H. J. Xiang

H. J. Xiang
Are you H. J. Xiang?

Claim your profile, edit publications, add additional information:

Contact Details

Name
H. J. Xiang
Affiliation
Location

Pubs By Year

Pub Categories

 
Physics - Materials Science (24)
 
Physics - Strongly Correlated Electrons (9)
 
Physics - Superconductivity (7)
 
Mathematics - Numerical Analysis (5)
 
Physics - Optics (4)
 
Physics - Mesoscopic Systems and Quantum Hall Effect (4)
 
Nonlinear Sciences - Adaptation and Self-Organizing Systems (2)
 
Mathematical Physics (1)
 
Mathematics - Mathematical Physics (1)
 
Physics - Accelerator Physics (1)
 
Quantum Physics (1)
 
Nonlinear Sciences - Chaotic Dynamics (1)
 
Physics - Classical Physics (1)
 
Computer Science - Information Theory (1)
 
Mathematics - Information Theory (1)
 
Computer Science - Networking and Internet Architecture (1)

Publications Authored By H. J. Xiang

Evidence for intra-unit-cell (IUC) magnetic order in the pseudogap region of high-$T_c$ cuprates below a temperature $T^\ast$ is found in several studies, but NMR and $\mu$SR experiments do not observe the expected static local magnetic fields. It has been noted, however, that such fields could be averaged by fluctuations. Our measurements of muon spin relaxation rates in single crystals of YBa$_2$Cu$_3$O$_y$ reveal magnetic fluctuations of the expected order of magnitude that exhibit critical slowing down at $T^\ast$. Read More

Intensive researches of two-dimensional (2D) layered materials reveal that valleys, as energy extrema in momentum space, could offer a new degree of freedom for carrying information. Taking advantage of the concept, researchers have predicted the existence of valley-Hall topological insulators which could exhibit quantum valley-Hall effect and support valley-polarized edge states on certain edges and domain walls. Since then, several kinds of photonic or sonic crystals have been proposed as the classical counterparts of valley-Hall topological insulators. Read More

Quantum anomalous Hall (QAH) insulator is a topological phase which exhibits chiral edge states in the absence of magnetic field. The celebrated Haldane model is the first example of QAH effect, but difficult to realize. Here, we predict the two-dimensional single-atomic-layer V2O3 with a honeycomb-Kagome structure is a QAH insulator with a large band gap (large than 0. Read More

Unidirectional backward and forward scattering of electromagnetic waves by nanoparticles are usually interpreted as the interference of conventional multipole moments (i.e., electric and magnetic dipole, electric quadrupole, etc. Read More

Recent experiments reveal that the honeycomb ruthenium trichloride {\alpha}-RuCl3 is a prime candidate of the Kitaev quantum spin liquid (QSL). However, there is no theoretical model which can properly describe its experimental dynamical response, due to the lack of a full understanding of its magnetic interactions. Here, we propose a general scheme to calculate the magnetic interactions in systems (e. Read More

We shall propose and analyze some new preconditioners for the saddle-point systems arising from the edge element discretization of the time-harmonic Maxwell equations in three dimensions. We will first consider the saddle-point systems with vanishing wave number, for which we present an important relation between the solutions of the singular curl-curl system and the non-singular saddle-point system, then demonstrate that the saddle-point system can be efficiently solved by the Hiptmair-Xu solver. For the saddle-point systems with non-vanishing wave numbers, we will show that the PCG with a new preconditioner can apply for the non-singular system when wave numbers are small, while the methods like preconditioned MINRES may apply for some existing and new preconditioners when wave numbers are large. Read More

We generalize the Kuramoto model for the synchronization transition of globally coupled phase oscillators to populations by incorporating an additional heterogeneity with the coupling strength, where each oscillator pair interacts with different coupling strength weighted by a genera; function of their natural frequency. The expression for the critical coupling can be straightforwardly extended to a generalized explicit formula analytically, and s self-consistency approach is developed to predict the stationary states in the thermodynamic limit. The landau damping effect is further revealed by means of the linear stability analysis and resonance poles theory above the critical threshold which turns to be far more generic. Read More

In this chapter we review the quantitative and qualitative aspects of describing the properties of magnetic solids on the basis of electronic Hamiltonian. We show that a spin Hamiltonian approach becomes consistent with an electronic Hamiltonian approach if the spin lattice and its associated spin exchange parameters, to be used for the spin Hamiltonian, are determined by the energy-mapping analysis based on DFT calculations. The preferred spin orientation (i. Read More

