H. J. Li - Sherman

H. J. Li
Are you H. J. Li?

Claim your profile, edit publications, add additional information:

Contact Details

Name
H. J. Li
Affiliation
Sherman
City
Sherman
Country
United States

Pubs By Year

External Links

Pub Categories

 
Computer Science - Computer Vision and Pattern Recognition (8)
 
Computer Science - Learning (6)
 
High Energy Physics - Experiment (5)
 
High Energy Physics - Phenomenology (4)
 
Mathematics - Analysis of PDEs (4)
 
Quantum Physics (3)
 
Physics - Optics (3)
 
Solar and Stellar Astrophysics (2)
 
Statistics - Machine Learning (2)
 
Computer Science - Cryptography and Security (2)
 
Physics - Mesoscopic Systems and Quantum Hall Effect (2)
 
Mathematics - Information Theory (2)
 
Computer Science - Information Theory (2)
 
Nuclear Theory (2)
 
Physics - Soft Condensed Matter (2)
 
General Relativity and Quantum Cosmology (2)
 
Computer Science - Distributed; Parallel; and Cluster Computing (2)
 
Physics - Instrumentation and Detectors (2)
 
Mathematics - Optimization and Control (2)
 
Cosmology and Nongalactic Astrophysics (1)
 
Mathematics - Spectral Theory (1)
 
Mathematics - Mathematical Physics (1)
 
Computer Science - Programming Languages (1)
 
Physics - Chemical Physics (1)
 
Mathematical Physics (1)
 
Physics - Materials Science (1)
 
Physics - Superconductivity (1)
 
Physics - Atomic Physics (1)
 
Physics - Space Physics (1)
 
Nuclear Experiment (1)
 
Physics - Accelerator Physics (1)
 
Computer Science - Neural and Evolutionary Computing (1)
 
Mathematics - Numerical Analysis (1)
 
High Energy Astrophysical Phenomena (1)
 
Earth and Planetary Astrophysics (1)
 
Physics - Plasma Physics (1)
 
Computer Science - Multimedia (1)
 
Mathematics - Differential Geometry (1)
 
Nonlinear Sciences - Adaptation and Self-Organizing Systems (1)
 
Computer Science - Computation and Language (1)
 
Astrophysics of Galaxies (1)

Publications Authored By H. J. Li

In this paper, we propose a new method to detect 4D spatiotemporal interest points though an implicit surface, we refer to as the 4D-ISIP. We use a 3D volume which has a truncated signed distance function(TSDF) for every voxel to represent our 3D object model. The TSDF represents the distance between the spatial points and object surface points which is an implicit surface representation. Read More

Multi-color ($B$ $V$ $R_c$ $I_c$) CCD photometric light curves of the contact binary V502 Oph are analyzed using the Wilson-Devinney (W-D) program. The solutions reveal that V502 Oph is a W-subtype contact ($f = 35.3\,\%$) binary system. Read More

Non-rigid structure-from-motion (NRSfM) has so far been mostly studied for recovering 3D structure of a single non-rigid/deforming object. To handle the real world challenging multiple deforming objects scenarios, existing methods either pre-segment different objects in the scene or treat multiple non-rigid objects as a whole to obtain the 3D non-rigid reconstruction. However, these methods fail to exploit the inherent structure in the problem as the solution of segmentation and the solution of reconstruction could not benefit each other. Read More

The 10 MeV accelerator-driven subcritical system (ADS) Injector-I test stand at Institute of High Energy Physics (IHEP) is a testing facility dedicated to demonstrate one of the two injector design schemes [Injector Scheme-I, which works at 325 MHz], for the ADS project in China. The Injector adopted a four vane copper structure RFQ with output energy of 3.2 MeV and a superconducting (SC) section accommodating fourteen \b{eta}g=0. Read More

In the field of objective image quality assessment (IQA), the Spearman's $\rho$ and Kendall's $\tau$ are two most popular rank correlation indicators, which straightforwardly assign uniform weight to all quality levels and assume each pair of images are sortable. They are successful for measuring the average accuracy of an IQA metric in ranking multiple processed images. However, two important perceptual properties are ignored by them as well. Read More

