Hauyu Baobab Liu - ASIAA

Hauyu Baobab Liu
Are you Hauyu Baobab Liu?

Claim your profile, edit publications, add additional information:

Contact Details

Hauyu Baobab Liu

Pubs By Year

Pub Categories

Astrophysics of Galaxies (30)
Solar and Stellar Astrophysics (27)
Earth and Planetary Astrophysics (7)
Cosmology and Nongalactic Astrophysics (2)
Instrumentation and Methods for Astrophysics (2)
High Energy Astrophysical Phenomena (2)

Publications Authored By Hauyu Baobab Liu

We are motivated by the recent measurements of dust opacity indices beta around young stellar objects (YSOs), which suggest that efficient grain growth may have occurred earlier than the Class I stage. The present work makes use of abundant archival interferometric observations at submillimeter,millimeter, and centimeter wavelength bands to examine grain growth signatures in the dense inner regions (<1000 AU) of nine Class 0 YSOs. A systematic data analysis is performed to derive dust temperatures, optical depths, and dust opacity indices based on single-component modified black body fittings to the spectral energy distributions (SEDs). Read More

We recently reported a population of protostellar candidates in the 20 km s$^{-1}$ cloud in the Central Molecular Zone of the Milky Way, traced by H$_2$O masers in gravitationally bound dense cores. In this paper, we report high-angular-resolution ($\sim$3'') molecular line studies of the environment of star formation in this cloud. Maps of various molecular line transitions as well as the continuum at 1. Read More

We present Submillimeter Array 880 $\mu$m dust polarization observations of six massive dense cores in the DR21 filament. The dust polarization shows complex magnetic field structures in the massive dense cores with sizes of 0.1 pc, in contrast to the ordered magnetic fields of the parsec-scale filament. Read More

We resolved FU Ori at 29-37 GHz using the JVLA with $\sim$0$''$.07 resolution, and performed the complementary JVLA 8-10 GHz observations, the SMA 224 GHz and 272 GHz observations, and compared with archival ALMA 346 GHz observations to obtain the SEDs. Our 8-10 GHz observations do not find evidence for the presence of thermal radio jets, and constrain the radio jet/wind flux to at least 90 times lower than the expected value from the previously reported bolometric luminosity-radio luminosity correlation. Read More

We introduce a new stacking method in Keplerian disks that (1) enhances signal-to-noise ratios (S/N) of detected molecular lines and (2) that makes visible otherwise undetectable weak lines. Our technique takes advantage of the Keplerian rotational velocity pattern. It aligns spectra according to their different centroid velocities at their different positions in a disk and stacks them. Read More

Gravitational collapse of molecular cloud or cloud core/clump may lead to the formation of geometrically flattened, rotating accretion flow surrounding the new born star or star cluster. Gravitational instability may occur in such accretion flow when the gas to stellar mass ratio is high (e.g. Read More

We have developed an iterative procedure to systematically combine the millimeter and submillimeter images of OB cluster-forming molecular clouds, which were taken by ground based (CSO, JCMT, APEX, IRAM-30m) and space telescopes (Herschel, Planck). For the seven luminous ($L$$>$10$^{6}$ $L_{\odot}$) Galactic OB cluster-forming molecular clouds selected for our analyses, namely W49A, W43-Main, W43-South, W33, G10.6-0. Read More

Our aim is to characterize the polarized continuum emission properties including intensity, polarization position angle, and polarization percentage of Sgr A* at $\sim$100 (3.0 mm), $\sim$230 (1.3 mm), $\sim$345 (0. Read More

We report linearly polarized continuum emission properties of Sgr A* at $\sim$492 GHz, based on the Atacama Large Millimeter Array (ALMA) observations. We used the observations of the likely unpolarized continuum emission of Titan, and the observations of C\textsc{i} line emission, to gauge the degree of spurious polarization. The Stokes I flux of 3. Read More

We have analyzed the HCO+ (1-0) data of the Class I-II protostar, HL Tau, obtained from the Atacama Large Millimeter/Submillimeter Array long baseline campaign. We generated the HCO+ image cube at an angular resolution of ~0.07 (~10 AU), and performed azimuthal averaging on the image cube to enhance the signal-to-noise ratio and measure the radial profile of the HCO+ integrated intensity. Read More

Protostellar (class 0/I) disks, having masses comparable to those of their nascent host stars, and fed continuously from their natal infalling envelopes, are prone to gravitational instability (GI). Motivated by advances in near-infrared (NIR) adaptive optics imaging and mm-wave interferometry, we explore the observational signatures of GI in disks, using hydrodynamical and Monte Carlo radiative transfer simulations to synthesize NIR scattered light images and mm dust continuum maps. Spiral arms induced by GI, located at disk radii of hundreds of AUs, are local overdensities and have their photospheres displaced to higher altitudes above the disk midplane, arms therefore scatter more NIR light from their central stars than inter-arm regions, and are detectable at distances up to 1 kpc by Gemini/GPI, VLT/SPHERE, and Subaru/HiCIAO/SCExAO. Read More