It is well known that a closed loop of magnetic dipoles can give rise to the rather elusive toroidal moment. However, artificial structures required to generate the necessary magnetic moments are typically optically large, complex to make and easily compromised by the kinetic inductance at high frequencies. Instead of using magnetic dipoles, we propose a minimal model based on just three aligned discrete electric dipoles in which the occurrence of resonant toroidal modes is guaranteed by symmetry. Read More

The theoretical study of grain boundaries (GBs) in polycrystalline semiconductors is currently stalemated by their complicated nature, which is difficult to extract from any direct experimental characterization. Usually, coincidence-site-lattice (CSL) models are constructed simply by aligning two symmetric planes, ignoring various possible reconstructions. Here, we propose a general self-passivation rule to determine the low-energy GB reconstruction, and find new configurations for the CdTe sigma3 (112) GBs. Read More

In this paper, we propose a framework to investigate the collective dynamics in ensembles of globally coupled phase oscillators when higher-order modes dominate the coupling. The spatiotemporal properties of the attractors in various regions of parameter space are analyzed. Furthermore, a detailed linear stability analysis proves that the stationary symmetric distribution is only neutrally stable in the marginal regime which stems from the generalized time-reversal symmetry. Read More

Recently, the concept of topological insulators has been generalized to topological semimetals, including three-dimensional (3D) Weyl semimetals, 3D Dirac semimetals, and 3D node-line semimetals. In particular, several compounds (e.g. Read More

The spins of the low-spin Ir4+ (S = 1/2, d5) ions at the octahedral sites of the oxides Sr3NiIrO6, Sr2IrO4 and Na2IrO3 exhibit preferred orientations with respect to their IrO6 octahedra. We evaluated the magnetic anisotropies of these S = 1/2 ions on the basis of DFT calculations including spin-orbit coupling (SOC), and probed their origin by performing perturbation theory analyses with SOC as perturbation within the LS coupling scheme. The observed spin orientations of Sr3NiIrO6 and Sr2IrO4 are correctly predicted by DFT calculations, and are accounted for by the perturbation theory analysis. Read More

The presence of a switchable spontaneous electric polarization makes ferroelectrics ideal candidates for the use in many applications such as memory and sensors devices. Since known ferroelectrics are rather limited, finding new ferroelectric (FE) materials has become a flourishing field. One promising route is to design the so-called hybrid improper ferroelectricity. Read More

H2S is converted under ultrahigh pressure (> 110 GPa) to a metallic phase that becomes superconducting with a record Tc of 200 K. It has been proposed that the superconducting phase is body-centered cubic H3S ( Im3m , a = 3.089 {\AA}) resulting from a decomposition reaction 3H2S --> 2H3S + S. Read More

Incorporating cloud computing into heterogeneous networks, the heterogeneous cloud radio access network (H-CRAN) has been proposed as a promising paradigm to enhance both spectral and energy efficiencies. Developing interference suppression strategies is critical for suppressing the inter-tier interference between remote radio heads (RRHs) and a macro base station (MBS) in H-CRANs. In this paper, inter-tier interference suppression techniques are considered in the contexts of collaborative processing and cooperative radio resource allocation (CRRA). Read More

The heterogeneous cloud radio access network (H-CRAN) is a promising paradigm which incorporates the cloud computing into heterogeneous networks (HetNets), thereby taking full advantage of cloud radio access networks (C-RANs) and HetNets. Characterizing the cooperative beamforming with fronthaul capacity and queue stability constraints is critical for multimedia applications to improving energy efficiency (EE) in H-CRANs. An energy-efficient optimization objective function with individual fronthaul capacity and inter-tier interference constraints is presented in this paper for queue-aware multimedia H-CRANs. Read More

The preferred spin orientation of a magnetic ion can be predicted on the basis of density functional theory (DFT) calculations including electron correlation and spin-orbit coupling (SOC). However, most chemists and physicists are unaware of how the observed and/or calculated spin orientations are related to the local electronic structures of the magnetic ions. The objective of this article is to provide a conceptual framework of thinking about and predicting the preferred spin orientation of a magnetic ion by examining the relationship between the spin orientation and the local electronic structure of the ion. Read More

