H. Ono - The CALICE Collaboration

H. Ono
Are you H. Ono?

Claim your profile, edit publications, add additional information:

Contact Details

Name
H. Ono
Affiliation
The CALICE Collaboration
Location

Pubs By Year

Pub Categories

 
High Energy Physics - Experiment (20)
 
Computer Science - Data Structures and Algorithms (10)
 
Mathematics - Differential Geometry (10)
 
Physics - Instrumentation and Detectors (6)
 
Computer Science - Discrete Mathematics (6)
 
High Energy Physics - Phenomenology (5)
 
Mathematics - Algebraic Geometry (4)
 
Mathematics - Symplectic Geometry (4)
 
Mathematics - Combinatorics (3)
 
High Energy Physics - Theory (2)
 
Nuclear Theory (2)
 
Nuclear Experiment (2)
 
Mathematical Physics (1)
 
Mathematics - Mathematical Physics (1)
 
Physics - Statistical Mechanics (1)
 
Astrophysics (1)
 
Physics - Strongly Correlated Electrons (1)
 
Computer Science - Computational Complexity (1)
 
Mathematics - Probability (1)
 
Mathematics - Information Theory (1)
 
Computer Science - Distributed; Parallel; and Cluster Computing (1)
 
Computer Science - Information Theory (1)
 
Computer Science - Artificial Intelligence (1)
 
Computer Science - Logic in Computer Science (1)

Publications Authored By H. Ono

2017May
Authors: N. Dash, S. Bahinipati, V. Bhardwaj, K. Trabelsi, I. Adachi, H. Aihara, S. Al Said, D. M. Asner, V. Aulchenko, T. Aushev, R. Ayad, V. Babu, I. Badhrees, A. M. Bakich, V. Bansal, E. Barberio, B. Bhuyan, J. Biswal, A. Bobrov, A. Bondar, G. Bonvicini, A. Bozek, M. Bracko, F. Breibeck, T. E. Browder, D. Cervenkov, M. -C. Chang, V. Chekelian, A. Chen, B. G. Cheon, K. Chilikin, K. Cho, Y. Choi, D. Cinabro, S. Di Carlo, Z. Dolezal, Z. Drasal, D. Dutta, S. Eidelman, D. Epifanov, H. Farhat, J. E. Fast, T. Ferber, B. G. Fulsom, V. Gaur, N. Gabyshev, A. Garmash, R. Gillard, P. Goldenzweig, J. Haba, T. Hara, K. Hayasaka, H. Hayashii, M. T. Hedges, W. -S. Hou, T. Iijima, K. Inami, A. Ishikawa, R. Itoh, Y. Iwasaki, W. W. Jacobs, I. Jaegle, H. B. Jeon, Y. Jin, D. Joffe, K. K. Joo, T. Julius, J. Kahn, A. B. Kaliyar, G. Karyan, P. Katrenko, T. Kawasaki, C. Kiesling, D. Y. Kim, H. J. Kim, J. B. Kim, K. T. Kim, M. J. Kim, S. H. Kim, Y. J. Kim, K. Kinoshita, P. Kodys, S. Korpar, D. Kotchetkov, P. Krizan, P. Krokovny, T. Kuhr, R. Kulasiri, R. Kumar, T. Kumita, A. Kuzmin, Y. -J. Kwon, J. S. Lange, 11 I. S. Lee, C. H. Li, L. Li, Y. Li, L. Li Gioi, J. Libby, D. Liventsev, M. Lubej, T. Luo, M. Masuda, D. Matvienko, M. Merola, K. Miyabayashi, H. Miyata, R. Mizuk, G. B. Mohanty, S. Mohanty, H. K. Moon, T. Mori, R. Mussa, E. Nakano, M. Nakao, T. Nanut, K. J. Nath, Z. Natkaniec, M. Nayak, M. Niiyama, N. K. Nisar, S. Nishida, S. Ogawa, S. Okuno, H. Ono, P. Pakhlov, G. Pakhlova, B. Pal, S. Pardi, C. -S. Park, H. Park, S. Paul, T. K. Pedlar, L. Pesantez, R. Pestotnik, L. E. Piilonen, K. Prasanth, M. Ritter, A. Rostomyan, H. Sahoo, Y. Sakai, S. Sandilya, L. Santelj, T. Sanuki, Y. Sato, V. Savinov, O. Schneider, G. Schnell, C. Schwanda, A. J. Schwartz, Y. Seino, K. Senyo, M. E. Sevior, V. Shebalin, C. P. Shen, T. -A. Shibata, J. -G. Shiu, B. Shwartz, F. Simon, A. Sokolov, E. Solovieva, M. Staric, J. F. Strube, J. Stypula, K. Sumisawa, T. Sumiyoshi, M. Takizawa, U. Tamponi, K. Tanida, F. Tenchini, M. Uchida, T. Uglov, Y. Unno, S. Uno, P. Urquijo, Y. Usov, C. Van Hulse, G. Varner, V. Vorobyev, A. Vossen, E. Waheed, C. H. Wang, M. -Z. Wang, P. Wang, M. Watanabe, Y. Watanabe, E. Widmann, K. M. Williams, E. Won, Y. Yamashita, H. Ye, J. Yelton, Y. Yook, C. Z. Yuan, Y. Yusa, Z. P. Zhang, V. Zhilich, V. Zhukova, V. Zhulanov, A. Zupanc

We report a study of the decay $D^0 \to K^0_S K^0_S$ using 921~fb$^{-1}$ of data collected at or near the $\Upsilon(4S)$ and $\Upsilon(5S)$ resonances with the Belle detector at the KEKB asymmetric-energy $e^+e^-$ collider. The measured time-integrated CP asymmetry is $ A_{CP}(D^0 \to K^0_S K^0_S) = (-0.02 \pm 1. Read More

2017May
Authors: Belle Collaboration, C. -L. Hsu, D. Dossett, M. E. Sevior, I. Adachi, H. Aihara, S. Al Said, D. M. Asner, H. Atmacan, V. Aulchenko, T. Aushev, I. Badhrees, A. M. Bakich, E. Barberio, P. Behera, M. Berger, V. Bhardwaj, B. Bhuyan, J. Biswal, T. Bloomfield, A. Bondar, G. Bonvicini, A. Bozek, M. Bračko, T. E. Browder, V. Chekelian, A. Chen, K. Chilikin, R. Chistov, K. Cho, Y. Choi, D. Cinabro, N. Dash, S. Di Carlo, Z. Doležal, Z. Drásal, S. Eidelman, H. Farhat, J. E. Fast, B. G. Fulsom, V. Gaur, N. Gabyshev, A. Garmash, P. Goldenzweig, B. Golob, O. Grzymkowska, E. Guido, T. Hara, K. Hayasaka, H. Hayashii, M. T. Hedges, W. -S. Hou, K. Inami, G. Inguglia, A. Ishikawa, W. W. Jacobs, I. Jaegle, H. B. Jeon, Y. Jin, D. Joffe, K. K. Joo, T. Julius, A. B. Kaliyar, K. H. Kang, P. Katrenko, T. Kawasaki, C. Kiesling, D. Y. Kim, H. J. Kim, J. B. Kim, K. T. Kim, M. J. Kim, S. H. Kim, P. Kodyš, S. Korpar, D. Kotchetkov, P. Križan, P. Krokovny, T. Kuhr, R. Kulasiri, A. Kuzmin, Y. -J. Kwon, Y. -T. Lai, J. S. Lange, C. H. Li, L. Li, L. Li Gioi, J. Libby, D. Liventsev, M. Lubej, T. Luo, M. Masuda, T. Matsuda, D. Matvienko, K. Miyabayashi, H. Miyata, R. Mizuk, G. B. Mohanty, T. Mori, R. Mussa, E. Nakano, M. Nakao, T. Nanut, K. J. Nath, Z. Natkaniec, M. Nayak, N. K. Nisar, S. Nishida, S. Ogawa, S. Okuno, H. Ono, Y. Onuki, G. Pakhlova, B. Pal, C. -S. Park, C. W. Park, H. Park, S. Paul, L. Pesántez, L. E. Piilonen, A. Rostomyan, Y. Sakai, S. Sandilya, T. Sanuki, Y. Sato, V. Savinov, O. Schneider, G. Schnell, C. Schwanda, Y. Seino, K. Senyo, V. Shebalin, T. -A. Shibata, J. -G. Shiu, B. Shwartz, F. Simon, E. Solovieva, M. Starič, J. F. Strube, K. Sumisawa, M. Takizawa, F. Tenchini, M. Uchida, T. Uglov, Y. Unno, S. Uno, P. Urquijo, Y. Usov, C. Van Hulse, G. Varner, K. E. Varvell, V. Vorobyev, E. Waheed, C. H. Wang, M. -Z. Wang, M. Watanabe, Y. Watanabe, E. Widmann, K. M. Williams, E. Won, Y. Yamashita, H. Ye, Z. P. Zhang, V. Zhilich, V. Zhukova, V. Zhulanov, A. Zupanc

We report a study of the charmless hadronic decay of the charged $B$ meson to the three-body final state $K^+ K^- \pi^+$. The results are based on a data sample that contains $772\times10^6$ $B \bar{B}$ pairs collected at the $\Upsilon(4S)$ resonance with the Belle detector at the KEKB asymmetric-energy $e^+ e^-$ collider. The measured inclusive branching fraction and the direct $CP$ asymmetry are $(5. Read More

