Haimin Wang

Haimin Wang
Are you Haimin Wang?

Claim your profile, edit publications, add additional information:

Contact Details

Name
Haimin Wang
Affiliation
Location

Pubs By Year

Pub Categories

 
Solar and Stellar Astrophysics (50)

Publications Authored By Haimin Wang

Sunspots are concentrations of magnetic field visible on the solar surface (photosphere). It was considered implausible that solar flares, as resulted from magnetic reconnection in the tenuous corona, would cause a direct perturbation of the dense photosphere involving bulk motion. Here we report the sudden flare-induced rotation of a sunspot using the unprecedented spatiotemporal resolution of the 1. Read More

White-light (WL) flares have been observed and studied more than a century since the first discovery. However, some fundamental physics behind the brilliant emission remains highly controversial. One of the important facts in addressing the flare energetics is the spatialtemporal correlation between the white-light emission and the hard X-ray radiation, presumably suggesting that the energetic electrons are the energy sources. Read More

The rotation of sunspots of 2 yr in two different solar cycles is studied with the data from the Helioseismic and Magnetic Imager on board the \it Solar Dynamics Observatory \rm and the Michelson Doppler Imager instrument on board the \it Solar and Heliospheric Observataory.\rm We choose the $\alpha$ sunspot groups and the relatively large and stable sunspots of complex active regions in our sample. In the year of 2003, the $\alpha$ sunspot groups and the preceding sunspots tend to rotate counterclockwise and have positive magnetic polarity in the northern hemisphere. Read More

Using high-resolution transition region (TR) observations taken by the Interface Region Imaging Spectrograph (IRIS) mission, Tian et al. (2014b) revealed numerous short-lived subarcsecond bright dots (BDs) above sunspots (mostly located in the penumbrae), which indicate yet unexplained small-scale energy releases. Moreover, whether these subarcsecond TR brightenings have any signature in the lower atmosphere and how they are formed are still not fully resolved. Read More

We study the physical mechanism of a major X-class solar flare that occurred in the super NOAA active region (AR) 12192 using a data-driven numerical magnetohydrodynamic (MHD) modeling complemented with observations. With the evolving magnetic fields observed at the solar surface as bottom boundary input, we drive an MHD system to evolve self-consistently in correspondence with the realistic coronal evolution. During a two-day time interval, the modeled coronal field has been slowly stressed by the photospheric field evolution,which gradually created a large-scale coronal current sheet, i. Read More

Solar flares signify the sudden release of magnetic energy and are sources of so called space weather. The fine structures (below 500 km) of flares are rarely observed and are accessible to only a few instruments world-wide. Here we present observation of a solar flare using exceptionally high resolution images from the 1. Read More

It has been found that photospheric magnetic fields can change in accordance with the three-dimensional magnetic field restructuring following solar eruptions. Previous studies mainly use vector magnetic field data taken for events near the disk center. In this paper, we analyze the magnetic field evolution associated with the 2012 October 23 X1. Read More

Solar flares are sudden flashes of brightness on the Sun and are often associated with coronal mass ejections and solar energetic particles which have adverse effects in the near Earth environment. By definition, flares are usually referred to bright features resulting from excess emission. Using the newly commissioned 1. Read More

We investigate the evolution of NOAA Active Region 11817 during 2013 August 10--12, when it developed a complex field configuration and produced four confined, followed by two eruptive, flares. These C-and-above flares are all associated with a magnetic flux rope (MFR) located along the major polarity inversion line, where shearing and converging photospheric flows are present. Aided by the nonlinear force-free field modeling, we identify the MFR through mapping magnetic connectivities and computing the twist number $\mathcal{T}_w$ for each individual field line. Read More

The dynamic properties of flare ribbons and the often associated filament eruptions can provide crucial information on the flaring coronal magnetic field. This Letter analyzes the GOES-class X1.0 flare on 2014 March 29 (SOL2014-03-29T17:48), in which we found an asymmetric eruption of a sigmoidal filament and an ensuing circular flare ribbon. Read More

In this paper, we present a study on persistent and gradual penumbral decay and correlated decline of the photospheric transverse field component during 10-20 hours before a major flare (X1.8) eruption on 2011 September 7. This long-term pre-eruption behavior is corroborated with the well-imaged pre-flare filament rising, the consistent expansion of coronal arcades overlying the filament, as well as the NLFFF modelling results in the literature. Read More

In this paper, we present observations and analysis of an interesting sigmoid formation, eruption and the associated flare that occurred on 2014 April 18 using multi-wavelength data sets. We discuss the possible role of the sigmoid eruption in triggering the flare, which consists of two different set of ribbons: parallel ribbons as well as a large-scale quasi-circular ribbon. Several observational evidence and nonlinear force-free field extrapolation results show the existence of a large-scale fan-spine type magnetic configuration with a sigmoid lying under a section of the fan dome. Read More