The emergence of the electron-pocket only iron-based superconductor AxFe2-ySe2 (A = alkali metal) challenges the Fermi-surface nesting picture established in iron-pnictides. It was widely believed that magnetism is correlated with the superconductivity in AxFe2-ySe2. Unfortunately, the highly anisotropic exchange parameters and the disagreement between theoretical calculations and experimental results triggered a fierce debate on the nature of magnetism in AxFe2-ySe2. Read More

Despite the recent progress on two-dimensional multilayer materials (2DMM) with weak interlayer interactions, the investigation on 2DMM with strong interlayer interactions is far from its sufficiency. Here we report on first-principles calculations that clarify the structural evolution and optoelectronic properties of such a 2DMM, multilayer silicene. With our newly developed global optimization algorithm, we discover the existence of rich dynamically stable multilayer silicene phases, the stability of which is closely related to the extent of sp3 hybridization that can be evaluated by the average bonds and effective bond angles. Read More

Based on the density functional theory and our new model Hamiltonian, we have studied the basal-plane antiferromagnetism in the novel Jeff=1/2 Mott insulator Ba2IrO4. By comparing the magnetic properties of the bulk Ba2IrO4 with those of the single-layer Ba2IrO4, we demonstrate unambiguously that the basal-plane antiferromagnetism is caused by the intralyer magnetic interactions rather than by the previously proposed interlayer ones. In order to reveal the origin of the basal-plane antiferromagnetism, we propose a new model Hamiltonian by adding the single ion anisotropy and pseudo-quadrupole interactions into the general bilinear pseudo-spin Hamiltonian. Read More

The Jahn-Teller effect refers to the symmetry-lowering geometrical distortion in a crystal (or non-linear molecule) due to the presence of a degenerate electronic state. Usually, the Jahn-Teller distortion is not polar. Recently, GaV4S8 with the lacunar spinel structure was found to undergoes a Jahn-Teller distortion from cubic to ferroelectric rhombohedral structure at TJT = 38K. Read More

We investigate the average entropy of a subsystem within a global unitary orbit of a given mixed bipartite state in the finite-dimensional space. Without working out the closed-form expression of such average entropy for the mixed state case, we provide an analytical lower bound for this average entropy. In deriving this analytical lower bound, we get some useful by-products of independent interest. Read More

Plasmonic resonance of a metallic nanostructure results from coherent motion of its conduction electrons driven by incident light. At the resonance, the induced dipole in the nanostructure is proportional to the number of the conduction electrons, hence $10^{7}$ times larger than that in an atom. The interaction energy between the induced dipole and fluctuating virtual field of the incident light can reach a few tenths of an eV. Read More

The organic-inorganic hybrid perovskite CH3NH3PbI3 has attracted significant interest for its high performance in converting solar light into electrical power with an efficiency exceeding 20%. Unfortunately, chemical stability is one major challenge in the development of the CH3NH3PbI3 solar cells. It was commonly assumed that moisture or oxygen in the environment causes the poor stability of hybrid halide perovskites, however, here we show from the first-principles calculations that the room-temperature tetragonal phase of CH3NH3PbI3 is thermodynamically unstable with respect to the phase separation into CH3NH3I + PbI2, i. Read More

Two-dimensional (2D) topological insulators (TIs), also known as quantum spin Hall (QSH) insulators, are excellent candidates for coherent spin transport related applications because the edge states of 2D TIs are robust against nonmagnetic impurities since the only available backscattering channel is forbidden. Currently, most known 2D TIs are based on a hexagonal (specifically, honeycomb) lattice. Here, we propose that there exists the quantum spin Hall effect (QSHE) in a buckled square lattice. Read More

A high-frequency optical phonon mode of SrTiO3 (STO) was found to assist the high-temperature superconductivity observed recently at the interface between monolayer FeSe and STO substrate. However, the origin of this mode is not clear. Through first-principles calculations, we find that there is a novel polar phonon mode on the surface layers of the STO substrate, which does not exist in the STO crystals. Read More

Magnetoelastic coupling, i.e., the change of crystal lattice induced by a spin order, is not only scientifically interesting, but also technically important. Read More