2017May
Authors: T. Julius1, M. E. Sevior2, G. B. Mohanty3, I. Adachi4, H. Aihara5, S. Al Said6, D. M. Asner7, V. Aulchenko8, T. Aushev9, R. Ayad10, V. Babu11, I. Badhrees12, A. M. Bakich13, V. Bansal14, E. Barberio15, M. Barrett16, M. Berger17, V. Bhardwaj18, B. Bhuyan19, J. Biswal20, T. Bloomfield21, A. Bobrov22, A. Bondar23, G. Bonvicini24, A. Bozek25, M. Bračko26, T. E. Browder27, D. Červenkov28, M. -C. Chang29, Y. Chao30, V. Chekelian31, A. Chen32, B. G. Cheon33, K. Chilikin34, K. Cho35, Y. Choi36, D. Cinabro37, N. Dash38, S. Di Carlo39, Z. Doležal40, D. Dossett41, Z. Drásal42, D. Dutta43, S. Eidelman44, H. Farhat45, J. E. Fast46, T. Ferber47, B. G. Fulsom48, V. Gaur49, N. Gabyshev50, A. Garmash51, R. Gillard52, P. Goldenzweig53, J. Haba54, T. Hara55, K. Hayasaka56, H. Hayashii57, W. -S. Hou58, C. -L. Hsu59, T. Iijima60, K. Inami61, A. Ishikawa62, R. Itoh63, Y. Iwasaki64, W. W. Jacobs65, I. Jaegle66, Y. Jin67, D. Joffe68, K. K. Joo69, J. Kahn70, G. Karyan71, P. Katrenko72, T. Kawasaki73, C. Kiesling74, D. Y. Kim75, H. J. Kim76, J. B. Kim77, K. T. Kim78, M. J. Kim79, S. H. Kim80, Y. J. Kim81, K. Kinoshita82, P. Kodyš83, S. Korpar84, D. Kotchetkov85, P. Križan86, P. Krokovny87, T. Kuhr88, R. Kulasiri89, A. Kuzmin90, Y. -J. Kwon91, J. S. Lange92, I. S. Lee93, C. H. Li94, L. Li95, Y. Li96, L. Li Gioi97, J. Libby98, D. Liventsev99, T. Luo100, J. MacNaughton101, M. Masuda102, T. Matsuda103, M. Merola104, K. Miyabayashi105, H. Miyata106, R. Mizuk107, H. K. Moon108, T. Mori109, R. Mussa110, E. Nakano111, M. Nakao112, T. Nanut113, K. J. Nath114, Z. Natkaniec115, M. Nayak116, N. K. Nisar117, S. Nishida118, S. Ogawa119, H. Ono120, P. Pakhlov121, G. Pakhlova122, B. Pal123, S. Pardi124, C. -S. Park125, H. Park126, L. Pesántez127, R. Pestotnik128, L. E. Piilonen129, C. Pulvermacher130, M. Ritter131, H. Sahoo132, Y. Sakai133, M. Salehi134, S. Sandilya135, L. Santelj136, T. Sanuki137, Y. Sato138, V. Savinov139, O. Schneider140, G. Schnell141, C. Schwanda142, A. J. Schwartz143, Y. Seino144, K. Senyo145, V. Shebalin146, T. -A. Shibata147, J. -G. Shiu148, B. Shwartz149, A. Sokolov150, E. Solovieva151, M. Starič152, T. Sumiyoshi153, U. Tamponi154, K. Tanida155, F. Tenchini156, K. Trabelsi157, M. Uchida158, S. Uehara159, T. Uglov160, Y. Unno161, S. Uno162, P. Urquijo163, Y. Usov164, C. Van Hulse165, G. Varner166, K. E. Varvell167, A. Vossen168, E. Waheed169, C. H. Wang170, M. -Z. Wang171, P. Wang172, M. Watanabe173, Y. Watanabe174, E. Widmann175, K. M. Williams176, E. Won177, Y. Yamashita178, H. Ye179, C. Z. Yuan180, Y. Yusa181, Z. P. Zhang182, V. Zhilich183, V. Zhulanov184, A. Zupanc185
Affiliations: 1The Belle Collaboration, 2The Belle Collaboration, 3The Belle Collaboration, 4The Belle Collaboration, 5The Belle Collaboration, 6The Belle Collaboration, 7The Belle Collaboration, 8The Belle Collaboration, 9The Belle Collaboration, 10The Belle Collaboration, 11The Belle Collaboration, 12The Belle Collaboration, 13The Belle Collaboration, 14The Belle Collaboration, 15The Belle Collaboration, 16The Belle Collaboration, 17The Belle Collaboration, 18The Belle Collaboration, 19The Belle Collaboration, 20The Belle Collaboration, 21The Belle Collaboration, 22The Belle Collaboration, 23The Belle Collaboration, 24The Belle Collaboration, 25The Belle Collaboration, 26The Belle Collaboration, 27The Belle Collaboration, 28The Belle Collaboration, 29The Belle Collaboration, 30The Belle Collaboration, 31The Belle Collaboration, 32The Belle Collaboration, 33The Belle Collaboration, 34The Belle Collaboration, 35The Belle Collaboration, 36The Belle Collaboration, 37The Belle Collaboration, 38The Belle Collaboration, 39The Belle Collaboration, 40The Belle Collaboration, 41The Belle Collaboration, 42The Belle Collaboration, 43The Belle Collaboration, 44The Belle Collaboration, 45The Belle Collaboration, 46The Belle Collaboration, 47The Belle Collaboration, 48The Belle Collaboration, 49The Belle Collaboration, 50The Belle Collaboration, 51The Belle Collaboration, 52The Belle Collaboration, 53The Belle Collaboration, 54The Belle Collaboration, 55The Belle Collaboration, 56The Belle Collaboration, 57The Belle Collaboration, 58The Belle Collaboration, 59The Belle Collaboration, 60The Belle Collaboration, 61The Belle Collaboration, 62The Belle Collaboration, 63The Belle Collaboration, 64The Belle Collaboration, 65The Belle Collaboration, 66The Belle Collaboration, 67The Belle Collaboration, 68The Belle Collaboration, 69The Belle Collaboration, 70The Belle Collaboration, 71The Belle Collaboration, 72The Belle Collaboration, 73The Belle Collaboration, 74The Belle Collaboration, 75The Belle Collaboration, 76The Belle Collaboration, 77The Belle Collaboration, 78The Belle Collaboration, 79The Belle Collaboration, 80The Belle Collaboration, 81The Belle Collaboration, 82The Belle Collaboration, 83The Belle Collaboration, 84The Belle Collaboration, 85The Belle Collaboration, 86The Belle Collaboration, 87The Belle Collaboration, 88The Belle Collaboration, 89The Belle Collaboration, 90The Belle Collaboration, 91The Belle Collaboration, 92The Belle Collaboration, 93The Belle Collaboration, 94The Belle Collaboration, 95The Belle Collaboration, 96The Belle Collaboration, 97The Belle Collaboration, 98The Belle Collaboration, 99The Belle Collaboration, 100The Belle Collaboration, 101The Belle Collaboration, 102The Belle Collaboration, 103The Belle Collaboration, 104The Belle Collaboration, 105The Belle Collaboration, 106The Belle Collaboration, 107The Belle Collaboration, 108The Belle Collaboration, 109The Belle Collaboration, 110The Belle Collaboration, 111The Belle Collaboration, 112The Belle Collaboration, 113The Belle Collaboration, 114The Belle Collaboration, 115The Belle Collaboration, 116The Belle Collaboration, 117The Belle Collaboration, 118The Belle Collaboration, 119The Belle Collaboration, 120The Belle Collaboration, 121The Belle Collaboration, 122The Belle Collaboration, 123The Belle Collaboration, 124The Belle Collaboration, 125The Belle Collaboration, 126The Belle Collaboration, 127The Belle Collaboration, 128The Belle Collaboration, 129The Belle Collaboration, 130The Belle Collaboration, 131The Belle Collaboration, 132The Belle Collaboration, 133The Belle Collaboration, 134The Belle Collaboration, 135The Belle Collaboration, 136The Belle Collaboration, 137The Belle Collaboration, 138The Belle Collaboration, 139The Belle Collaboration, 140The Belle Collaboration, 141The Belle Collaboration, 142The Belle Collaboration, 143The Belle Collaboration, 144The Belle Collaboration, 145The Belle Collaboration, 146The Belle Collaboration, 147The Belle Collaboration, 148The Belle Collaboration, 149The Belle Collaboration, 150The Belle Collaboration, 151The Belle Collaboration, 152The Belle Collaboration, 153The Belle Collaboration, 154The Belle Collaboration, 155The Belle Collaboration, 156The Belle Collaboration, 157The Belle Collaboration, 158The Belle Collaboration, 159The Belle Collaboration, 160The Belle Collaboration, 161The Belle Collaboration, 162The Belle Collaboration, 163The Belle Collaboration, 164The Belle Collaboration, 165The Belle Collaboration, 166The Belle Collaboration, 167The Belle Collaboration, 168The Belle Collaboration, 169The Belle Collaboration, 170The Belle Collaboration, 171The Belle Collaboration, 172The Belle Collaboration, 173The Belle Collaboration, 174The Belle Collaboration, 175The Belle Collaboration, 176The Belle Collaboration, 177The Belle Collaboration, 178The Belle Collaboration, 179The Belle Collaboration, 180The Belle Collaboration, 181The Belle Collaboration, 182The Belle Collaboration, 183The Belle Collaboration, 184The Belle Collaboration, 185The Belle Collaboration

We measure the branching fraction and $CP$-violating asymmetry in the decay $B^{0}\to \pi^{0}\pi^{0}$, using a data sample of $752\times 10^{6}$ $B\bar{B}$ pairs collected at the $\Upsilon(4S)$ resonance with the Belle detector at the KEKB $e^{+}e^{-}$ collider. The obtained branching fraction and direct $CP$ asymmetry are $ \mathcal{B}(B\to \pi^{0}\pi^{0}) = [1.31 \pm 0. Read More

2017Apr
Authors: Belle Collaboration, K. Chilikin, I. Adachi, H. Aihara, S. Al Said, D. M. Asner, V. Aulchenko, R. Ayad, V. Babu, I. Badhrees, A. M. Bakich, V. Bansal, E. Barberio, D. Besson, V. Bhardwaj, B. Bhuyan, J. Biswal, A. Bobrov, A. Bondar, A. Bozek, M. Bračko, T. E. Browder, D. Červenkov, V. Chekelian, A. Chen, B. G. Cheon, K. Cho, Y. Choi, D. Cinabro, N. Dash, S. Di Carlo, Z. Doležal, Z. Drásal, D. Dutta, S. Eidelman, H. Farhat, J. E. Fast, T. Ferber, B. G. Fulsom, V. Gaur, N. Gabyshev, A. Garmash, R. Gillard, P. Goldenzweig, J. Haba, T. Hara, K. Hayasaka, W. -S. Hou, K. Inami, A. Ishikawa, R. Itoh, Y. Iwasaki, W. W. Jacobs, I. Jaegle, H. B. Jeon, Y. Jin, D. Joffe, K. K. Joo, T. Julius, K. H. Kang, G. Karyan, P. Katrenko, D. Y. Kim, H. J. Kim, J. B. Kim, K. T. Kim, M. J. Kim, S. H. Kim, Y. J. Kim, K. Kinoshita, P. Kodyš, S. Korpar, D. Kotchetkov, P. Križan, P. Krokovny, T. Kuhr, R. Kulasiri, A. Kuzmin, Y. -J. Kwon, J. S. Lange, L. Li, L. Li Gioi, J. Libby, D. Liventsev, M. Lubej, T. Luo, M. Masuda, T. Matsuda, D. Matvienko, K. Miyabayashi, H. Miyata, R. Mizuk, G. B. Mohanty, H. K. Moon, T. Mori, R. Mussa, E. Nakano, M. Nakao, T. Nanut, K. J. Nath, Z. Natkaniec, M. Nayak, M. Niiyama, N. K. Nisar, S. Nishida, S. Ogawa, S. Okuno, S. L. Olsen, H. Ono, P. Pakhlov, G. Pakhlova, B. Pal, S. Pardi, H. Park, S. Paul, R. Pestotnik, L. E. Piilonen, C. Pulvermacher, M. Ritter, H. Sahoo, Y. Sakai, M. Salehi, S. Sandilya, L. Santelj, T. Sanuki, O. Schneider, G. Schnell, C. Schwanda, Y. Seino, K. Senyo, O. Seon, M. E. Sevior, V. Shebalin, C. P. Shen, T. -A. Shibata, J. -G. Shiu, A. Sokolov, E. Solovieva, M. Starič, T. Sumiyoshi, M. Takizawa, U. Tamponi, K. Tanida, F. Tenchini, K. Trabelsi, M. Uchida, S. Uehara, T. Uglov, S. Uno, Y. Usov, C. Van Hulse, G. Varner, A. Vinokurova, A. Vossen, C. H. Wang, M. -Z. Wang, P. Wang, M. Watanabe, Y. Watanabe, E. Widmann, E. Won, H. Yamamoto, Y. Yamashita, H. Ye, C. Z. Yuan, Y. Yusa, Z. P. Zhang, V. Zhilich, V. Zhulanov, A. Zupanc

We perform a full amplitude analysis of the process $e^+ e^- \rightarrow J/\psi D \bar{D}$, where $D$ refers to either $D^0$ or $D^+$. A new charmoniumlike state $X^*(3860)$ that decays to $D \bar{D}$ is observed with a significance of $6.5\sigma$. Read More

2017Mar
Authors: Belle Collaboration, C. Beleño, J. Dingfelder, P. Urquijo, H. Aihara, S. Al Said, D. M. Asner, T. Aushev, R. Ayad, V. Babu, I. Badhrees, A. M. Bakich, V. Bansal, P. Behera, B. Bhuyan, J. Biswal, A. Bobrov, M. Bračko, T. E. Browder, D. Červenkov, A. Chen, B. G. Cheon, R. Chistov, S. -K. Choi, Y. Choi, D. Cinabro, N. Dash, S. Di Carlo, Z. Doležal, S. Eidelman, H. Farhat, J. E. Fast, T. Ferber, A. Frey, B. G. Fulsom, V. Gaur, N. Gabyshev, A. Garmash, R. Gillard, P. Goldenzweig, T. Hara, H. Hayashii, M. T. Hedges, W. -S. Hou, T. Iijima, K. Inami, G. Inguglia, A. Ishikawa, R. Itoh, Y. Iwasaki, H. B. Jeon, Y. Jin, D. Joffe, K. K. Joo, K. H. Kang, G. Karyan, D. Y. Kim, J. B. Kim, K. T. Kim, M. J. Kim, Y. J. Kim, K. Kinoshita, P. Kodyš, S. Korpar, D. Kotchetkov, P. Križan, R. Kulasiri, I. S. Lee, Y. Li, L. Li Gioi, J. Libby, D. Liventsev, M. Lubej, T. Luo, M. Masuda, T. Matsuda, D. Matvienko, K. Miyabayashi, H. Miyata, H. K. Moon, T. Mori, E. Nakano, M. Nakao, T. Nanut, K. J. Nath, M. Nayak, S. Nishida, S. Ogawa, S. Okuno, H. Ono, B. Pal, C. -S. Park, C. W. Park, H. Park, T. K. Pedlar, R. Pestotnik, L. E. Piilonen, M. Ritter, Y. Sakai, M. Salehi, S. Sandilya, T. Sanuki, O. Schneider, G. Schnell, C. Schwanda, Y. Seino, K. Senyo, O. Seon, M. E. Sevior, V. Shebalin, T. -A. Shibata, J. -G. Shiu, F. Simon, E. Solovieva, M. Starič, T. Sumiyoshi, M. Takizawa, U. Tamponi, K. Tanida, F. Tenchini, M. Uchida, T. Uglov, Y. Unno, S. Uno, Y. Usov, C. Van Hulse, G. Varner, K. E. Varvell, A. Vinokurova, V. Vorobyev, C. H. Wang, M. -Z. Wang, P. Wang, Y. Watanabe, E. Widmann, E. Won, Y. Yamashita, H. Ye, J. Yelton, Y. Yook, Z. P. Zhang, V. Zhilich, V. Zhukova, V. Zhulanov, A. Zupanc