Using high-resolution images from 1.6 m New Solar Telescope (NST) at Big Bear Solar Observatory (BBSO), we report the direct evidence of chromospheric reconnection at the polarity inversion line (PIL) between two small opposite polarity sunspots. Small jet-like structures (with velocities of ~20-55 km/s) were observed at the reconnection site before the onset of the first M1. Read More

Previous studies have shown that the energy release mechanism of some solar flares follow the Standard magnetic-reconnection model, but the detailed properties of high-energy electrons produced in the flare are still not well understood. We conducted a unique, multi-wavelength study that discloses the spatial, temporal and energy distributions of the accelerated electrons in the X2.2 solar flare on 2011, Feb. Read More

We present a set of tools for detecting small-scale solar magnetic cancellations and the disk counterpart of type II spicules (the so-called Rapid Blueshifted Excursions (RBEs)), using line-of-sight photospheric magnetograms and chromospheric spectroscopic observations, respectively. For tracking magnetic cancellation, we improve the Southwest Automatic Magnetic Identification Suite (SWAMIS) so that it is able to detect certain obscure cancellations that can be easily missed. For detecting RBEs, we use a normalized reference profile to reduce false-positive detections caused by the non-uniform background and seeing condition. Read More

This paper reviews the studies of solar photospheric magnetic field evolution in active regions and its relationship to solar flares. It is divided into two topics, the magnetic structure and evolution leading to solar eruptions and the rapid changes of photospheric magnetic field associated with eruptions. For the first topic, we describe the magnetic complexity, new flux emergence, flux cancellation, shear motions, sunspot rotation, and magnetic helicity injection, which may all contribute to the storage and buildup of energy and triggering of solar eruptions. Read More

Chromospheric rapid blueshifted excursions (RBEs) are suggested to be the disk counterparts of type II spicules at the limb and believed to contribute to the coronal heating process. Previous identification of RBEs was mainly based on feature detection using Dopplergrams. In this paper, we study RBEs on 2011 October 21 in a very quiet region at the disk center, which were observed with the high-cadence imaging spectroscopy of the Ca II 8542 A line from the Interferometric Bidimensional Spectrometer (IBIS). Read More

We carry out a comprehensive investigation comparing the three-dimensional magnetic field restructuring, flare energy release, and the helioseismic response, of two homologous flares, the 2011 September 6 X2.1 (FL1) and September 7 X1.8 (FL2) flares in NOAA AR 11283. Read More

Force-free equilibria containing two vertically arranged magnetic flux ropes of like chirality and current direction are considered as a model for split filaments/prominences and filament-sigmoid systems. Such equilibria are constructed analytically through an extension of the methods developed in Titov & D\'emoulin (1999) and numerically through an evolutionary sequence including shear flows, flux emergence, and flux cancellation in the photospheric boundary. It is demonstrated that the analytical equilibria are stable if an external toroidal (shear) field component exceeding a threshold value is included. Read More

We report the observation of an X-class long-duration flare which is clearly confined. It appears as a compact-loop flare in the traditional EUV passbands (171 and 195 {\AA}), but in the passbands sensitive to flare plasmas (94 and 131 {\AA}), it exhibits a cusp-shaped structure above an arcade of loops like other long-duration events. Inspecting images in a running difference approach, we find that the seemingly diffuse, quasi-static cusp-shaped structure consists of multiple nested loops that repeatedly rise upward and disappear approaching the cusp edge. Read More

Large, complex, active regions may produce multiple flares within a certain period of one or two days. These flares could occur in the same location with similar morphologies, commonly referred to as homologous flares. In 2011 September, active region NOAA 11283 produced a pair of homologous flares on the 6th and 7th, respectively. Read More

We present the observation of a major solar eruption that is associated with fast sunspot rotation. The event includes a sigmoidal filament eruption, a coronal mass ejection, and a GOES X2.1 flare from NOAA active region 11283. Read More

The Helioseismic and Magnetic Imager provides 45 s cadence intensity images and 720 s cadence vector magnetograms. These unprecedented high-cadence and high-resolution data give us a unique opportunity to study the change of photospheric flows and sunspot rotations associated with flares. By using the differential affine velocity estimator method and the Fourier local correlation tracking method separately, we calculate velocity and vorticity of photospheric flows in the flaring NOAA AR 11158, and investigate their temporal evolution around the X2. Read More

This Letter reports two rarely observed three-ribbon flares (M1.9 and C9.2) on 2012 July 6 in NOAA AR 11515, which we found with Halpha observations of 0. Read More

