectra of these objects are defined by strong hydrogen Balmer absorption lines (H-delta, H-gamma, H-beta) combined with a lack of [OII] 3727A emission, together implying a recently-truncated burst of star formation. Read More

We present preliminary results from a programme to obtain multi-object near-infrared spectroscopy of galaxies at redshifts $0.7Read More

2004Jul
Affiliations: 1The 2dFGRS Team, 2The 2dFGRS Team, 3The 2dFGRS Team, 4The 2dFGRS Team, 5The 2dFGRS Team, 6The 2dFGRS Team, 7The 2dFGRS Team, 8The 2dFGRS Team, 9The 2dFGRS Team, 10The 2dFGRS Team, 11The 2dFGRS Team, 12The 2dFGRS Team, 13The 2dFGRS Team, 14The 2dFGRS Team, 15The 2dFGRS Team, 16The 2dFGRS Team, 17The 2dFGRS Team, 18The 2dFGRS Team, 19The 2dFGRS Team, 20The 2dFGRS Team, 21The 2dFGRS Team, 22The 2dFGRS Team, 23The 2dFGRS Team, 24The 2dFGRS Team, 25The 2dFGRS Team, 26The 2dFGRS Team, 27The 2dFGRS Team, 28The 2dFGRS Team, 29The 2dFGRS Team
Category: Astrophysics

We use the 2dF Galaxy Redshift Survey to measure the dependence of the bJ-band galaxy luminosity function on large-scale environment, defined by density contrast in spheres of radius 8h-1Mpc, and on spectral type, determined from principal component analysis. We find that the galaxy populations at both extremes of density differ significantly from that at the mean density. The population in voids is dominated by late types and shows, relative to the mean, a deficit of galaxies that becomes increasingly pronounced at magnitudes brighter than M_bJ-5log10h <-18. Read More

We present the first successful demonstration of multi-object near-infrared spectroscopy on high redshift galaxies. Our objective is to address the true star formation history of the universe at z~1, a crucial epoch which some have suggested is the peak of star formation activity. By using H-alpha -the same robust star formation indicator used at low-z - redshifted into the J- and H-bands, we can trace star formation without the systematic uncertainties of different calibrators, or the extreme dust extinction in the rest-UV, which have plagued previous efforts. Read More