We report branching fraction measurements of the decays $B^+\to\eta\ell^+\nu_\ell$ and $B^+\to\eta^\prime\ell^+\nu_\ell$ based on 711~fb$^{-1}$ of data collected near the $\Upsilon(4S)$ resonance with the Belle experiment at the KEKB asymmetric-energy $e^+e^-$ collider. This data sample contains 772 million $B\bar B$~events. One of the two $B$~mesons is fully reconstructed in a hadronic decay mode. Read More

2017Mar
Authors: Belle Collaboration, K. Prasanth, J. Libby, I. Adachi, H. Aihara, S. Al Said, D. M. Asner, V. Aulchenko, T. Aushev, R. Ayad, V. Babu, I. Badhrees, S. Bahinipati, A. M. Bakich, V. Bansal, E. Barberio, M. Berger, V. Bhardwaj, B. Bhuyan, J. Biswal, A. Bobrov, A. Bondar, G. Bonvicini, A. Bozek, M. Bračko, T. E. Browder, D. Červenkov, V. Chekelian, A. Chen, B. G. Cheon, K. Chilikin, R. Chistov, K. Cho, S. -K. Choi, Y. Choi, D. Cinabro, N. Dash, S. Di Carlo, Z. Doležal, Z. Drásal, D. Dutta, S. Eidelman, D. Epifanov, H. Farhat, J. E. Fast, T. Ferber, B. G. Fulsom, V. Gaur, N. Gabyshev, A. Garmash, R. Gillard, P. Goldenzweig, D. Greenwald, J. Haba, T. Hara, K. Hayasaka, M. T. Hedges, W. -S. Hou, K. Inami, A. Ishikawa, R. Itoh, Y. Iwasaki, W. W. Jacobs, I. Jaegle, H. B. Jeon, Y. Jin, D. Joffe, K. K. Joo, T. Julius, A. B. Kaliyar, K. H. Kang, G. Karyan, T. Kawasaki, C. Kiesling, D. Y. Kim, J. B. Kim, K. T. Kim, M. J. Kim, S. H. Kim, Y. J. Kim, K. Kinoshita, P. Kodyš, S. Korpar, D. Kotchetkov, P. Križan, P. Krokovny, T. Kuhr, R. Kulasiri, R. Kulasiri, R. Kumar, T. Kumita, A. Kuzmin, Y. -J. Kwon, J. S. Lange, I. S. Lee, C. H. Li, L. Li, L. Li Gioi, D. Liventsev, M. Lubej, T. Luo, M. Masuda, T. Matsuda, D. Matvienko, K. Miyabayashi, H. Miyata, R. Mizuk, G. B. Mohanty, H. K. Moon, T. Mori, R. Mussa, M. Nakao, T. Nanut, K. J. Nath, Z. Natkaniec, M. Nayak, M. Niiyama, N. K. Nisar, S. Nishida, S. Ogawa, S. Okuno, H. Ono, P. Pakhlov, G. Pakhlova, B. Pal, C. -S. Park, H. Park, S. Paul, L. Pesántez, R. Pestotnik, L. E. Piilonen, C. Pulvermacher, M. Ritter, A. Rostomyan, Y. Sakai, M. Salehi, S. Sandilya, L. Santelj, T. Sanuki, Y. Sato, O. Schneider, G. Schnell, C. Schwanda, A. J. Schwartz, Y. Seino, K. Senyo, M. E. Sevior, V. Shebalin, C. P. Shen, T. -A. Shibata, J. -G. Shiu, B. Shwartz, F. Simon, R. Sinha, A. Sokolov, E. Solovieva, M. Starič, J. F. Strube, K. Sumisawa, T. Sumiyoshi, M. Takizawa, U. Tamponi, K. Tanida, F. Tenchini, K. Trabelsi, M. Uchida, S. Uehara, T. Uglov, Y. Unno, S. Uno, P. Urquijo, C. Van Hulse, G. Varner, A. Vinokurova, V. Vorobyev, A. Vossen, E. Waheed, C. H. Wang, M. -Z. Wang, P. Wang, M. Watanabe, Y. Watanabe, E. Widmann, K. M. Williams, E. Won, H. Yamamoto, Y. Yamashita, H. Ye, J. Yelton, Y. Yook, C. Z. Yuan, Y. Yusa, Z. P. Zhang, V. Zhilich, V. Zhukova, V. Zhulanov, A. Zupanc

We report the first measurement of the $T$-odd moments in the decay $D^{0} \rightarrow K_{S}^{0} \pi^{+} \pi^{-} \pi^{0}$ from a data sample corresponding to an integrated luminosity of $966\,{\rm fb}^{-1}$ collected by the Belle experiment at the KEKB asymmetric-energy $e^+ e^-$ collider. From these moments we determine the $CP$-violation-sensitive asymmetry $a_{CP}^{T\text{-odd}} = \left[-0.28 \pm 1. Read More

2017Feb
Authors: The Belle Collaboration, J. Grygier, P. Goldenzweig, M. Heck, I. Adachi, H. Aihara, S. Al Said, D. M. Asner, T. Aushev, R. Ayad, T. Aziz, V. Babu, I. Badhrees, S. Bahinipati, A. M. Bakich, V. Bansal, E. Barberio, P. Behera, B. Bhuyan, J. Biswal, A. Bobrov, A. Bondar, G. Bonvicini, A. Bozek, M. Bračko, T. E. Browder, D. Cervenkov, P. Chang, V. Chekelian, A. Chen, B. G. Cheon, K. Chilikin, R. Chistov, K. Cho, Y. Choi, D. Cinabro, N. Dash, S. Di Carlo, Z. Doležal, Z. Drásal, D. Dutta, S. Eidelman, H. Farhat, J. E. Fast, T. Ferber, B. G. Fulsom, V. Gaur, N. Gabyshev, A. Garmash, M. Gelb, R. Gillard, B. Golob, O. Grzymkowska, E. Guido, J. Haba, T. Hara, K. Hayasaka, H. Hayashii, M. T. Hedges, C. -L. Hsu, T. Iijima, K. Inami, G. Inguglia, A. Ishikawa, R. Itoh, Y. Iwasaki, W. W. Jacobs, I. Jaegle, H. B. Jeon, Y. Jin, D. Joffe, K. K. Joo, T. Julius, J. Kahn, A. B. Kaliyar, K. H. Kang, G. Karyan, P. Katrenko, T. Kawasaki, T. Keck, H. Kichimi, C. Kiesling, D. Y. Kim, H. J. Kim, J. B. Kim, K. T. Kim, M. J. Kim, S. H. Kim, K. Kinoshita, P. Kodyš, S. Korpar, D. Kotchetkov, P. Križan, P. Krokovny, T. Kuhr, R. Kulasiri, T. Kumita, A. Kuzmin, Y. -J. Kwon, J. S. Lange, C. H. Li, L. Li, Y. Li, L. Li Gioi, J. Libby, D. Liventsev, M. Lubej, T. Luo, M. Masuda, T. Matsuda, D. Matvienko, F. Metzner, K. Miyabayashi, H. Miyake, H. Miyata, R. Mizuk, G. B. Mohanty, H. K. Moon, T. Mori, R. Mussa, E. Nakano, M. Nakao, T. Nanut, K. J. Nath, Z. Natkaniec, M. Nayak, N. K. Nisar, S. Nishida, S. Ogawa, S. Okuno, H. Ono, Y. Onuki, G. Pakhlova, B. Pal, C. -S. Park, C. W. Park, H. Park, S. Paul, T. K. Pedlar, L. Pesántez, L. E. Piilonen, M. Prim, C. Pulvermacher, M. Ritter, A. Rostomyan, Y. Sakai, S. Sandilya, L. Santelj, T. Sanuki, Y. Sato, V. Savinov, T. Schlüter, O. Schneider, G. Schnell, C. Schwanda, Y. Seino, K. Senyo, I. S. Seong, M. E. Sevior, V. Shebalin, C. P. Shen, T. -A. Shibata, J. -G. Shiu, B. Shwartz, F. Simon, E. Solovieva, M. Starič, J. F. Strube, T. Sumiyoshi, M. Takizawa, U. Tamponi, F. Tenchini, K. Trabelsi, T. Tsuboyama, M. Uchida, T. Uglov, Y. Unno, S. Uno, P. Urquijo, Y. Ushiroda, C. Van Hulse, G. Varner, V. Vorobyev, A. Vossen, E. Waheed, B. Wang, C. H. Wang, M. -Z. Wang, P. Wang, M. Watanabe, Y. Watanabe, S. Wehle, K. M. Williams, E. Won, H. Yamamoto, Y. Yamashita, H. Ye, Y. Yook, C. Z. Yuan, Y. Yusa, Z. P. Zhang, V. Zhilich, V. Zhukova, V. Zhulanov, M. Ziegler, A. Zupanc

We present the results of a search for the rare decays $B\to h\nu\overline{\nu}$, where $h$ stands for $K^+,\:K^0_{\mathrm{S}},\:K^{\ast +},\:K^{\ast 0},\:\pi^+,\:\pi^0,\:\rho^+$ and $\rho^{0}$. The results are obtained with $772\times10^{6}$ $B\overline{B}$ pairs collected with the Belle detector at the KEKB $e^+ e^-$ collider. We reconstruct one $B$ meson in a semileptonic decay and require a single $h$ meson but nothing else on the signal side. Read More