2017May
Authors: BESIII Collaboration, M. Ablikim, M. N. Achasov, S. Ahmed, M. Albrecht, M. Alekseev, A. Amoroso, F. F. An, Q. An, J. Z. Bai, Y. Bai, O. Bakina, R. Baldini Ferroli, Y. Ban, D. W. Bennett, J. V. Bennett, N. Berger, M. Bertani, D. Bettoni, J. M. Bian, F. Bianchi, E. Boger, I. Boyko, R. A. Briere, H. Cai, X. Cai, O. Cakir, A. Calcaterra, G. F. Cao, S. A. Cetin, J. Chai, J. F. Chang, G. Chelkov, G. Chen, H. S. Chen, J. C. Chen, M. L. Chen, S. J. Chen, X. R. Chen, Y. B. Chen, X. K. Chu, G. Cibinetto, H. L. Dai, J. P. Dai, A. Dbeyssi, D. Dedovich, Z. Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, C. Dong, J. Dong, L. Y. Dong, M. Y. Dong, O. Dorjkhaidav, Z. L. Dou, S. X. Du, P. F. Duan, J. Fang, S. S. Fang, X. Fang, Y. Fang, R. Farinelli, L. Fava, S. Fegan, F. Feldbauer, G. Felici, C. Q. Feng, E. Fioravanti, M. Fritsch, C. D. Fu, Q. Gao, X. L. Gao, Y. Gao, Y. G. Gao, Z. Gao, B. Garillon, I. Garzia, K. Goetzen, L. Gong, W. X. Gong, W. Gradl, M. Greco, M. H. Gu, S. Gu, Y. T. Gu, A. Q. Guo, L. B. Guo, R. P. Guo, Y. P. Guo, Z. Haddadi, S. Han, X. Q. Hao, F. A. Harris, K. L. He, X. Q. He, F. H. Heinsius, T. Held, Y. K. Heng, T. Holtmann, Z. L. Hou, C. Hu, H. M. Hu, T. Hu, Y. Hu, G. S. Huang, J. S. Huang, S. H. Huang, X. T. Huang, X. Z. Huang, Z. L. Huang, T. Hussain, W. Ikegami Andersson, Q. Ji, Q. P. Ji, X. B. Ji, X. L. Ji, X. S. Jiang, X. Y. Jiang, J. B. Jiao, Z. Jiao, D. P. Jin, S. Jin, Y. Jin, T. Johansson, A. Julin, N. Kalantar-Nayestanaki, X. L. Kang, X. S. Kang, M. Kavatsyuk, B. C. Ke, T. Khan, A. Khoukaz, P. Kiese, R. Kliemt, L. Koch, O. B. Kolcu, B. Kopf, M. Kornicer, M. Kuemmel, M. Kuhlmann, A. Kupsc, W. Kühn, J. S. Lange, M. Lara, P. Larin, L. Lavezzi, H. Leithoff, C. Leng, C. Li, Cheng Li, D. M. Li, F. Li, F. Y. Li, G. Li, H. B. Li, H. J. Li, J. C. Li, Jin Li, K. Li, K. Li, K. J. Li, Lei Li, P. L. Li, P. R. Li, Q. Y. Li, T. Li, W. D. Li, W. G. Li, X. L. Li, X. N. Li, X. Q. Li, Z. B. Li, H. Liang, Y. F. Liang, Y. T. Liang, G. R. Liao, D. X. Lin, B. Liu, B. J. Liu, C. X. Liu, D. Liu, F. H. Liu, Fang Liu, Feng Liu, H. B. Liu, H. H. Liu, H. H. Liu, H. M. Liu, J. B. Liu, J. Y. Liu, K. Liu, K. Y. Liu, Ke Liu, L. D. Liu, P. L. Liu, Q. Liu, S. B. Liu, X. Liu, Y. B. Liu, Z. A. Liu, Zhiqing Liu, Y. F. Long, X. C. Lou, H. J. Lu, J. G. Lu, Y. Lu, Y. P. Lu, C. L. Luo, M. X. Luo, X. L. Luo, X. R. Lyu, F. C. Ma, H. L. Ma, L. L. Ma, M. M. Ma, Q. M. Ma, T. Ma, X. N. Ma, X. Y. Ma, Y. M. Ma, F. E. Maas, M. Maggiora, Q. A. Malik, Y. J. Mao, Z. P. Mao, S. Marcello, Z. X. Meng, J. G. Messchendorp, G. Mezzadri, J. Min, T. J. Min, R. E. Mitchell, X. H. Mo, Y. J. Mo, C. Morales