Propagation of spoof surface plasmon polaritons (spoof SPPs) on comb-shaped ultrathin metal strips made of aluminum foil and printed copper circuit are studied experimentally and numerically. With a near field scanning technique, electric field distributions on these metal strips are measured directly. The dispersion curves of spoof SPPs are thus obtained by means of Fourier transform of the field distributions in the real space for every frequency. Read More

A method based on the particle swarm optimization (PSO) algorithm is presented to design quasi-two-dimensional (Q2D) materials. With this development, various single-layer and bi-layer materials in C, Si, Ge, Sn, and Pb were predicted. A new Si bi-layer structure is found to have a much-favored energy than the previously widely accepted configuration. Read More

We shall investigate randomized algorithms for solving large-scale linear inverse problems with general regularizations. We first present some techniques to transform inverse problems of general form into the ones of standard form, then apply randomized algorithms to reduce large-scale systems of standard form to much smaller-scale systems and seek their regularized solutions in combination with some popular choice rules for regularization parameters. Then we will propose a second approach to solve large-scale ill-posed systems with general regularizations. Read More

Double perovskites Sr2FeOsO6 and Ca2FeOsO6 show puzzling magnetic properties, the former a low-temperature antiferromagnet while the later a high-temperature insulating ferrimagnet. Here, in order to understand the underlying mechanism, we have investigated the frustrated magnetism of A2FeOsO6 by employing density functional theory and maximally-localized Wannier functions. We find that lattice distortion enhances the antiferromagnetic nearest-neighboring Fe-O-Os interaction but weakens the antiferromagnetic interactions through the Os-O-O-Os and Fe-O-Os-O-Fe paths, which is responsible for the magnetic transition from the low-temperature antiferromagnetism to the high-temperature ferrimagnetism with the decrease of the radius of the A2+ ions. Read More

Multiferroic materials, in which ferroelectric and magnetic ordering coexist, are of fundamental interest for the development of novel memory devices that allow for electrical writing and non-destructive magnetic readout operation. The great challenge is to create room temperature multiferroic materials with strongly coupled ferroelectric and ferromagnetic (or ferrimagnetic) orderings. BiFeO3 has been the most heavily investigated single-phase multiferroic to date due to the coexistence of its magnetic order and ferroelectric order at room temperature. Read More

The cause for the preferred spin orientation in magnetic systems containing spin-1/2 transition-metal ions was explored by studying the origin of the easy-plane anisotropy of the spin-1/2 Cu2+ ions in CuCl2.2H2O, LiCuVO4, CuCl2 and CuBr2 on the basis of density functional theory and magnetic dipole-dipole energy calculations as well as a perturbation theory treatment of the spin-orbit coupling. We find that the spin orientation observed for these spin-1/2 ions is not caused by their anisotropic spin exchange interactions, nor by their magnetic dipole-dipole interactions, but by the spin-orbit coupling associated with their crystal-field split d-states. Read More

We propose an inexact Uzawa algorithm with two variable relaxation parameters for solving the generalized saddle-point system. The saddle-point problems can be found in a wide class of applications, such as the augmented Lagrangian formulation of the constrained minimization, the mixed finite element method, the mortar domain decomposition method and the discretization of elliptic and parabolic interface problems. The two variable parameters can be updated at each iteration, requiring no a priori estimates on the spectrum of two preconditioned subsystems involved. Read More

Monolayer FeSe thin film grown on SrTiO_{3}(001) (STO) shows the sign of T_{c}> 77 K, which is higher than the T_{c}-record of 56 K for the bulk FeAs-based superconductors. However, little is known about the magnetic ground state of FeSe, which should be closely related to its unusual superconductivity. Previous studies presume the collinear stripe antiferromagnetic (AFM) state as the ground state of FeSe, same to that in FeAs superconductors. Read More

Multiferroics offer exciting opportunities for electric-field control of magnetism. Unfortunately, single-phase multiferroics suitable for such applications at room temperature has not been discovered. Here, we propose the concept of a new type of multiferroics, namely, "asymmetric multiferroic". Read More

In this paper, we present perturbation analysis and randomized algorithms for the total least squares (TLS) problems. We derive the perturbation bound and check its sharpness by numerical experiments. Motivated by the recently popular probabilistic algorithms for low-rank approximations, we develop randomized algorithms for the TLS and the truncated total least squares (TTLS) solutions of large-scale discrete ill-posed problems, which can greatly reduce the computational time and still keep good accuracy. Read More