2017Feb
Authors: The Belle Collaboration, A. Abdesselam, I. Adachi, K. Adamczyk, H. Aihara, S. Al Said, K. Arinstein, Y. Arita, D. M. Asner, T. Aso, H. Atmacan, V. Aulchenko, T. Aushev, R. Ayad, T. Aziz, V. Babu, I. Badhrees, S. Bahinipati, A. M. Bakich, A. Bala, Y. Ban, V. Bansal, E. Barberio, M. Barrett, W. Bartel, A. Bay, P. Behera, M. Belhorn, K. Belous, M. Berger, F. U. Bernlochner, D. Besson, V. Bhardwaj, B. Bhuyan, J. Biswal, T. Bloomfield, S. Blyth, A. Bobrov, A. Bondar, G. Bonvicini, C. Bookwalter, C. Boulahouache, A. Bozek, M. Bračko, N. Braun, F. Breibeck, J. Brodzicka, T. E. Browder, E. Waheed, D. Červenkov, M. -C. Chang, P. Chang, Y. Chao, V. Chekelian, A. Chen, K. -F. Chen, P. Chen, B. G. Cheon, K. Chilikin, R. Chistov, K. Cho, V. Chobanova, S. -K. Choi, Y. Choi, D. Cinabro, J. Crnkovic, J. Dalseno, M. Danilov, N. Dash, S. Di Carlo, J. Dingfelder, Z. Doležal, D. Dossett, Z. Drásal, A. Drutskoy, S. Dubey, D. Dutta, K. Dutta, S. Eidelman, D. Epifanov, S. Falke, H. Farhat, J. E. Fast, M. Feindt, T. Ferber, A. Frey, O. Frost, B. G. Fulsom, V. Gaur, N. Gabyshev, S. Ganguly, A. Garmash, M. Gelb, J. Gemmler, D. Getzkow, R. Gillard, F. Giordano, R. Glattauer, Y. M. Goh, P. Goldenzweig, B. Golob, D. Greenwald, M. Grosse Perdekamp, J. Grygier, O. Grzymkowska, Y. Guan, E. Guido, H. Guo, J. Haba, P. Hamer, Y. L. Han, K. Hara, T. Hara, Y. Hasegawa, J. Hasenbusch, K. Hayasaka, H. Hayashii, X. H. He, M. Heck, M. T. Hedges, D. Heffernan, M. Heider, A. Heller, T. Higuchi, S. Himori, S. Hirose, T. Horiguchi, Y. Hoshi, K. Hoshina, W. -S. Hou, Y. B. Hsiung, C. -L. Hsu, M. Huschle, H. J. Hyun, Y. Igarashi, T. Iijima, M. Imamura, K. Inami, G. Inguglia, A. Ishikawa, K. Itagaki, R. Itoh, M. Iwabuchi, M. Iwasaki, Y. Iwasaki, S. Iwata, W. W. Jacobs, I. Jaegle, H. B. Jeon, S. Jia, Y. Jin, D. Joffe, M. Jones, K. K. Joo, T. Julius, J. Kahn, H. Kakuno, A. B. Kaliyar, J. H. Kang, K. H. Kang, P. Kapusta, G. Karyan, S. U. Kataoka, E. Kato, Y. Kato, P. Katrenko, H. Kawai, T. Kawasaki, T. Keck, H. Kichimi, C. Kiesling, B. H. Kim, D. Y. Kim, H. J. Kim, H. -J. Kim, J. B. Kim, J. H. Kim, K. T. Kim, M. J. Kim, S. H. Kim, S. K. Kim, Y. J. Kim, K. Kinoshita, C. Kleinwort, J. Klucar, B. R. Ko, N. Kobayashi, S. Koblitz, P. Kodyš, Y. Koga, S. Korpar, D. Kotchetkov, R. T. Kouzes, P. Križan, P. Krokovny, B. Kronenbitter, T. Kuhr, R. Kulasiri, R. Kumar, T. Kumita, E. Kurihara, Y. Kuroki, A. Kuzmin, P. Kvasnička, Y. -J. Kwon, Y. -T. Lai, J. S. Lange, D. H. Lee, I. S. Lee, S. -H. Lee, M. Leitgab, R. Leitner, D. Levit, P. Lewis, C. H. Li, H. Li, J. Li, L. Li, X. Li, Y. Li, L. Li Gioi, J. Libby, A. Limosani, C. Liu, Y. Liu, Z. Q. Liu, D. Liventsev, A. Loos, R. Louvot, M. Lubej, P. Lukin, T. Luo, J. MacNaughton, M. Masuda, T. Matsuda, D. Matvienko, A. Matyja, F. Metzner, S. McOnie, Y. Mikami, K. Miyabayashi, Y. Miyachi, H. Miyake, H. Miyata, Y. Miyazaki, R. Mizuk, G. B. Mohanty, S. Mohanty, D. Mohapatra, A. Moll, H. K. Moon, T. Mori, T. Morii, H. -G. Moser, M. Mrvar, T. Müller, N. Muramatsu, R. Mussa, T. Nagamine, Y. Nagasaka, Y. Nakahama, I. Nakamura, K. R. Nakamura, E. Nakano, H. Nakano, T. Nakano, M. Nakao, H. Nakayama, H. Nakazawa, T. Nanut, K. J. Nath, Z. Natkaniec, M. Nayak, E. Nedelkovska, K. Negishi, K. Neichi, C. Ng, C. Niebuhr, M. Niiyama, N. K. Nisar, S. Nishida, K. Nishimura, O. Nitoh, T. Nozaki, A. Ogawa, S. Ogawa, T. Ohshima, S. Okuno, S. L. Olsen, H. Ono, Y. Ono, Y. Onuki, W. Ostrowicz, C. Oswald, H. Ozaki, P. Pakhlov, G. Pakhlova, B. Pal, H. Palka, E. Panzenböck, C. -S. Park, C. W. Park, H. Park, K. S. Park, S. Paul, L. S. Peak, T. K. Pedlar, T. Peng, L. Pesántez, R. Pestotnik, M. Peters, M. Petrič, L. E. Piilonen, A. Poluektov, K. Prasanth, M. Prim, K. Prothmann, C. Pulvermacher, M. V. Purohit, J. Rauch, B. Reisert, E. Ribežl, M. Ritter, J. Rorie, A. Rostomyan, M. Rozanska, S. Rummel, S. Ryu, H. Sahoo, M. Salehi, T. Saito, K. Sakai, Y. Sakai, S. Sandilya, D. Santel, L. Santelj, T. Sanuki, J. Sasaki, N. Sasao, Y. Sato, V. Savinov, T. Schlüter, O. Schneider, G. Schnell, P. Schönmeier, M. Schram, C. Schwanda, A. J. Schwartz, B. Schwenker, R. Seidl, Y. Seino, D. Semmler, K. Senyo, O. Seon, I. S. Seong, M. E. Sevior, L. Shang, M. Shapkin, V. Shebalin, C. P. Shen, T. -A. Shibata, H. Shibuya, N. Shimizu, S. Shinomiya, J. -G. Shiu, B. Shwartz, A. Sibidanov, F. Simon, J. B. Singh, R. Sinha, P. Smerkol, Y. -S. Sohn, A. Sokolov, Y. Soloviev, E. Solovieva, S. Stanič, M. Starič, M. Steder, J. F. Strube, J. Stypula, S. Sugihara, A. Sugiyama, M. Sumihama, K. Sumisawa, T. Sumiyoshi, K. Suzuki, K. Suzuki, S. Suzuki, S. Y. Suzuki, Z. Suzuki, H. Takeichi, M. Takizawa, U. Tamponi, M. Tanaka, S. Tanaka, K. Tanida, N. Taniguchi, G. N. Taylor, F. Tenchini, Y. Teramoto, I. Tikhomirov, K. Trabelsi, V. Trusov, T. Tsuboyama, M. Uchida, T. Uchida, S. Uehara, K. Ueno, T. Uglov, Y. Unno, S. Uno, S. Uozumi, P. Urquijo, Y. Ushiroda, Y. Usov, S. E. Vahsen, C. Van Hulse, P. Vanhoefer, G. Varner, K. E. Varvell, K. Vervink, A. Vinokurova, V. Vorobyev, A. Vossen, M. N. Wagner, E. Waheed, B. Wang, C. H. Wang, J. Wang, M. -Z. Wang, P. Wang, X. L. Wang, M. Watanabe, Y. Watanabe, R. Wedd, S. Wehle, E. White, E. Widmann, J. Wiechczynski, K. M. Williams, E. Won, B. D. Yabsley, S. Yamada, H. Yamamoto, J. Yamaoka, Y. Yamashita, M. Yamauchi, S. Yashchenko, H. Ye, J. Yelton, Y. Yook, C. Z. Yuan, Y. Yusa, C. C. Zhang, L. M. Zhang, Z. P. Zhang, L. Zhao, V. Zhilich, V. Zhukova, V. Zhulanov, M. Ziegler, T. Zivko, A. Zupanc, N. Zwahlen

The precise determination of the CKM matrix element $\left| V_{cb}\right|$ is important for carrying out tests of the flavour sector of the Standard Model. In this article we present a preliminary analysis of the $\bar B^0 \to D^{*\,+} \, \ell^- \, \bar \nu_\ell$ decay mode and its charge conjugate, selected in events that contain a fully reconstructed $B$-meson, using 772 million $e^+ \, e^- \to \Upsilon(4S) \to B \bar B$ events recorded by the Belle detector at KEKB. Unfolded differential decay rates of four kinematic variables fully describing the $\bar B^0 \to D^{*\,+} \, \ell^- \, \bar \nu_\ell$ decay in the $B$-meson rest frame are presented. Read More

2016Dec
Authors: Belle Collaboration, S. Wehle, C. Niebuhr, S. Yashchenko, I. Adachi, H. Aihara, S. Al Said, D. M. Asner, V. Aulchenko, T. Aushev, R. Ayad, T. Aziz, V. Babu, A. M. Bakich, V. Bansal, E. Barberio, W. Bartel, P. Behera, B. Bhuyan, J. Biswal, A. Bobrov, A. Bondar, G. Bonvicini, A. Bozek, M. Bračko, T. E. Browder, D. Červenkov, P. Chang, V. Chekelian, A. Chen, B. G. Cheon, K. Chilikin, R. Chistov, K. Cho, Y. Choi, D. Cinabro, N. Dash, J. Dingfelder, Z. Drásal, D. Dutta, S. Eidelman, D. Epifanov, H. Farhat, J. E. Fast, T. Ferber, B. G. Fulsom, V. Gaur, N. Gabyshev, A. Garmash, R. Gillard, P. Goldenzweig, B. Golob, O. Grzymkowska, E. Guido, J. Haba, T. Hara, K. Hayasaka, H. Hayashii, M. T. Hedges, W. -S. Hou, C. -L. Hsu, T. Iijima, K. Inami, G. Inguglia, A. Ishikawa, R. Itoh, Y. Iwasaki, W. W. Jacobs, I. Jaegle, H. B. Jeon, Y. Jin, D. Joffe, K. K. Joo, T. Julius, A. B. Kaliyar, K. H. Kang, G. Karyan, P. Katrenko, T. Kawasaki, H. Kichimi, C. Kiesling, D. Y. Kim, H. J. Kim, J. B. Kim, K. T. Kim, M. J. Kim, S. H. Kim, K. Kinoshita, L. Koch, P. Kodyš, S. Korpar, D. Kotchetkov, P. Križan, P. Krokovny, T. Kuhr, R. Kulasiri, T. Kumita, A. Kuzmin, Y. -J. Kwon, J. S. Lange, C. H. Li, L. Li, Y. Li, L. Li Gioi, J. Libby, M. Lubej, T. Luo, M. Masuda, T. Matsuda, K. Miyabayashi, H. Miyake, R. Mizuk, G. B. Mohanty, T. Mori, R. Mussa, E. Nakano, M. Nakao, T. Nanut, K. J. Nath, Z. Natkaniec, M. Nayak, N. K. Nisar, S. Nishida, S. Ogawa, H. Ono, Y. Onuki, G. Pakhlova, B. Pal, C. -S. Park, C. W. Park, H. Park, S. Paul, L. Pesántez, L. E. Piilonen, C. Pulvermacher, J. Rauch, M. Ritter, A. Rostomyan, Y. Sakai, S. Sandilya, L. Santelj, T. Sanuki, Y. Sato, V. Savinov, T. Schlüter, O. Schneider, G. Schnell, C. Schwanda, A. J. Schwartz, Y. Seino, K. Senyo, O. Seon, I. S. Seong, M. E. Sevior, C. P. Shen, T. -A. Shibata, J. -G. Shiu, B. Shwartz, F. Simon, R. Sinha, E. Solovieva, M. Starič, J. F. Strube, K. Sumisawa, T. Sumiyoshi, M. Takizawa, U. Tamponi, F. Tenchini, T. Tsuboyama, M. Uchida, T. Uglov, Y. Unno, S. Uno, P. Urquijo, Y. Ushiroda, Y. Usov, S. E. Vahsen, C. Van Hulse, G. Varner, K. E. Varvell, V. Vorobyev, A. Vossen, E. Waheed, C. H. Wang, M. -Z. Wang, P. Wang, M. Watanabe, Y. Watanabe, E. Widmann, K. M. Williams, E. Won, H. Yamamoto, Y. Yamashita, H. Ye, Y. Yook, C. Z. Yuan, Y. Yusa, Z. P. Zhang, V. Zhilich, V. Zhukova, V. Zhulanov, M. Ziegler, A. Zupanc

We present a measurement of angular observables and a test of lepton flavor universality in the $B\to K^\ast \ell^+\ell^-$ decay, where $\ell$ is either $e$ or $\mu$. The analysis is performed on a data sample corresponding to an integrated luminosity of $711~\mathrm{fb}^{-1}$ containing $772\times 10^{6}$ $B\bar B$ pairs, collected at the $\Upsilon(4S)$ resonance with the Belle detector at the asymmetric-energy $e^+e^-$ collider KEKB. The result is consistent with Standard Model (SM) expectations, where the largest discrepancy from a SM prediction is observed in the muon modes with a local significance of $2. Read More