We present monitoring observations of the active T Tauri star RW Aur, from 2010 October to 2015 January, using optical high-resolution (R>10000) spectroscopy with CFHT-ESPaDOnS. Optical photometry in the literature shows bright, stable fluxes over most of this period, with lower fluxes (by 2-3 mag.) in 2010 and 2014. Read More

Young stellar objects (YSOs) may not accumulate their mass steadily, as was previously thought, but in a series of violent events manifesting themselves as sharp stellar brightening. These events can be caused by fragmentation due to gravitational instabilities in massive gaseous disks surrounding young stars, followed by migration of dense gaseous clumps onto the star. We report our high angular resolution, coronagraphic near-infrared polarization imaging observations using the High Contrast Instrument for the Subaru Next Generation Adaptive Optics (HiCIAO) of the Subaru 8. Read More

We report Submillimeter Array (SMA) 1.3 mm high angular resolution observations towards the four EXor type outbursting young stellar objects (YSOs) VY Tau, V1118 Ori, V1143 Ori, and NY Ori. The data mostly show low dust masses $M_{dust}$ in the associated circumstellar disks. Read More

Most molecular clouds are filamentary or elongated. Among those forming low-mass stars, their long axes tend to be either parallel or perpendicular to the large-scale (10-100 pc) magnetic field (B-field) in the surrounding inter cloud medium. This arises because, along the dynamically dominant B-fields, the competition between self-gravity and turbulent pressure will shape the cloud to be elongated either perpendicular or parallel to the fields. Read More

This paper discusses compelling science cases for a future long-baseline interferometer operating at millimeter and centimeter wavelengths, like the proposed Next Generation Vary Large Array (ngVLA). We report on the activities of the Cradle of Life science working group, which focused on the formation of low- and high-mass stars, the formation of planets and evolution of protoplanetary disks, the physical and compositional study of Solar System bodies, and the possible detection of radio signals from extraterrestrial civilizations. We propose 19 scientific projects based on the current specification of the ngVLA. Read More

C$_2$H is a representative hydrocarbon that is abundant and ubiquitous in the interstellar medium (ISM). To study its chemical properties, we present Submillimeter Array (SMA) observations of the C$_2$H $N=3-2$ and HC$_3$N $J=30-29$ transitions and the 1.1 mm continuum emission toward four OB cluster-forming regions, AFGL 490, ON 1, W33 Main, and G10. Read More

There is increasing evidence that episodic accretion is a common phenomenon in Young Stellar Objects (YSOs). Recently, the source HOPS 383 in Orion was reported to have a $\times 35$ mid-infrared -- and bolometric -- luminosity increase between 2004 and 2008, constituting the first clear example of a class 0 YSO (a protostar) with a large accretion burst. The usual assumption that in YSOs accretion and ejection follow each other in time needs to be tested. Read More

How rapidly collapsing parsec-scale massive molecular clumps feed high-mass stars, and how they fragment to form OB clusters, have been outstanding questions in the field of star-formation. In this work, we report the resolved structures and kinematics of the approximately face-on, rotating massive molecular clump, G33.92+0. Read More

We present new high-resolution ($\sim$0\farcs09) $H$-band imaging observations of the circumstellar disk around the T Tauri star SU Aur. Our observations with Subaru-HiCIAO have revealed the presence of scattered light as close as 0\farcs15 ($\sim$20 AU) to the star. Within our image, we identify bright emission associated with a disk with a minimum radius of $\sim$90 AU, an inclination of $\sim$35\degr from the plane of the sky, and an approximate P. Read More

Submillimeter dust polarization measurements of a sample of 50 star-forming regions, observed with the SMA and the CSO covering pc-scale clouds to mpc-scale cores, are analyzed in order to quantify the magnetic field importance. The magnetic field misalignment $\delta$ -- the local angle between magnetic field and dust emission gradient -- is found to be a prime observable, revealing distinct distributions for sources where the magnetic field is preferentially aligned with or perpendicular to the source minor axis. Source-averaged misalignment angles $\langle|\delta|\rangle$ fall into systematically different ranges, reflecting the different source-magnetic field configurations. Read More

Photoevaporation due to high-energy stellar photons is thought to be one of the main drivers of protoplanetary disk dispersal. The fully or partially ionized disk surface is expected to produce free-free continuum emission at centimeter (cm) wavelengths that can be routinely detected with interferometers such as the upgraded Very Large Array (VLA). We use deep (rms noise down to 8 $\mu$Jy beam$^{-1}$ in the field of view center) 3. Read More