Magnetic reconnection is one of the primary mechanisms for triggering solar eruptive events, but direct observation of its rapid process has been of challenge. In this Letter we present, using a nonlinear force-free field (NLFFF) extrapolation technique, a visualization of field line connectivity changes resulting from tether-cutting reconnection over about 30 minutes during the 2011 February 13 M6.6 flare in NOAA AR 11158. Read More

Rapid, irreversible changes of magnetic topology and sunspot structure associated with flares have been systematically observed in recent years. The most striking features include the increase of horizontal field at the polarity inversion line (PIL) and the co-spatial penumbral darkening. A likely explanation of the above phenomenon is the back reaction to the coronal restructuring after eruptions: a coronal mass ejection carries the upward momentum while the downward momentum compresses the field lines near the PIL. Read More

He I D3 line has a unique response to the flare impact on the low solar atmosphere and can be a powerful diagnostic tool for energy transport processes. Using images obtained from the recently digitized films of Big Bear Solar Observatory, we report D3 observation of the M6.3 flare on 1984 May 22, which occurred in an active region with a circular magnetic polarity inversion line (PIL). Read More

We present an unprecedented high-resolution \ha\ imaging spectroscopic observation of a C4.1 flare taken with IBIS on 2011 October 22. The flare consists of a main circular ribbon that occurred in a parasitic magnetic configuration and a remote ribbon that was observed by the IBIS. Read More

Numerical simulations suggest that kink and torus instabilities are two potential contributors to the initiation and prorogation of eruptive events. A magnetic parameter named decay index (i.e. Read More

The rapid and irreversible change of photospheric magnetic fields associated with flares has been confirmed by many recent studies. These studies showed that the photospheric magnetic fields respond to coronal field restructuring and turn to a more horizontal state near the magnetic polarity inversion line (PIL) after eruptions. Recent theoretical work has shown that the change in the Lorentz force associated with a magnetic eruption will lead to such a field configuration at the photosphere. Read More

It is recently noted that solar eruptions can be associated with the contraction of coronal loops that are not involved in magnetic reconnection processes. In this paper, we investigate five coronal eruptions originating from four sigmoidal active regions, using high-cadence, high-resolution narrowband EUV images obtained by the Solar Dynamic Observatory (SDO}). The magnitudes of the flares associated with the eruptions range from the GOES-class B to X. Read More

Solar flare emissions in the chromosphere often appear as elongated ribbons on both sides of the magnetic polarity inversion line (PIL), which has been regarded as evidence of a typical configuration of magnetic reconnection. However, flares having a circular ribbon have rarely been reported, although it is expected in the fan--spine magnetic topology involving reconnection at a three-dimensional (3D) coronal null point. We present five circular ribbon flares with associated surges, using high-resolution and high-cadence halpha blue wing observations obtained from the recently digitized films of Big Bear Solar Observatory. Read More

We study an active-region dextral filament which was composed of two branches separated in height by about 13 Mm. This "double-decker" configuration sustained for days before the upper branch erupted with a GOES-class M1.0 flare on 2010 August 7. Read More

In the past two decades, the complex nature of sunspots has been disclosed with high-resolution observations. One of the most important findings is the "uncombed" penumbral structure, where a more horizontal magnetic component carrying most of Evershed Flows is embedded in a more vertical magnetic background (Solanki & Montavon 1993). The penumbral bright grains are locations of hot upflows and dark fibrils are locations of horizontal flows that are guided by nearly horizontal magnetic field. Read More

Long-term (a few days) variation of magnetic helicity injection was calculated for 28 solar active regions which produced 47 CMEs to find its relationships with the CME occurrence and speed using SOHO/MDI line-of-sight magnetograms. As a result, we found that the 47 CMEs can be categorized into two different groups by two characteristic evolution patterns of helicity injection in their source active regions which appeared for about 0.5-4. Read More

It is well known that the long-term evolution of the photospheric magnetic field plays an important role in building up free energy to power solar eruptions. Observations, despite being controversial, have also revealed a rapid and permanent variation of the photospheric magnetic field in response to the coronal magnetic field restructuring during the eruption. The Helioseismic and Magnetic Imager instrument (HMI) on board the newly launched Solar Dynamics Observatory (SDO) produces seeing-free full-disk vector magnetograms at consistently high resolution and high cadence, which finally makes possible an unambiguous and comprehensive study of this important back-reaction process. Read More

The rapid, irreversible change of the photospheric magnetic field has been recognized as an important element of the solar flare process. This Letter reports such a rapid change of magnetic fields during the 2011 February 13 M6.6 flare in NOAA AR 11158 that we found from the vector magnetograms of the Helioseismic and Magnetic Imager with 12-min cadence. Read More