2016Dec
Authors: S. Hirose1, T. Iijima2, I. Adachi3, K. Adamczyk4, H. Aihara5, S. Al Said6, D. M. Asner7, H. Atmacan8, V. Aulchenko9, T. Aushev10, R. Ayad11, V. Babu12, I. Badhrees13, A. M. Bakich14, V. Bansal15, E. Barberio16, P. Behera17, M. Berger18, B. Bhuyan19, J. Biswal20, A. Bondar21, G. Bonvicini22, A. Bozek23, M. Bračko24, T. E. Browder25, D. Červenkov26, P. Chang27, A. Chen28, B. G. Cheon29, K. Chilikin30, R. Chistov31, K. Cho32, Y. Choi33, D. Cinabro34, M. Danilov35, N. Dash36, S. Di Carlo37, J. Dingfelder38, Z. Doležal39, Z. Drásal40, D. Dutta41, S. Eidelman42, D. Epifanov43, H. Farhat44, J. E. Fast45, T. Ferber46, B. G. Fulsom47, V. Gaur48, N. Gabyshev49, A. Garmash50, P. Goldenzweig51, B. Golob52, D. Greenwald53, J. Grygier54, J. Haba55, K. Hara56, J. Hasenbusch57, K. Hayasaka58, H. Hayashii59, T. Higuchi60, W. -S. Hou61, C. -L. Hsu62, K. Inami63, G. Inguglia64, A. Ishikawa65, R. Itoh66, Y. Iwasaki67, W. W. Jacobs68, I. Jaegle69, Y. Jin70, D. Joffe71, K. K. Joo72, T. Julius73, Y. Kato74, T. Kawasaki75, H. Kichimi76, C. Kiesling77, D. Y. Kim78, J. B. Kim79, K. T. Kim80, M. J. Kim81, S. H. Kim82, K. Kinoshita83, P. Kodyš84, S. Korpar85, D. Kotchetkov86, P. Križan87, P. Krokovny88, T. Kuhr89, R. Kulasiri90, R. Kumar91, Y. -J. Kwon92, J. S. Lange93, C. H. Li94, L. Li95, Y. Li96, L. Li Gioi97, J. Libby98, D. Liventsev99, M. Lubej100, T. Luo101, J. MacNaughton102, M. Masuda103, T. Matsuda104, D. Matvienko105, K. Miyabayashi106, H. Miyake107, H. Miyata108, R. Mizuk109, G. B. Mohanty110, H. K. Moon111, T. Mori112, R. Mussa113, M. Nakao114, T. Nanut115, K. J. Nath116, Z. Natkaniec117, M. Nayak118, M. Niiyama119, N. K. Nisar120, S. Nishida121, S. Ogawa122, S. Okuno123, H. Ono124, Y. Onuki125, W. Ostrowicz126, P. Pakhlov127, G. Pakhlova128, B. Pal129, C. W. Park130, H. Park131, S. Paul132, L. Pesántez133, R. Pestotnik134, L. E. Piilonen135, K. Prasanth136, M. Ritter137, A. Rostomyan138, M. Rozanska139, Y. Sakai140, S. Sandilya141, L. Santelj142, T. Sanuki143, Y. Sato144, V. Savinov145, T. Schlüter146, O. Schneider147, G. Schnell148, C. Schwanda149, Y. Seino150, K. Senyo151, O. Seon152, M. E. Sevior153, V. Shebalin154, C. P. Shen155, T. -A. Shibata156, J. -G. Shiu157, F. Simon158, A. Sokolov159, E. Solovieva160, M. Starič161, J. F. Strube162, K. Sumisawa163, T. Sumiyoshi164, M. Takizawa165, U. Tamponi166, F. Tenchini167, K. Trabelsi168, M. Uchida169, T. Uglov170, Y. Unno171, S. Uno172, P. Urquijo173, Y. Ushiroda174, Y. Usov175, C. Van Hulse176, G. Varner177, K. E. Varvell178, A. Vossen179, C. H. Wang180, M. -Z. Wang181, P. Wang182, M. Watanabe183, Y. Watanabe184, E. Widmann185, E. Won186, Y. Yamashita187, H. Ye188, J. Yelton189, C. Z. Yuan190, Z. P. Zhang191, V. Zhilich192, V. Zhulanov193, A. Zupanc194
Affiliations: 1The Belle Collaboration, 2The Belle Collaboration, 3The Belle Collaboration, 4The Belle Collaboration, 5The Belle Collaboration, 6The Belle Collaboration, 7The Belle Collaboration, 8The Belle Collaboration, 9The Belle Collaboration, 10The Belle Collaboration, 11The Belle Collaboration, 12The Belle Collaboration, 13The Belle Collaboration, 14The Belle Collaboration, 15The Belle Collaboration, 16The Belle Collaboration, 17The Belle Collaboration, 18The Belle Collaboration, 19The Belle Collaboration, 20The Belle Collaboration, 21The Belle Collaboration, 22The Belle Collaboration, 23The Belle Collaboration, 24The Belle Collaboration, 25The Belle Collaboration, 26The Belle Collaboration, 27The Belle Collaboration, 28The Belle Collaboration, 29The Belle Collaboration, 30The Belle Collaboration, 31The Belle Collaboration, 32The Belle Collaboration, 33The Belle Collaboration, 34The Belle Collaboration, 35The Belle Collaboration, 36The Belle Collaboration, 37The Belle Collaboration, 38The Belle Collaboration, 39The Belle Collaboration, 40The Belle Collaboration, 41The Belle Collaboration, 42The Belle Collaboration, 43The Belle Collaboration, 44The Belle Collaboration, 45The Belle Collaboration, 46The Belle Collaboration, 47The Belle Collaboration, 48The Belle Collaboration, 49The Belle Collaboration, 50The Belle Collaboration, 51The Belle Collaboration, 52The Belle Collaboration, 53The Belle Collaboration, 54The Belle Collaboration, 55The Belle Collaboration, 56The Belle Collaboration, 57The Belle Collaboration, 58The Belle Collaboration, 59The Belle Collaboration, 60The Belle Collaboration, 61The Belle Collaboration, 62The Belle Collaboration, 63The Belle Collaboration, 64The Belle Collaboration, 65The Belle Collaboration, 66The Belle Collaboration, 67The Belle Collaboration, 68The Belle Collaboration, 69The Belle Collaboration, 70The Belle Collaboration, 71The Belle Collaboration, 72The Belle Collaboration, 73The Belle Collaboration, 74The Belle Collaboration, 75The Belle Collaboration, 76The Belle Collaboration, 77The Belle Collaboration, 78The Belle Collaboration, 79The Belle Collaboration, 80The Belle Collaboration, 81The Belle Collaboration, 82The Belle Collaboration, 83The Belle Collaboration, 84The Belle Collaboration, 85The Belle Collaboration, 86The Belle Collaboration, 87The Belle Collaboration, 88The Belle Collaboration, 89The Belle Collaboration, 90The Belle Collaboration, 91The Belle Collaboration, 92The Belle Collaboration, 93The Belle Collaboration, 94The Belle Collaboration, 95The Belle Collaboration, 96The Belle Collaboration, 97The Belle Collaboration, 98The Belle Collaboration, 99The Belle Collaboration, 100The Belle Collaboration, 101The Belle Collaboration, 102The Belle Collaboration, 103The Belle Collaboration, 104The Belle Collaboration, 105The Belle Collaboration, 106The Belle Collaboration, 107The Belle Collaboration, 108The Belle Collaboration, 109The Belle Collaboration, 110The Belle Collaboration, 111The Belle Collaboration, 112The Belle Collaboration, 113The Belle Collaboration, 114The Belle Collaboration, 115The Belle Collaboration, 116The Belle Collaboration, 117The Belle Collaboration, 118The Belle Collaboration, 119The Belle Collaboration, 120The Belle Collaboration, 121The Belle Collaboration, 122The Belle Collaboration, 123The Belle Collaboration, 124The Belle Collaboration, 125The Belle Collaboration, 126The Belle Collaboration, 127The Belle Collaboration, 128The Belle Collaboration, 129The Belle Collaboration, 130The Belle Collaboration, 131The Belle Collaboration, 132The Belle Collaboration, 133The Belle Collaboration, 134The Belle Collaboration, 135The Belle Collaboration, 136The Belle Collaboration, 137The Belle Collaboration, 138The Belle Collaboration, 139The Belle Collaboration, 140The Belle Collaboration, 141The Belle Collaboration, 142The Belle Collaboration, 143The Belle Collaboration, 144The Belle Collaboration, 145The Belle Collaboration, 146The Belle Collaboration, 147The Belle Collaboration, 148The Belle Collaboration, 149The Belle Collaboration, 150The Belle Collaboration, 151The Belle Collaboration, 152The Belle Collaboration, 153The Belle Collaboration, 154The Belle Collaboration, 155The Belle Collaboration, 156The Belle Collaboration, 157The Belle Collaboration, 158The Belle Collaboration, 159The Belle Collaboration, 160The Belle Collaboration, 161The Belle Collaboration, 162The Belle Collaboration, 163The Belle Collaboration, 164The Belle Collaboration, 165The Belle Collaboration, 166The Belle Collaboration, 167The Belle Collaboration, 168The Belle Collaboration, 169The Belle Collaboration, 170The Belle Collaboration, 171The Belle Collaboration, 172The Belle Collaboration, 173The Belle Collaboration, 174The Belle Collaboration, 175The Belle Collaboration, 176The Belle Collaboration, 177The Belle Collaboration, 178The Belle Collaboration, 179The Belle Collaboration, 180The Belle Collaboration, 181The Belle Collaboration, 182The Belle Collaboration, 183The Belle Collaboration, 184The Belle Collaboration, 185The Belle Collaboration, 186The Belle Collaboration, 187The Belle Collaboration, 188The Belle Collaboration, 189The Belle Collaboration, 190The Belle Collaboration, 191The Belle Collaboration, 192The Belle Collaboration, 193The Belle Collaboration, 194The Belle Collaboration

We report the first measurement of the $\tau$ lepton polarization $P_\tau(D^*)$ in the decay $\bar{B} \rightarrow D^* \tau^- \bar{\nu}_\tau$ as well as a new measurement of the ratio of the branching fractions $R(D^{*}) = \mathcal{B}(\bar {B} \rightarrow D^* \tau^- \bar{\nu}_\tau) / \mathcal{B}(\bar{B} \rightarrow D^* \ell^- \bar{\nu}_\ell)$, where $\ell^-$ denotes an electron or a muon, and the $\tau$ is reconstructed in the modes $\tau^- \rightarrow \pi^- \nu_\tau$ and $\tau^- \rightarrow \rho^- \nu_\tau$. We use the full data sample of $772 \times 10^6$ $B{\bar B}$ pairs recorded with the Belle detector at the KEKB electron-positron collider. Our results, $P_\tau(D^*) = -0. Read More

2016Nov
Authors: Belle Collaboration, S. Jia, C. P. Shen, C. Z. Yuan, I. Adachi, H. Aihara, S. Al Said, D. M. Asner, T. Aushev, R. Ayad, V. Babu, I. Badhrees, A. M. Bakich, V. Bansal, E. Barberio, P. Behera, B. Bhuyan, J. Biswal, G. Bonvicini, A. Bozek, M. Bračko, T. E. Browder, D. Červenkov, P. Chang, V. Chekelian, A. Chen, B. G. Cheon, K. Chilikin, K. Cho, S. -K. Choi, Y. Choi, D. Cinabro, N. Dash, S. Di Carlo, Z. Drásal, D. Dutta, S. Eidelman, H. Farhat, J. E. Fast, T. Ferber, B. G. Fulsom, V. Gaur, N. Gabyshev, A. Garmash, R. Gillard, P. Goldenzweig, B. Golob, J. Haba, T. Hara, K. Hayasaka, H. Hayashii, M. T. Hedges, W. -S. Hou, T. Iijima, K. Inami, G. Inguglia, A. Ishikawa, R. Itoh, I. Jaegle, D. Joffe, K. K. Joo, T. Julius, K. H. Kang, P. Katrenko, T. Kawasaki, H. Kichimi, C. Kiesling, D. Y. Kim, H. J. Kim, J. B. Kim, K. T. Kim, M. J. Kim, S. H. Kim, Y. J. Kim, P. Kodyš, S. Korpar, D. Kotchetkov, P. Križan, P. Krokovny, T. Kuhr, R. Kulasiri, A. Kuzmin, Y. -J. Kwon, J. S. Lange, C. H. Li, L. Li, Y. Li, L. Li Gioi, J. Libby, D. Liventsev, M. Lubej, T. Luo, M. Masuda, T. Matsuda, D. Matvienko, K. Miyabayashi, H. Miyata, R. Mizuk, H. K. Moon, T. Mori, M. Nakao, T. Nanut, K. J. Nath, Z. Natkaniec, M. Nayak, M. Niiyama, N. K. Nisar, S. Nishida, S. Ogawa, S. Okuno, H. Ono, Y. Onuki, W. Ostrowicz, G. Pakhlova, B. Pal, C. -S. Park, H. Park, R. Pestotnik, L. E. Piilonen, C. Pulvermacher, M. Ritter, A. Rostomyan, Y. Sakai, S. Sandilya, L. Santelj, T. Sanuki, V. Savinov, O. Schneider, G. Schnell, C. Schwanda, Y. Seino, K. Senyo, M. E. Sevior, V. Shebalin, T. -A. Shibata, J. -G. Shiu, B. Shwartz, F. Simon, A. Sokolov, E. Solovieva, M. Starič, J. F. Strube, M. Sumihama, T. Sumiyoshi, K. Suzuki, M. Takizawa, U. Tamponi, K. Tanida, F. Tenchini, M. Uchida, T. Uglov, Y. Unno, S. Uno, P. Urquijo, Y. Usov, C. Van Hulse, G. Varner, V. Vorobyev, C. H. Wang, M. -Z. Wang, P. Wang, Y. Watanabe, E. Won, Y. Yamashita, H. Ye, J. Yelton, Z. P. Zhang, V. Zhilich, V. Zhukova, V. Zhulanov, A. Zupanc