Morales, G. Morello, N. Yu. Muchnoi, H. Muramatsu, A. Mustafa, Y. Nefedov, F. Nerling, I. B. Nikolaev, Z. Ning, S. Nisar, S. L. Niu, X. Y. Niu, S. L. Olsen, Q. Ouyang, S. Pacetti, Y. Pan, M. Papenbrock, P. Patteri, M. Pelizaeus, J. Pellegrino, H. P. Peng, K. Peters, J. Pettersson, J. L. Ping, R. G. Ping, A. Pitka, R. Poling, V. Prasad, H. R. Qi, M. Qi, T. . Y. Qi, S. Qian, C. F. Qiao, N. Qin, X. S. Qin, Z. H. Qin, J. F. Qiu, K. H. Rashid, C. F. Redmer, M. Richter, M. Ripka, M. Rolo, G. Rong, Ch. Rosner, A. Sarantsev, M. Savrié, C. Schnier, K. Schoenning, W. Shan, M. Shao, C. P. Shen, P. X. Shen, X. Y. Shen, H. Y. Sheng, M. R. Shepherd, J. J. Song, W. M. Song, X. Y. Song, S. Sosio, C. Sowa, S. Spataro, G. X. Sun, J. F. Sun, L. Sun, S. S. Sun, X. H. Sun, Y. J. Sun, Y. K Sun, Y. Z. Sun, Z. J. Sun, Z. T. Sun, C. J. Tang, G. Y. Tang, X. Tang, I. Tapan, M. Tiemens, B. T. Tsednee, I. Uman, G. S. Varner, B. Wang, B. L. Wang, D. Wang, D. Y. Wang, Dan Wang, K. Wang, L. L. Wang, L. S. Wang, M. Wang, P. Wang, P. L. Wang, W. P. Wang, X. F. Wang, Y. Wang, Y. D. Wang, Y. F. Wang, Y. Q. Wang, Z. Wang, Z. G. Wang, Z. H. Wang, Z. Y. Wang, Z. Y. Wang, T. Weber, D. H. Wei, J. H. Wei, P. Weidenkaff, S. P. Wen, U. Wiedner, M. Wolke, L. H. Wu, L. J. Wu, Z. Wu, L. Xia, Y. Xia, D. Xiao, H. Xiao, Y. J. Xiao, Z. J. Xiao, X. H. Xie, Y. G. Xie, Y. H. Xie, X. A. Xiong, Q. L. Xiu, G. F. Xu, J. J. Xu, L. Xu, Q. J. Xu, Q. N. Xu, X. P. Xu, L. Yan, W. B. Yan, W. C. Yan, Y. H. Yan, H. J. Yang, H. X. Yang, L. Yang, Y. H. Yang, Y. X. Yang, M. Ye, M. H. Ye, J. H. Yin, Z. Y. You, B. X. Yu, C. X. Yu, J. S. Yu, C. Z. Yuan, Y. Yuan, A. Yuncu, A. A. Zafar, Y. Zeng, Z. Zeng, B. X. Zhang, B. Y. Zhang, C. C. Zhang, D. H. Zhang, H. H. Zhang, H. Y. Zhang, J. Zhang, J. L. Zhang, J. Q. Zhang, J. W. Zhang, J. Y. Zhang, J. Z. Zhang, K. Zhang, L. Zhang, S. Q. Zhang, X. Y. Zhang, Y. Zhang, Y. Zhang, Y. H. Zhang, Y. T. Zhang, Yu Zhang, Z. H. Zhang, Z. P. Zhang, Z. Y. Zhang, G. Zhao, J. W. Zhao, J. Y. Zhao, J. Z. Zhao, Lei Zhao, Ling Zhao, M. G. Zhao, Q. Zhao, S. J. Zhao, T. C. Zhao, Y. B. Zhao, Z. G. Zhao, A. Zhemchugov, B. Zheng, J. P. Zheng, W. J. Zheng, Y. H. Zheng, B. Zhong, L. Zhou, X. Zhou, X. K. Zhou, X. R. Zhou, X. Y. Zhou, J. Zhu, K. Zhu, K. J. Zhu, S. Zhu, S. H. Zhu, X. L. Zhu, Y. C. Zhu, Y. S. Zhu, Z. A. Zhu, J. Zhuang, B. S. Zou, J. H. Zou