On the basis of first-principles calculations we show that the M-type hexaferrite BaFe12O19 exhibits frustrated antiferroelectricity associated with its trigonal bipyramidal Fe3+ sites. The ferroelectric (FE) state of BaFe12O19, reachable by applying an external electric field to the antiferroelectric (AFE) state, can be made stable at room temperature by appropriate element substitution or strain engineering. Thus M-type hexaferrite, as a new type of multiferoic with coexistence of antiferroelectricity and ferrimagnetism, provide a basis for studying the phenomenon of frustrated antiferroelectricity and realizing multiple state memory devices. Read More

Since conduction electrons of a metal screen effectively the local electric dipole moments, it was widely believed that the ferroelectric-like distortion cannot occur in metals. Recently, metallic LiOsO3, was discovered to be the first clear-cut example of an Anderson-Blount "ferroelectric" metal, which at 140 K undergoes a ferroelectric-like structural transition similar to insulating LiNbO3. This is very surprising because the mechanisms for structural phase transitions are usually quite distinct in metals and insulators. Read More

Recently, the signs of both superconducting transition temperature (Tc) beyond 60 K and spin density wave (SDW) have been observed in FeSe thin film on SrTiO3 (STO) substrate, which suggests a strong interplay between superconductivity and magnetism. With the first-principles calculations, we find that the substrate-induced tensile strain tends to stabilize the SDW state in FeSe thin film by enhancing of the next-nearest-neighbor superexchange antiferromagnetic interaction bridged through Se atoms. On the other hand, we find that when there are oxygen vacancies in the substrate, the significant charge transfer from the substrate to the first FeSe layer would suppress the magnetic order there, and thus the high-temperature superconductivity could occur. Read More

By combining genetic algorithm optimizations, first-principles calculations and the double-exchange model studies, we have unveiled that the exotic insulating ferromagnetism in LaMnO3 thin film originates from the previously unreported G-type d_{3z^2-r^2}/d_{x^2-y^2} orbital ordering. An insulating gap opens as a result of both the orbital ordering and the strong electron-phonon coupling. Therefore, there exist two strain induced phase transitions in the LaMnO3 thin film, from the insulating A-type antiferromagnetic phase to the insulating ferromagnetic phase and then to the metallic ferromagnetic phase. Read More

The electronic properties of ABX3 (A = Cs, CH3NH3, NH2CHNH2; B = Sn, Pb; X = Cl, Br, I) type compounds in the cubic phase are systematically studied using the first-principles calculations. We find that these compounds have direct band gaps at R point where the valance band maximum is an anti-bonding state of B s-X p coupling, while the conduction band minimum is a non-bonding state with B p characters. The chemical trend of their properties as A or B or X varies is fully investigated, which is of great importance to understand and optimize this kind of solar cell materials. Read More

IHEP, China is constructing a 100 MeV / 100 kW electron Linac for NSC KIPT, Ukraine. This linac will be used as the driver of a neutron source based on a subcritical assembly. In 2012, the injector part of the accelerator was pre-installed as a testing facility in the experimental hall #2 of IHEP. Read More

We have developed a new global optimization method for the determination of interface structure based on the differential evolution algorithm. Here, we applied this method to search for the ground state atomic structures of the grain boundary between the armchair and zigzag oriented graphene. We find two new grain boundary structures with considerably lower formation energy of about 1 eV/nm than that of the previously widely used structural models. Read More

Interface engineering in perovskite oxide superlattices has developed into a flourishing field, enabling not only further tuning of the exceptional properties, but also giving access to emergent physical phenomena. Here, we reveal a new mechanism for enhancing the electric polarization by the interface-induced oxygen octahedral tilts in BaTiO3/CaTiO3 superlattices. By combining a novel genetic algorithm with density functional theory (DFT), we predict that the true ground states in 1:1 and 2:2 BaTiO3/CaTiO3 superlattices grown on SrTiO3 adopt Pc symmetry with a large proper electric polarization (32. Read More

The formation of (TiO2)x(Cu2O)y solid-solutions are investigated using a global optimization evolutionary algorithm. First-principles calculations based on density functional theory are then used to gain insight into the electronic properties of these alloys. We find that: (i) Ti and Cu in (TiO2)x(Cu2O)y alloys have similar local environments as in bulk TiO2 and Cu2O except for (TiO2)(Cu2O) which has some trigonal-planar Cu ions. Read More