We report the first search for the $J^{PC}=0^{--}$ glueball in $\Upsilon(1S)$ and $\Upsilon(2S)$ decays with data samples of $(102\pm2)$ million and $(158\pm4)$ million events, respectively, collected with the Belle detector. No significant signals are observed in any of the proposed production modes, and the 90\% credibility level upper limits on their branching fractions in $\Upsilon(1S)$ and $\Upsilon(2S)$ decays are obtained. The inclusive branching fractions of the $\Upsilon(1S)$ and $\Upsilon(2S)$ decays into final states with a $\chi_{c1}$ are measured to be $\BR(\Upsilon(1S)\to \chi_{c1}+ anything) = (1. Read More

2016Apr
Authors: Z. Deng, Y. Li, Y. Wang, Q. Yue, Z. Yang, J. Apostolakis, G. Folger, C. Grefe, V. Ivantchenko, A. Ribon, V. Uzhinskiy, D. Boumediene, C. Carloganu, V. Français, G. Cho, D-W. Kim, S. C. Lee, W. Park, S. Vallecorsa, S. Cauwenbergh, M. Tytgat, A. Pingault, N. Zaganidis, E. Brianne, A. Ebrahimi, K. Gadow, P. Göttlicher, C. Günter, O. Hartbrich, B. Hermberg, A. Irles, F. Krivan, K. Krüger, J. Kvasnicka, S. Lu, B. Lutz, V. Morgunov, C. Neubüser, A. Provenza, M. Reinecke, F. Sefkow, S. Schuwalow, H. L. Tran, E. Garutti, S. Laurien, M. Matysek, M. Ramilli, S. Schroeder, B. Bilki, E. Norbeck, D. Northacker, Y. Onel, S. Chang, A. Khan, D. H. Kim, D. J. Kong, Y. D. Oh, K. Kawagoe, H. Hirai, Y. Sudo, T. Suehara, H. Sumida, T. Yoshioka, E. Cortina Gil, S. Mannai, V. Buridon, C. Combaret, L. Caponetto, R. Eté, G. Garillot, G. Grenier, R. Han, J. C. Ianigro, R. Kieffer, I. Laktineh, N. Lumb, H. Mathez, L. Mirabito, A. Petrukhin, A. Steen, J. Berenguer Antequera, E. Calvo Alamillo, M. -C. Fouz, J. Marin, J. Puerta-Pelayo, A. Verdugo, M. Chadeeva, M. Danilov, M. Gabriel, P. Goecke, C. Kiesling, N. vanderKolk, F. Simon, M. Szalay, S. Bilokin, J. Bonis, P. Cornebise, F. Richard, R. Pöschl, J. Rouëné, A. Thiebault, D. Zerwas, M. Anduze, V. Balagura, K. Belkadhi, V. Boudry, J-C. Brient, R. Cornat, M. Frotin, F. Gastaldi, Y. Haddad, F. Magniette, M. Ruan, M. Rubio-Roy, K. Shpak, H. Videau, D. Yu, S. Callier, S. Conforti di Lorenzo, F. Dulucq, G. Martin-Chassard, Ch. de la Taille, L. Raux, N. Seguin-Moreau, K. Kotera, H. Ono, T. Takeshita, F. Corriveau

The CALICE Semi-Digital Hadron Calorimeter (SDHCAL) technological prototype is a sampling calorimeter using Glass Resistive Plate Chamber detectors with a three-threshold readout as the active medium. This technology is one of the two options proposed for the hadron calorimeter of the International Large Detector for the International Linear Collider. The prototype was exposed to beams of muons, electrons and pions of different energies at the CERN Super Proton Synchrotron. Read More

In special tests, the active layers of the CALICE Digital Hadron Calorimeter prototype, the DHCAL, were exposed to low energy particle beams, without being interleaved by absorber plates. The thickness of each layer corresponded approximately to 0.29 radiation lengths or 0. Read More

2016Feb
Authors: The CALICE Collaboration, G. Eigen, T. Price, N. K. Watson, J. S. Marshall, M. A. Thomson, D. R. Ward, D. Benchekroun, A. Hoummada, Y. Khoulaki, J. Apostolakis, A. Dotti, G. Folger, V. Ivantchenko, A. Ribon, V. Uzhinskiy, J. -Y. Hostachy, L. Morin, E. Brianne, A. Ebrahimi, K. Gadow, P. Göttlicher, C. Günter, O. Hartbrich, B. Hermberg, A. Irles, F. Krivan, K. Krüger, J. Kvasnicka, S. Lu, B. Lutz, V. Morgunov, C. Neubüser, A. Provenza, M. Reinecke, F. Sefkow, S. Schuwalow, H. L. Tran, E. Garutti, S. Laurien, M. Matysek, M. Ramilli, S. Schroeder, K. Briggl, P. Eckert, Y. Munwes, H. -Ch. Schultz-Coulon, W. Shen, R. Stamen, B. Bilki, E. Norbeck, D. Northacker, Y. Onel, B. van Doren, G. W. Wilson, K. Kawagoe, H. Hirai, Y. Sudo, T. Suehara, H. Sumida, S. Takada, T. Tomita, T. Yoshioka, M. Wing, A. Bonnevaux, C. Combaret, L. Caponetto, G. Grenier, R. Han, J. C. Ianigro, R. Kieffer, I. Laktineh, N. Lumb, H. Mathez, L. Mirabito, A. Steen, J. Berenguer Antequera, E. Calvo Alamillo, M. -C. Fouz, J. Marin, J. Puerta-Pelayo, A. Verdugo, B. Bobchenko, O. Markin, E. Novikov, V. Rusinov, E. Tarkovsky, N. Kirikova, V. Kozlov, P. Smirnov, Y. Soloviev, D. Besson, P. Buzhan, M. Chadeeva, M. Danilov, A. Drutskoy, A. Ilyin, D. Mironov, R. Mizuk, E. Popova, M. Gabriel, P. Goecke, C. Kiesling, N. van der Kolk, F. Simon, M. Szalay, S. Bilokin, J. Bonis, P. Cornebise, R. Pöschl, F. Richard, A. Thiebault, D. Zerwas, M. Anduze, V. Balagura, E. Becheva, V. Boudry, J-C. Brient, J-B. Cizel, C. Clerc, R. Cornat, M. Frotin, F. Gastaldi, F. Magniette, P. Mora de Freitas, G. Musat, S. Pavy, M. Rubio-Roy, M. Ruan, H. Videau, S. Callier, F. Dulucq, G. Martin-Chassard, L. Raux, N. Seguin-Moreau, Ch. de la Taille, J. Cvach, P. Gallus, M. Havranek, M. Janata, D. Lednicky, M. Marcisovsky, I. Polak, J. Popule, L. Tomasek, M. Tomasek, P. Sicho, J. Smolik, V. Vrba, J. Zalesak, K. Kotera, H. Ono, T. Takeshita, S. Ieki, Y. Kamiya, W. Ootani, N. Shibata, D. Jeans, S. Komamiya, H. Nakanishi

The spatial development of hadronic showers in the CALICE scintillator-steel analogue hadron calorimeter is studied using test beam data collected at CERN and FNAL for single positive pions and protons with initial momenta in the range from 10 to 80 GeV/c. Both longitudinal and radial development of hadron showers are parametrised with two-component functions. The parametrisation is fit to test beam data and simulations using the QGSP_BERT and FTFP_BERT physics lists from Geant4 version 9. Read More

All principal orbits of the standard Hamiltonian $T^n$-action on the complex projective space ${\mathbb C}P^n$ are Lagrangian tori.In this article, we prove that most of them are not volume minimizing under Hamiltonian isotopies of ${\mathbb C}P^n$ if the complex dimension $n$ is greater than two, although they are Hamiltonian minimal and Hamiltonian stable. Read More

Suppose that we are given two dominating sets $D_s$ and $D_t$ of a graph $G$ whose cardinalities are at most a given threshold $k$. Then, we are asked whether there exists a sequence of dominating sets of $G$ between $D_s$ and $D_t$ such that each dominating set in the sequence is of cardinality at most $k$ and can be obtained from the previous one by either adding or deleting exactly one vertex. This problem is known to be PSPACE-complete in general. Read More

A code design problem for memory devises with restricted state transitions is formulated as a combinatorial optimization problem that is called a subgraph domatic partition (subDP) problem. If any neighbor set of a given state transition graph contains all the colors, then the coloring is said to be valid. The goal of a subDP problem is to find a valid coloring with the largest number of colors for a subgraph of a given directed graph. Read More

We study reconfiguration problems for cliques in a graph, which determine whether there exists a sequence of cliques that transforms a given clique into another one in a step-by-step fashion. As one step of a transformation, we consider three different types of rules, which are defined and studied in reconfiguration problems for independent sets. We first prove that all the three rules are equivalent in cliques. Read More

In 1993, Y.-G. Oh proposed a problem whether standard Lagrangian tori in C^n are volume minimizing under Hamiltonian isotopies of C^n. Read More

Suppose that we are given two independent sets $I_0$ and $I_r$ of a graph such that $|I_0| = |I_r|$, and imagine that a token is placed on each vertex in $I_0$. The token jumping problem is to determine whether there exists a sequence of independent sets which transforms $I_0$ into $I_r$ so that each independent set in the sequence results from the previous one by moving exactly one token to another vertex. This problem is known to be PSPACE-complete even for planar graphs of maximum degree three, and W[1]-hard for general graphs when parameterized by the number of tokens. Read More

Suppose that we are given two independent sets $I_b$ and $I_r$ of a graph such that $|I_b|=|I_r|$, and imagine that a token is placed on each vertex in $I_b$. Then, the sliding token problem is to determine whether there exists a sequence of independent sets which transforms $I_b$ into $I_r$ so that each independent set in the sequence results from the previous one by sliding exactly one token along an edge in the graph. This problem is known to be PSPACE-complete even for planar graphs, and also for bounded treewidth graphs. Read More