We present first evidence for the process $e^+e^-\to \gamma\eta_c(1S)$ at six center-of-mass energies between 4.01 and 4.60~GeV using data collected by the BESIII experiment operating at BEPCII. Read More

Compressive sensing (CS) is an effective approach for fast Magnetic Resonance Imaging (MRI). It aims at reconstructing MR images from a small number of under-sampled data in k-space, and accelerating the data acquisition in MRI. To improve the current MRI system in reconstruction accuracy and speed, in this paper, we propose two novel deep architectures, dubbed ADMM-Nets in basic and generalized versions. Read More

We present a novel Affine-Gradient based Local Binary Pattern (AGLBP) descriptor for texture classification. It is very hard to describe complicated texture using single type information, such as Local Binary Pattern (LBP), which just utilizes the sign information of the difference between the pixel and its local neighbors. Our descriptor has three characteristics: 1) In order to make full use of the information contained in the texture, the Affine-Gradient, which is different from Euclidean-Gradient and invariant to affine transformation is incorporated into AGLBP. Read More

In this paper, a sixth order energy-conserved method is proposed for solving the three-dimensional time-domain Maxwell's equations. Based on the method of lines, the spatial derivatives of the Maxwell's equations are approximated with the aid of Fourier pseudo-spectral methods. The resulting ordinary differential equations can be cast as a canonical Hamiltonian system. Read More

In this work, expanded solutions of force-free magnetospheres on general Kerr black holes are derived through a radial distance expansion method. From the regular conditions both at the horizon and at spatial infinity, two previously known asymptotical solutions (one of them is actually an exact solution) are identified as the only solutions that satisfy the same conditions at the two boundaries. Taking them as initial conditions at the boundaries, expanded solutions up to first few orders have been derived by solving the stream equation order by order. Read More

Deep neural networks (DNNs) play a key role in many applications. Unsurprisingly, they also became a potential attack target of adversaries. Some studies have demonstrated DNN classifiers can be fooled by the adversarial example, which is crafted via introducing some perturbations into an original sample. Read More

High network communication cost for synchronizing gradients and parameters is the well-known bottleneck of distributed training. In this work, we propose TernGrad that uses ternary gradients to accelerate distributed deep learning in data parallelism. Our approach requires only three numerical levels {-1,0,1} which can aggressively reduce the communication time. Read More

We calculate the $D^0$-$\overline{D}^0$ mixing parameter $y$ in the factorization-assisted topological-amplitude (FAT) approach, considering contributions from $D^{0}\to PP$, $PV$, and $VV$ modes, where $P$ ($V$) stands for a pseudoscalar (vector) meson. The $D^{0}\to PP$ and $PV$ decay amplitudes are extracted in the FAT approach, and the $D^{0}\to VV$ ones with final states in the longitudinal polarization are estimated via the parameter set for $D^{0}\to PV$. It is found that the $VV$ contribution to $y$, being of order of $10^{-4}$, is negligible, and that the $PP$ and$PV$ contributions amount only up to $y_{PP+PV}=(0. Read More

The invariant is one of central topics in science, technology and engineering. The differential invariant is essential in understanding or describing some important phenomena or procedures in mathematics, physics, chemistry, biology or computer science etc. The derivation of differential invariants is usually difficult or complicated. Read More

Recently, deep convolutional neural network (DCNN) achieved increasingly remarkable success and rapidly developed in the field of natural image recognition. Compared with the natural image, the scale of remote sensing image is larger and the scene and the object it represents are more macroscopic. This study inquires whether remote sensing scene and natural scene recognitions differ and raises the following questions: What are the key factors in remote sensing scene recognition? Is the DCNN recognition mechanism centered on object recognition still applicable to the scenarios of remote sensing scene understanding? We performed several experiments to explore the influence of the DCNN structure and the scale of remote sensing scene understanding from the perspective of scene complexity. Read More

Topological gluon configurations in quantum chromodynamics induce quark chirality imbalance over local domains, which can result in electric charge separation along the magnetic field in relativistic heavy ion collisions--the chiral magnetic effect (CME). Experimental searches for the CME via charge-dependent azimuthal correlations ($\Delta\gamma$) suffer from large backgrounds arising from particle correlations (e.g. Read More

In the paper, we study the minimization problem of a non-convex sparsity promoting penalty function $$P_{a}(x)=\sum_{i=1}^{n}p_{a}(x_{i})=\sum_{i=1}^{n}\frac{a|x_{i}|}{1+a|x_{i}|}$$ in compressed sensing, which is called fraction function. Firstly, we discuss the equivalence of $\ell_{0}$ minimization and fraction function minimization. It is proved that there corresponds a constant $a^{**}>0$ such that, whenever $a>a^{**}$, every solution to $(FP_{a})$ also solves $(P_{0})$, that the uniqueness of global minimizer of $(FP_{a})$ and its equivalence to $(P_{0})$ if the sensing matrix $A$ satisfies a restricted isometry property (RIP) and, last but the most important, that the optimal solution to the regularization problem $(FP_{a}^\lambda)$ also solves $(FP_{a})$ if the certain condition is satisfied, which is similar to the regularization problem in convex optimal theory. Read More