We report the first detection of an hourglass magnetic field aligned with a well-defined outflow-rotation system in a high-mass star-forming region. The observations were performed with Submillimeter Array toward G240.31+0. Read More

We report systematic mapping observations of the NH$_{3}$ (1,1) and (2,2) inversion lines towards 62 high-mass star-forming regions using VLA in its D and DnC array configurations. The VLA images cover a spatial dynamic range from 40$"$ to 3$"$, allowing us to trace gas kinematics from $\sim$1 pc scales to $\lesssim$0.1 pc scales. Read More

We present the Green Bank 100m Telescope (GBT) mapping observations of CS 1-0, and the Submillimeter Array (SMA) 157-pointings mosaic of the 0.86 mm dust continuum emission as well as several warm and dense gas tracers, in the central ~20 pc area in Galactic Center. The unprecedentedly large field-of-view and the high angular resolution of our SMA dust image allow the identification of abundant 0. Read More

We summarize our comprehensive gas surveys of some of the most luminous, deeply embedded (optically obscured) star formation regions in the Milky Way, which are the local cases of massive star clusters and/or associations in the making. Our approach emphasizes multi-scale, multi-resolution imaging in dust and free-free continuum, as well as in molecular- and hydrogen recombination lines, to trace the multiple gas components from 0.1 pc (core scale) all the way up to the scales of the entire giant molecular cloud (GMC), or $\sim 100$ pc. Read More

We report on detection of an ordered magnetic field (B field) threading a massive star-forming clump in the molecular cloud G35.2-0.74, using Submillimeter Array observations of polarized dust emission. Read More

We report the Submillimeter Array (SMA) observations of the polarized 0.88\,mm thermal dust emission and various molecular line transitions toward the early B-type ($L_{*}\sim2\times10^{3}L_{\odot}$) star-forming region G192.16$-$3. Read More

(Abridged) In tandem with observational datasets, we utilize realistic mock catalogs, based on a semi-analytic galaxy formation model, constructed specifically for Pan-STARRS1 Medium Deep Surveys in order to assess the performance of the Probability Friends-of-Friends (PFOF, Liu et al.) group finder, and aim to develop a grouping optimization method applicable to surveys like Pan-STARRS1. Producing mock PFOF group catalogs under a variety of photometric redshift accuracies ({\sigma}{\Delta}z/(1+zs)), we find that catalog purities and completenesses from ``good' {\sigma}{\Delta}z/(1+zs)) ~ 0. Read More

We present optical spectrophotometric monitoring of four active T Tauri stars (DG Tau, RY Tau, XZ Tau, RW Aur A) at high spectral resolution ($R \ga 1 \times 10^4$), to investigate the correlation between time variable mass ejection seen in the jet/wind structure of the driving source and time variable mass accretion probed by optical emission lines. This may allow us to constrain the understanding of the jet/wind launching mechanism, the location of the launching region, and the physical link with magnetospheric mass accretion. In 2010, observations were made at six different epochs to investigate how daily and monthly variability might affect such a study. Read More

Affiliations: 1INAF-Istituto di Astrofisica e Planetologia Spaziali, 2Harvard-Smithsonian Center for Astrophysics, 3Institut de Ciències de l'Espai, 4Academia Sinica Institute of Astronomy and Astrophysics, 5INAF-Osservatorio Astrifisico di Arcetri, 6Departament d'Astronomia i Meteorologia, Institut de Ciències del Cosmos, 7Harvard-Smithsonian Center for Astrophysics, 8European Southern Observatory, 9Caltech Astronomy Department, 10Max-Planck-Institut für Radioastronomie, 11Institut de Ciències de l'Espai, 12Departamento de Fisica-ICEx-UFMG, 13Departamento de Fisica-ICEx-UFMG

We present the results of combined NH3(1,1) and (2,2) line emission observed with the Very Large Array and the Effelsberg 100m telescope of the Infrared Dark Cloud G14.225-0.506. Read More

The supermassive black hole (SMBH), Sgr A*, at the Galactic Center is surrounded by a molecular circumnuclear disk (CND) lying between 1.5-4 pc radii. The irregular and clumpy structures of the CND, suggest dynamical evolution and episodic feeding of gas towards the central SMBH. Read More

Filamentary structures are ubiquitously seen in the interstellar medium. The concentrated molecular mass in the filaments allows fragmentation to occur in a shorter timescale than the timescale of the global collapse. Such hierarchical fragmentation may further assist the dissipation of excessive angular momentum. Read More

The massive clump G10.6-0.4 is an OB cluster forming region, in which multiple UC HII regions have been identified. Read More

We report the arcsecond resolution SMA observations of the $^{12}$CO (2-1) transition in the massive cluster forming region G10.6-0.4. Read More