We use rotation stereoscopy to estimate the height of a steady-state solar feature relative to the photosphere, based on its apparent motion in the image plane recorded over several days of observation. The stereoscopy algorithm is adapted to work with either one- or two-dimensional data (i.e. Read More

The commonly observed jets provide critical information on the small-scale energy release in the solar atmosphere. We report a near disk-center jet on 2010 July 20, observed by the Solar Dynamics Observatory. In this event, the standard interchange magnetic reconnection between an emerging flux spanning 9 x 10^3 km and ambient open fields is followed by a blowout-like eruption. Read More

We present G-band and Ca II H observations of NOAA AR 10930 obtained by Hinode/SOT on 2006 December 6 covering an X6.5 flare. Local Correlation Tracking (LCT) technique was applied to the foreshortening-corrected G-band image series to acquire horizontal proper motions in this complex beta-gamma-delta active region. Read More

Photospheric magnetic field not only plays important roles in building up free energy and triggering solar eruptions, but also has been observed to change rapidly and permanently responding to the coronal magnetic field restructuring due to coronal transients. The Helioseismic and Magnetic Imager instrument (HMI) on board the newly launched Solar Dynamics Observatory (SDO) produces seeing-free full-disk vector magnetograms at consistently high resolution and high cadence, which finally makes possible an unambiguous and comprehensive study of this important back-reaction process. In this study, we present a near disk-center, GOES-class X2. Read More

Using Hinode SP and G-band observations, we examined the relationship between magnetic field structure and penumbral size as well as Evershed flow speed. The latter two are positively correlated with magnetic inclination angle or horizontal field strength within 1.5 kilogauss, which is in agreement with recent magnetoconvective simulations of Evershed effect. Read More

Sigmoids are one of the most important precursor structures for solar eruptions. In this Letter, we study a sigmoid eruption on 2010 August 1 with EUV data obtained by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamic Observatory (SDO). In AIA 94 \AA\ (Fe XVIII; 6 MK), topological reconfiguration due to tether-cutting reconnection is unambiguously observed for the first time, i. Read More

Magnetic reconnection changes the magnetic field topology and powers explosive events in astrophysical, space and laboratory plasmas. For flares and coronal mass ejections (CMEs) in the solar atmosphere, the standard model predicts the presence of a reconnecting current sheet, which has been the subject of considerable theoretical and numerical modeling over the last fifty years, yet direct, unambiguous observational verification has been absent. In this Letter we show a bright sheet structure of global length (>0. Read More

Filament eruptions and hard X-ray (HXR) source motions are commonly observed in solar flares, which provides critical information on the coronal magnetic reconnection. This Letter reports an event on 2005 January 15, in which we found an asymmetric filament eruption and a subsequent coronal mass ejection together with complicated motions of HXR sources during the GOES-class X2.6 flare. Read More

The pre-CME structure is of great importance to understanding the origin of CMEs, which, however, has been largely unknown for CMEs originating from active regions. In this paper, selected for studying are 16 active-region coronal arcades whose gradual inflation lead up to CMEs. 12 of them clearly build upon post-eruptive arcades resulting from a preceding eruption. Read More

To study the three-dimensional (3D) magnetic field topology and its long-term evolution associated with the X3.4 flare of 2006 December 13, we investigate the coronal relative magnetic helicity in the flaring active region (AR) NOAA 10930 during the time period of December 8-14. The coronal helicity is calculated based on the 3D nonlinear force-free magnetic fields reconstructed by the weighted optimization method of Wiegelmann, and is compared with the amount of helicity injected through the photospheric surface of the AR. Read More

A magnetic channel - a series of polarity reversals separating elongated flux threads with opposite polarities - may be a manifestation of a highly non-potential magnetic configuration in active regions. To understand its formation we have carried out a detailed analysis of the magnetic channel in AR 10930 using data taken by the Solar Optical Telescope/Hinode. As a result, we found upflows (-0. Read More

Most models of solar eruptions assume that coronal field lines are anchored in the dense photosphere and thus the photospheric magnetic fields would not have rapid, irreversible changes associated with eruptions resulted from the coronal magnetic reconnection. Motivated by the recent work of Hudson, Fisher & Welsch (2008) on quantitatively evaluating the back reaction due to energy release from the coronal fields, in this Letter we synthesize our previous studies and present analysis of new events about flare-related changes of photospheric magnetic fields. For the 11 X-class flares where vector magnetograms are available, we always find an increase of transverse field at the polarity inversion line (PIL) although only 4 events had measurements with 1 minute temporal resolution. Read More

The main objective of this study is to better understand how magnetic helicity injection in an active region is related to the occurrence and intensity of solar flares. We therefore investigate magnetic helicity injection rate and unsigned magnetic flux, as a reference. In total, 378 active regions are analyzed using $SOHO$/MDI magnetograms. Read More