2014Apr
Authors: C. Adloff1, J. -J. Blaising2, M. Chefdeville3, C. Drancourt4, R. Gaglione5, N. Geffroy6, Y. Karyotakis7, I. Koletsou8, J. Prast9, G. Vouters J. Repond10, J. Schlereth11, L. Xia E. Baldolemar12, J. Li13, S. T. Park14, M. Sosebee15, A. P. White16, J. Yu17, G. Eigen18, M. A. Thomson19, D. R. Ward20, D. Benchekroun21, A. Hoummada22, Y. Khoulaki J. Apostolakis23, S. Arfaoui24, M. Benoit25, D. Dannheim26, K. Elsener27, G. Folger28, C. Grefe29, V. Ivantchenko30, M. Killenberg31, W. Klempt32, E. van der Kraaij33, L. Linssen34, A. -I. Lucaci-Timoce35, A. Münnich36, S. Poss37, A. Ribon38, P. Roloff39, A. Sailer40, D. Schlatter41, E. Sicking42, J. Strube43, V. Uzhinskiy44, C. Carloganu45, P. Gay46, S. Manen47, L. Royer48, U. Cornett49, D. David50, A. Ebrahimi51, G. Falley52, N. Feege53, K. Gadow54, P. Göttlicher55, C. Günter56, O. Hartbrich57, B. Hermberg58, S. Karstensen59, F. Krivan60, K. Krüger61, S. Lu62, B. Lutz63, S. Morozov64, V. Morgunov65, C. Neubüser66, M. Reinecke67, F. Sefkow68, P. Smirnov69, M. Terwort70, A. Fagot71, M. Tytgat72, N. Zaganidis73, J. -Y. Hostachy74, L. Morin75, E. Garutti76, S. Laurien77, I. Marchesini78, M. Matysek79, M. Ramilli80, K. Briggl81, P. Eckert82, T. Harion83, H. -Ch. Schultz-Coulon84, W. Shen85, R. Stamen86, S. Chang87, A. Khan88, D. H. Kim89, D. J. Kong90, Y. D. Oh91, B. Bilki92, E. Norbeck93, D. Northacker94, Y. Onel95, G. W. Wilson96, K. Kawagoe97, Y. Miyazaki98, Y. Sudo99, H. Ueno100, T. Yoshioka101, P. D. Dauncey102, E. Cortina Gil103, S. Mannai104, G. Baulieu105, P. Calabria106, L. Caponetto107, C. Combaret108, R. Della Negra109, R. Ete110, G. Grenier111, R. Han112, J-C. Ianigro113, R. Kieffer114, I. Laktineh115, N. Lumb116, H. Mathez117, L. Mirabito118, A. Petrukhin119, A. Steen120, W. Tromeur121, M. Vander Donckt122, Y. Zoccarato J. Berenguer Antequera123, E. Calvo Alamillo124, M. -C. Fouz125, J. Puerta-Pelayo126, F. Corriveau127, B. Bobchenko128, M. Chadeeva129, M. Danilov130, A. Epifantsev131, O. Markin132, R. Mizuk133, E. Novikov134, V. Rusinov135, E. Tarkovsky136, V. Kozlov137, Y. Soloviev138, D. Besson139, P. Buzhan140, A. Ilyin141, V. Kantserov142, V. Kaplin143, E. Popova144, V. Tikhomirov145, M. Gabriel146, C. Kiesling147, K. Seidel148, F. Simon149, C. Soldner150, M. Szalay151, M. Tesar152, L. Weuste153, M. S. Amjad154, J. Bonis155, S. Conforti di Lorenzo156, P. Cornebise157, J. Fleury158, T. Frisson159, N. van der Kolk160, F. Richard161, R. Pöschl162, J. Rouene163, M. Anduze164, V. Balagura165, E. Becheva166, V. Boudry167, J-C. Brient168, R. Cornat169, M. Frotin170, F. Gastaldi171, E. Guliyev172, Y. Haddad173, F. Magniette174, M. Ruan175, T. H. Tran176, H. Videau177, S. Callier178, F. Dulucq179, G. Martin-Chassard180, Ch. de la Taille181, L. Raux182, N. Seguin-Moreau183, J. Zacek184, J. Cvach185, P. Gallus186, M. Havranek187, M. Janata188, J. Kvasnicka189, D. Lednicky190, M. Marcisovsky191, I. Polak192, J. Popule193, L. Tomasek194, M. Tomasek195, P. Ruzicka196, P. Sicho197, J. Smolik198, V. Vrba199, J. Zalesak200, . Belhorma201, H. Ghazlane202, K. Kotera203, H. Ono204, T. Takeshita205, S. Uozumi206, J. S. Chai207, H. S. Song208, S. H. Lee209, M. Götze210, J. Sauer211, S. Weber212, C. Zeitnitz213
Affiliations: 1The CALICE Collaboration, 2The CALICE Collaboration, 3The CALICE Collaboration, 4The CALICE Collaboration, 5The CALICE Collaboration, 6The CALICE Collaboration, 7The CALICE Collaboration, 8The CALICE Collaboration, 9The CALICE Collaboration, 10The CALICE Collaboration, 11The CALICE Collaboration, 12The CALICE Collaboration, 13The CALICE Collaboration, 14The CALICE Collaboration, 15The CALICE Collaboration, 16The CALICE Collaboration, 17The CALICE Collaboration, 18The CALICE Collaboration, 19The CALICE Collaboration, 20The CALICE Collaboration, 21The CALICE Collaboration, 22The CALICE Collaboration, 23The CALICE Collaboration, 24The CALICE Collaboration, 25The CALICE Collaboration, 26The CALICE Collaboration, 27The CALICE Collaboration, 28The CALICE Collaboration, 29The CALICE Collaboration, 30The CALICE Collaboration, 31The CALICE Collaboration, 32The CALICE Collaboration, 33The CALICE Collaboration, 34The CALICE Collaboration, 35The CALICE Collaboration, 36The CALICE Collaboration, 37The CALICE Collaboration, 38The CALICE Collaboration, 39The CALICE Collaboration, 40The CALICE Collaboration, 41The CALICE Collaboration, 42The CALICE Collaboration, 43The CALICE Collaboration, 44The CALICE Collaboration, 45The CALICE Collaboration, 46The CALICE Collaboration, 47The CALICE Collaboration, 48The CALICE Collaboration, 49The CALICE Collaboration, 50The CALICE Collaboration, 51The CALICE Collaboration, 52The CALICE Collaboration, 53The CALICE Collaboration, 54The CALICE Collaboration, 55The CALICE Collaboration, 56The CALICE Collaboration, 57The CALICE Collaboration, 58The CALICE Collaboration, 59The CALICE Collaboration, 60The CALICE Collaboration, 61The CALICE Collaboration, 62The CALICE Collaboration, 63The CALICE Collaboration, 64The CALICE Collaboration, 65The CALICE Collaboration, 66The CALICE Collaboration, 67The CALICE Collaboration, 68The CALICE Collaboration, 69The CALICE Collaboration, 70The CALICE Collaboration, 71The CALICE Collaboration, 72The CALICE Collaboration, 73The CALICE Collaboration, 74The CALICE Collaboration, 75The CALICE Collaboration, 76The CALICE Collaboration, 77The CALICE Collaboration, 78The CALICE Collaboration, 79The CALICE Collaboration, 80The CALICE Collaboration, 81The CALICE Collaboration, 82The CALICE Collaboration, 83The CALICE Collaboration, 84The CALICE Collaboration, 85The CALICE Collaboration, 86The CALICE Collaboration, 87The CALICE Collaboration, 88The CALICE Collaboration, 89The CALICE Collaboration, 90The CALICE Collaboration, 91The CALICE Collaboration, 92The CALICE Collaboration, 93The CALICE Collaboration, 94The CALICE Collaboration, 95The CALICE Collaboration, 96The CALICE Collaboration, 97The CALICE Collaboration, 98The CALICE Collaboration, 99The CALICE Collaboration, 100The CALICE Collaboration, 101The CALICE Collaboration, 102The CALICE Collaboration, 103The CALICE Collaboration, 104The CALICE Collaboration, 105The CALICE Collaboration, 106The CALICE Collaboration, 107The CALICE Collaboration, 108The CALICE Collaboration, 109The CALICE Collaboration, 110The CALICE Collaboration, 111The CALICE Collaboration, 112The CALICE Collaboration, 113The CALICE Collaboration, 114The CALICE Collaboration, 115The CALICE Collaboration, 116The CALICE Collaboration, 117The CALICE Collaboration, 118The CALICE Collaboration, 119The CALICE Collaboration, 120The CALICE Collaboration, 121The CALICE Collaboration, 122The CALICE Collaboration, 123The CALICE Collaboration, 124The CALICE Collaboration, 125The CALICE Collaboration, 126The CALICE Collaboration, 127The CALICE Collaboration, 128The CALICE Collaboration, 129The CALICE Collaboration, 130The CALICE Collaboration, 131The CALICE Collaboration, 132The CALICE Collaboration, 133The CALICE Collaboration, 134The CALICE Collaboration, 135The CALICE Collaboration, 136The CALICE Collaboration, 137The CALICE Collaboration, 138The CALICE Collaboration, 139The CALICE Collaboration, 140The CALICE Collaboration, 141The CALICE Collaboration, 142The CALICE Collaboration, 143The CALICE Collaboration, 144The CALICE Collaboration, 145The CALICE Collaboration, 146The CALICE Collaboration, 147The CALICE Collaboration, 148The CALICE Collaboration, 149The CALICE Collaboration, 150The CALICE Collaboration, 151The CALICE Collaboration, 152The CALICE Collaboration, 153The CALICE Collaboration, 154The CALICE Collaboration, 155The CALICE Collaboration, 156The CALICE Collaboration, 157The CALICE Collaboration, 158The CALICE Collaboration, 159The CALICE Collaboration, 160The CALICE Collaboration, 161The CALICE Collaboration, 162The CALICE Collaboration, 163The CALICE Collaboration, 164The CALICE Collaboration, 165The CALICE Collaboration, 166The CALICE Collaboration, 167The CALICE Collaboration, 168The CALICE Collaboration, 169The CALICE Collaboration, 170The CALICE Collaboration, 171The CALICE Collaboration, 172The CALICE Collaboration, 173The CALICE Collaboration, 174The CALICE Collaboration, 175The CALICE Collaboration, 176The CALICE Collaboration, 177The CALICE Collaboration, 178The CALICE Collaboration, 179The CALICE Collaboration, 180The CALICE Collaboration, 181The CALICE Collaboration, 182The CALICE Collaboration, 183The CALICE Collaboration, 184The CALICE Collaboration, 185The CALICE Collaboration, 186The CALICE Collaboration, 187The CALICE Collaboration, 188The CALICE Collaboration, 189The CALICE Collaboration, 190The CALICE Collaboration, 191The CALICE Collaboration, 192The CALICE Collaboration, 193The CALICE Collaboration, 194The CALICE Collaboration, 195The CALICE Collaboration, 196The CALICE Collaboration, 197The CALICE Collaboration, 198The CALICE Collaboration, 199The CALICE Collaboration, 200The CALICE Collaboration, 201The CALICE Collaboration, 202The CALICE Collaboration, 203The CALICE Collaboration, 204The CALICE Collaboration, 205The CALICE Collaboration, 206The CALICE Collaboration, 207The CALICE Collaboration, 208The CALICE Collaboration, 209The CALICE Collaboration, 210The CALICE Collaboration, 211The CALICE Collaboration, 212The CALICE Collaboration, 213The CALICE Collaboration

The intrinsic time structure of hadronic showers influences the timing capability and the required integration time of hadronic calorimeters in particle physics experiments, and depends on the active medium and on the absorber of the calorimeter. With the CALICE T3B experiment, a setup of 15 small plastic scintillator tiles read out with Silicon Photomultipliers, the time structure of showers is measured on a statistical basis with high spatial and temporal resolution in sampling calorimeters with tungsten and steel absorbers. The results are compared to GEANT4 (version 9. Read More

2013Nov
Authors: CALICE Collaboration, K. Francis, J. Repond, J. Schlereth, J. Smith, L. Xia, E. Baldolemar, J. Li, S. T. Park, M. Sosebee, A. P. White, J. Yu, G. Eigen, Y. Mikami, N. K. Watson, M. A. Thomson, D. R. Ward, D. Benchekroun, A. Hoummada, Y. Khoulaki, J. Apostolakis, A. Dotti, G. Folger, V. Ivantchenko, A. Ribon, V. Uzhinskiy, C. Carloganu, P. Gay, S. Manen, L. Royer, M. Tytgat, N. Zaganidis, G. C. Blazey, A. Dyshkant, J. G. R. Lima, V. Zutshi, J. -Y. Hostachy, L. Morin, U. Cornett, D. David, A. Ebrahimi, G. Falley, K. Gadow, P. Goettlicher, C. Guenter, O. Hartbrich, B. Hermberg, S. Karstensen, F. Krivan, K. Krueger, B. Lutz, S. Morozov, V. Morgunov, C. Neubueser, M. Reinecke, F. Sefkow, P. Smirnov, M. Terwort, E. Garutti, S. Laurien, S. Lu, I. Marchesini, M. Matysek, M. Ramilli, K. Briggl, P. Eckert, T. Harion, H. -Ch. Schultz-Coulon, W. Shen, R. Stamen, B. Bilki, E. Norbeck, D. Northacker, Y. Onel, G. W. Wilson, K. Kawagoe, Y. Sudo, T. Yoshioka, P. D. Dauncey, M. Wing, F. Salvatore, E. Cortina Gil, S. Mannai, G. Baulieu, P. Calabria, L. Caponetto, C. Combaret, R. Della Negra, G. Grenier, R. Han, J-C. Ianigro, R. Kieffer, I. Laktineh, N. Lumb, H. Mathez, L. Mirabito, A. Petrukhin, A. Steen, W. Tromeur, M. Vander Donckt, Y. Zoccarato, E. Calvo Alamillo, M. -C. Fouz, J. Puerta-Pelayo, F. Corriveau, B. Bobchenko, M. Chadeeva, M. Danilov, A. Epifantsev, O. Markin, R. Mizuk, E. Novikov, V. Popov, V. Rusinov, E. Tarkovsky, D. Besson, P. Buzhan, A. Ilyin, V. Kantserov, V. Kaplin, A. Karakash, E. Popova, V. Tikhomirov, C. Kiesling, K. Seidel, F. Simon, C. Soldner, L. Weuste, M. S. Amjad, J. Bonis, S. Callier, S. Conforti di Lorenzo, P. Cornebise, Ph. Doublet, F. Dulucq, J. Fleury, T. Frisson, N. van der Kolk, H. Li, G. Martin-Chassard, F. Richard, Ch. de la Taille, R. Poeschl, L. Raux, J. Rouene, N. Seguin-Moreau, M. Anduze, V. Balagura, V. Boudry, J-C. Brient, R. Cornat, M. Frotin, F. Gastaldi, E. Guliyev, Y. Haddad, F. Magniette, G. Musat, M. Ruan, T. H. Tran, H. Videau, B. Bulanek, J. Zacek, J. Cvach, P. Gallus, M. Havranek, M. Janata, J. Kvasnicka, D. Lednicky, M. Marcisovsky, I. Polak, J. Popule, L. Tomasek, M. Tomasek, P. Ruzicka, P. Sicho, J. Smolik, V. Vrba, J. Zalesak, B. Belhorma, H. Ghazlane, K. Kotera, H. Ono, T. Takeshita, S. Uozumi, D. Jeans, S. Chang, A. Khan, D. H. Kim, D. J. Kong, Y. D. Oh, M. Goetze, J. Sauer, S. Weber, C. Zeitnitz