One of the major challenges of employing a dual-frequency phase-shifting algorithm for phase retrieval is its sensitivity to noise. Yun et. al [H Yun, B Li, S Zhang. Read More

In this paper, we derive the pointwise upper bounds and lower bounds on the gradients of solutions to the Lam\'{e} systems with partially infinite coefficients as the surface of discontinuity of the coefficients of the system is located very close to the boundary. When the distance tends to zero, the optimal blow-up rates of the gradients are established for inclusions with arbitrary shapes and in all dimensions. Read More

Exploiting the energy of randomly moving active agents such as bacteria is a fascinating way to power a microdevice. Here we show, by simulations, that a chain-grafted disk-like colloid can rotate unidirectionally when immersed in a thin film of active particle suspension. The spontaneous symmetry breaking of chain configurations is the origin of the unidirectional rotation. Read More

When a convex perfectly conducting inclusion is closely spaced to the boundary of the matrix domain, a bigger convex domain containing the inclusion, the electric field can be arbitrary large. We establish both the pointwise upper bound and the lower bound of the gradient estimate for this perfect conductivity problem by using the energy method. These results give the optimal blow-up rates of electric field for conductors with arbitrary shape and in all dimensions. Read More

We investigate the observational signatures of super-Earths (i.e., Earth-to-Neptune mass planets) in their natal disks of gas and dust. Read More