A first prototype of a scintillator strip-based electromagnetic calorimeter was built, consisting of 26 layers of tungsten absorber plates interleaved with planes of 45x10x3 mm3 plastic scintillator strips. Data were collected using a positron test beam at DESY with momenta between 1 and 6 GeV/c. The prototype's performance is presented in terms of the linearity and resolution of the energy measurement. Read More

2013Oct

This report summarizes the work of the Energy Frontier Higgs Boson working group of the 2013 Community Summer Study (Snowmass). We identify the key elements of a precision Higgs physics program and document the physics potential of future experimental facilities as elucidated during the Snowmass study. We study Higgs couplings to gauge boson and fermion pairs, double Higgs production for the Higgs self-coupling, its quantum numbers and $CP$-mixing in Higgs couplings, the Higgs mass and total width, and prospects for direct searches for additional Higgs bosons in extensions of the Standard Model. Read More

The ILC Higgs White Paper is a review of Higgs Boson theory and experiment at the International Linear Collider (ILC). Theory topics include the Standard Model Higgs, the two-Higgs doublet model, alternative approaches to electroweak symmetry breaking, and precision goals for Higgs boson experiments. Experimental topics include the measurement of the Higgs cross section times branching ratio for various Higgs decay modes at ILC center of mass energies of 250, 500, and 1000 GeV, and the extraction of Higgs couplings and the total Higgs width from these measurements. Read More

We investigate the time evolution of higher order cumulants of conserved charges in a volume with the diffusion master equation. Applying the result to the diffusion of non-Gaussian fluctuations in the hadronic stage of relativistic heavy ion collisions, we show that the fourth-order cumulant of net-electric charge at LHC energy is suppressed compared with the recently observed second-order cumulant at ALICE, if the higher order cumulants at hadronization are suppressed compared with their values in the hadron phase in equilibrium. The significance of the experimental information on the rapidity window dependence of various cumulants in investigating the history of the dynamical evolution of the hot medium created in relativistic heavy ion collisions is emphasized. Read More

Given a graph $G=(V,E)$ of order $n$ and an $n$-dimensional non-negative vector $d=(d(1),d(2),\ldots,d(n))$, called demand vector, the vector domination (resp., total vector domination) is the problem of finding a minimum $S\subseteq V$ such that every vertex $v$ in $V\setminus S$ (resp., in $V$) has at least $d(v)$ neighbors in $S$. Read More

We investigate the effects of secondary (knockout) protons, which constitute about 20% of the observed protons at STAR, on the higher order cumulants of proton and baryon numbers measured by event-by-event analyses in relativistic heavy ion collisions. We argue that the contribution of this background effect on the cumulants is expressed by a simple formula, and that hence their effects can be removed in the experimental analysis. It is discussed that this background effect has non-negligible contribution to recently observed proton number cumulants at STAR, especially the third-order one, and that the removal of this effect is crucial to investigate the thermodynamical properties of the primordial hot medium appropriately. Read More

Precise measurement of Higgs boson couplings is an important task for International Linear Collider (ILC) experiments and will facilitate the understanding of the particle mass generation mechanism. In this study, the measurement accuracies of the Higgs boson branching fractions to the $b$ and $c$ quarks and gluons, $\Delta Br(H\to b\bar{b},\sim c\bar{c},\sim gg)/Br$, were evaluated with the full International Large Detector model (\texttt{ILD\_00}) for the Higgs mass of 120 GeV at the center-of-mass (CM) energies of 250 and 350 GeV using neutrino, hadronic and leptonic channels and assuming an integrated luminosity of $250 {\rm fb^{-1}}$, and an electron (positron) beam polarization of -80% (+30%). We obtained the following measurement accuracies of the Higgs cross section times branching fraction ($\Delta (\sigma \cdot Br)/\sigma \cdot Br$) for decay of the Higgs into $b\bar{b}$, $c\bar{c}$, and $gg$; as 1. Read More

In a coalescing random walk, a set of particles make independent random walks on a graph. Whenever one or more particles meet at a vertex, they unite to form a single particle, which then continues the random walk through the graph. Coalescing random walks can be used to achieve consensus in distributed networks, and is the basis of the self-stabilizing mutual exclusion algorithm of Israeli and Jalfon. Read More

Precise measurement of the Higgs boson properties are important issues for the International Linear Collider (ILC) project to understand the particles mass generation mechanism which strongly related to the coupling with the Higgs boson. Large Hadron Collider (LHC) experiments exclude the large area of the predicted Higgs mass region and their results indicate that Higgs boson mass will be light. Even if LHC discovers the Higgs like particle by the end of 2012, Higgs will be identified by the high precision measurement of the Higgs boson properties in ILC and also Higgs measurement verifies the correctness of standard model (SM) or gives some hints toward its beyond. Read More

In the context of designing a scalable overlay network to support decentralized topic-based pub/sub communication, the Minimum Topic-Connected Overlay problem (Min-TCO in short) has been investigated: Given a set of t topics and a collection of n users together with the lists of topics they are interested in, the aim is to connect these users to a network by a minimum number of edges such that every graph induced by users interested in a common topic is connected. It is known that Min-TCO is NP-hard and approximable within O(log t) in polynomial time. In this paper, we further investigate the problem and some of its special instances. Read More

Given an n-vertex graph G=(V,E) and a set R \subseteq {{x,y} | x,y \in V} of requests, we consider to assign a set of edges to each vertex in G so that for every request {u, v} in R the union of the edge sets assigned to u and v contains a path from u to v. The Minimum Certificate Dispersal Problem (MCD) is defined as one to find an assignment that minimizes the sum of the cardinality of the edge set assigned to each vertex. This problem has been shown to be LOGAPX-complete for the most general setting, and APX-hard and 2-approximable in polynomial time for dense request sets, where R forms a clique. Read More

Let $\Delta\subset \mathbb{R}^n$ be an $n$-dimensional integral Delzant polytope. It is well-known that there exist the $n$-dimensional compact toric manifold $X_\Delta$ and the very ample $(\mathbb{C}^\times)^n$-equivariant line bundle $L_\Delta$ on $X_\Delta$ associated with $\Delta$. In the present paper, we give a necessary and sufficient condition for Chow semistability of $(X_\Delta,L_\Delta^i)$ for a maximal torus action. Read More

The ILC physics working group is a mixture of experimentalists and theorists mainly working in Japan. It has its origin in the previous LC physics study group and has been reformed with the initiative of a JSPS Creative Scientific Research project: "Research and Development of a Novel Detector System for the International Linear Collider". The working group is, however, formally independent of the JSPS project and is open to everybody who is interested in ILC physics. Read More

Precise measurement of the Higgs boson properties is an important issue of the International Linear Collider (ILC) experiment to verify the particles mass generation mechanism that the coupling strength between the Higgs boson and the fermions or vector bosons are proportional to the mass of each particle. Thus the measurement of the branching ratio of the Higgs boson an important issue to understand the mass of each particle. In this analysis, measurement accuracy of the Higgs boson branching ratio in the ZH->qqH hadronic decay mode was studied with the cut-based analysis in Higgs mass of M_{H}=120 GeV at the center-of-mass energy of \sqrt{s}=250 GeV with the ILD detector model. Read More

The scintillator-strip electromagnetic calorimeter (ScECAL) is one of the calorimeter technic for the ILC. To achieve the fine granularity from the strip-segmented layers the strips in odd layers are orthogonal with respect to those in the even layers. In order to extract the best performance from such detector concept, a special reconstruction method and simulation tools are being developed in ILD collaboration. Read More

Let \Delta\subset \mathbb{R}^n be an n-dimensional Delzant polytope. It is well-known that there exist the n-dimensional compact toric manifold X_\Delta and the very ample (\mathbb{C}^\times)^n-equivariant line bundle L_\Delta on X_\Delta associated with \Delta. In the present paper, we show that if (X_\Delta,L_\Delta^i) is Chow semistable then the sum of integer points in i\Delta is the constant multiple of the barycenter of \Delta. Read More

A $(2,1)$-total labeling of a graph $G$ is an assignment $f$ from the vertex set $V(G)$ and the edge set $E(G)$ to the set $\{0,1,... Read More

Precise measurement of the Higgs boson properties is an important issue of the International Linear Collider (ILC) experiment. We studied the accuracy of the Higgs mass reconstruction in the ZH->qqH multi-jet process with the Higgs mass of MH = 120 GeV at sqrt(s) = 250 GeV with the ILD detector model. In this study, we obtained the reconstructed Higgs mass of M_H = 120. Read More

Donaldson proved that if a polarized manifold $(V,L)$ has constant scalar curvature K\"ahler metrics in $c_1(L)$ and its automorphism group Aut$(M,L)$ is discrete, $(V,L)$ is asymptotically Chow stable. In this paper, we shall show an example which implies that the above result does not hold in the case when Aut$(V,L)$ is not discrete. Read More

In this paper, we investigate the deductive inference for the interiors and exteriors of Horn knowledge bases, where the interiors and exteriors were introduced by Makino and Ibaraki to study stability properties of knowledge bases. We present a linear time algorithm for the deduction for the interiors and show that it is co-NP-complete for the deduction for the exteriors. Under model-based representation, we show that the deduction problem for interiors is NP-complete while the one for exteriors is co-NP-complete. Read More

Given a polarized manifold there are obstructions for asymptotic Chow semistability described as integral invariants. One of them is an obstruction to the existence for the first Chern class of the polarization to admit a constant scalar curvature K\"ahler (cscK) metric. A natural question is whether or not the other obstructions are linearly dependent on the obstruction to the existence of a cscK metric. Read More

In this expository article we review the problem of finding Einstein metrics on compact K\"ahler manifolds and Sasaki manifolds. In the former half of this article we see that, in the K\"ahler case, the problem fits better with the notion of stability in Geometric Invariant Theory if we extend the problem to that of finding extremal K\"ahler metrics or constant scalar curvature K\"ahler (cscK) metrics. In the latter half of this paper we see that most of ideas in K\"ahler geometry extend to Sasaki geometry as transverse K\"ahler geometry. Read More

An L(2,1)-labeling of a graph $G$ is an assignment $f$ from the vertex set $V(G)$ to the set of nonnegative integers such that $|f(x)-f(y)|\ge 2$ if $x$ and $y$ are adjacent and $|f(x)-f(y)|\ge 1$ if $x$ and $y$ are at distance 2, for all $x$ and $y$ in $V(G)$. A $k$-L(2,1)-labeling is an assignment $f:V(G)\to\{0,.. Read More

In [11] it was proved that, given a compact toric Sasaki manifold of positive basic first Chern class and trivial first Chern class of the contact bundle, one can find a deformed Sasaki structure on which a Sasaki-Einstein metric exists. In the present paper we first prove the uniqueness of such Einstein metrics on compact toric Sasaki manifolds modulo the action of the identity component of the automorphism group for the transverse holomorphic structure, and secondly remark that the result of [11] implies the existence of compatible Einstein metrics on all compact Sasaki manifolds obtained from the toric diagrams with any height, or equivalently on all compact toric Sasaki manifolds whose cones have flat canonical bundle. We further show that there exists an infinite family of inequivalent toric Sasaki-Einstein metrics on $S^5 \sharp k(S^2 \times S^3)$ for each positive integer $k$. Read More

In this paper we study compact Sasaki manifolds in view of transverse K\"ahler geometry and extend some results in K\"ahler geometry to Sasaki manifolds. In particular we define integral invariants which obstruct the existence of transverse K\"ahler metric with harmonic Chern forms. The integral invariant $f_1$ for the first Chern class case becomes an obstruction to the existence of transverse K\"ahler metric of constant scalar curvature. Read More

We introduce a systematic method for constructing a class of lattice structures that we call ``partial line graphs''.In tight-binding models on partial line graphs, energy bands with flat energy dispersions emerge.This method can be applied to two- and three-dimensional systems. Read More

We perform a series of two-dimensional, axisymmetric, magnetohydrodynamic simulations of the rotational collapse of a supernova core. In order to calculate the waveforms of the gravitational wave, we derive the quadrupole formula including the contributions from the electromagnetic fields. Recent stellar evolution calculations imply that the magnetic fields of the toroidal components are much stronger than those of the poloidal ones at the presupernova stage. Read More