2017May
Authors: M. Ablikim, M. N. Achasov, X. C. Ai, O. Albayrak, M. Albrecht, D. J. Ambrose, A. Amoroso, F. F. An, Q. An, J. Z. Bai, R. Baldini Ferroli, Y. Ban, D. W. Bennett, J. V. Bennett, M. Bertani, D. Bettoni, J. M. Bian, F. Bianchi, E. Boger, I. Boyko, R. A. Briere, H. Cai, X. Cai, O. Cakir, A. Calcaterra, G. F. Cao, S. A. Cetin, J. F. Chang, G. Chelkov, G. Chen, H. S. Chen, H. Y. Chen, J. C. Chen, M. L. Chen, S. J. Chen, X. Chen, X. R. Chen, Y. B. Chen, H. P. Cheng, X. K. Chu, G. Cibinetto, H. L. Dai, J. P. Dai, A. Dbeyssi, D. Dedovich, Z. Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, C. Dong, J. Dong, L. Y. Dong, M. Y. Dong, S. X. Du, P. F. Duan, E. E. Eren, J. Z. Fan, J. Fang, S. S. Fang, X. Fang, Y. Fang, L. Fava, F. Feldbauer, G. Felici, C. Q. Feng, E. Fioravanti, M. Fritsch, C. D. Fu, Q. Gao, X. Y. Gao, Y. Gao, Z. Gao, I. Garzia, C. Geng, K. Goetzen, W. X. Gong, W. Gradl, M. Greco, M. H. Gu, Y. T. Gu, Y. H. Guan, A. Q. Guo, L. B. Guo, Y. Guo, Y. P. Guo, Z. Haddadi, A. Hafner, S. Han, Y. L. Han, X. Q. Hao, F. A. Harris, K. L. He, Z. Y. He, T. Held, Y. K. Heng, Z. L. Hou, C. Hu, H. M. Hu, J. F. Hu, T. Hu, Y. Hu, G. M. Huang, G. S. Huang, H. P. Huang, J. S. Huang, X. T. Huang, Y. Huang, T. Hussain, Q. Ji, Q. P. Ji, X. B. Ji, X. L. Ji, L. L. Jiang, L. W. Jiang, X. S. Jiang, X. Y. Jiang, J. B. Jiao, Z. Jiao, D. P. Jin, S. Jin, T. Johansson, A. Julin, N. Kalantar-Nayestanaki, X. L. Kang, X. S. Kang, M. Kavatsyuk, B. C. Ke, P. Kiese, R. Kliemt, B. Kloss, O. B. Kolcu, B. Kopf, M. Kornicer, W. Kuehn, A. Kupsc, J. S. Lange, M. Lara, P. Larin, C. Leng, C. Li, C. H. Li, Cheng Li, D. M. Li, F. Li, G. Li, H. B. Li, J. C. Li, Jin Li, K. Li, K. Li, Lei Li, P. R. Li, T. Li, W. D. Li, W. G. Li, X. L. Li, X. M. Li, X. N. Li, X. Q. Li, Z. B. Li, H. Liang, Y. F. Liang, Y. T. Liang, G. R. Liao, D. X. Lin, B. J. Liu, C. X. Liu, F. H. Liu, Fang Liu, Feng Liu, H. B. Liu, H. H. Liu, H. H. Liu, H. M. Liu, J. Liu, J. B. Liu, J. P. Liu, J. Y. Liu, K. Liu, K. Y. Liu, L. D. Liu, P. L. Liu, Q. Liu, S. B. Liu, X. Liu, X. X. Liu, Y. B. Liu, Z. A. Liu, Zhiqiang Liu, Zhiqing Liu, H. Loehner, X. C. Lou, H. J. Lu, J. G. Lu, R. Q. Lu, Y. Lu, Y. P. Lu, C. L. Luo, M. X. Luo, T. Luo, X. L. Luo, M. Lv, X. R. Lyu, F. C. Ma, H. L. Ma, L. L. Ma, Q. M. Ma, T. Ma, X. N. Ma, X. Y. Ma, F. E. Maas, M. Maggiora, Y. J. Mao, Z. P. Mao, S. Marcello, J. G. Messchendorp, J. Min, T. J. Min, R. E. Mitchell, X. H. Mo, Y. J. Mo, C. Morales Morales, K. Moriya, N. Yu. Muchnoi, H. Muramatsu, Y. Nefedov, F. Nerling, I. B. Nikolaev, Z. Ning, S. Nisar, S. L. Niu, X. Y. Niu, S. L. Olsen, Q. Ouyang, S. Pacetti, P. Patteri, M. Pelizaeus, H. P. Peng, K. Peters, J. Pettersson, J. L. Ping, R. G. Ping, R. Poling, V. Prasad, Y. N. Pu, M. Qi, S. Qian, C. F. Qiao, L. Q. Qin, N. Qin, X. S. Qin, Y. Qin, Z. H. Qin, J. F. Qiu, K. H. Rashid, C. F. Redmer, H. L. Ren, M. Ripka, G. Rong, Ch. Rosner, X. D. Ruan, V. Santoro, A. Sarantsev, M. Savrié, K. Schoenning, S. Schumann, W. Shan, M. Shao, C. P. Shen, P. X. Shen, X. Y. Shen, H. Y. Sheng, W. M. Song, X. Y. Song, S. Sosio, S. Spataro, G. X. Sun, J. F. Sun, S. S. Sun, Y. J. Sun, Y. Z. Sun, Z. J. Sun, Z. T. Sun, C. J. Tang, X. Tang, I. Tapan, E. H. Thorndike, M. Tiemens, M. Ullrich, I. Uman, G. S. Varner, B. Wang, B. L. Wang, D. Wang, D. Y. Wang, K. Wang, L. L. Wang, L. S. Wang, M. Wang, P. Wang, P. L. Wang, S. G. Wang, W. Wang, X. F. Wang, Y. D. Wang, Y. F. Wang, Y. Q. Wang, Z. Wang, Z. G. Wang, Z. H. Wang, Z. Y. Wang, T. Weber, D. H. Wei, J. B. Wei, P. Weidenkaff, S. P. Wen, U. Wiedner, M. Wolke, L. H. Wu, Z. Wu, L. G. Xia, Y. Xia, D. Xiao, H. Xiao, Z. J. Xiao, Y. G. Xie, Q. L. Xiu, G. F. Xu, L. Xu, Q. J. Xu, Q. N. Xu, X. P. Xu, L. Yan, W. B. Yan, W. C. Yan, Y. H. Yan, H. J. Yang, H. X. Yang, L. Yang, Y. Yang, Y. X. Yang, H. Ye, M. Ye, M. H. Ye, J. H. Yin, B. X. Yu, C. X. Yu, H. W. Yu, J. S. Yu, C. Z. Yuan, W. L. Yuan, Y. Yuan, A. Yuncu, A. A. Zafar, A. Zallo, Y. Zeng, B. X. Zhang, B. Y. Zhang, C. Zhang, C. C. Zhang, D. H. Zhang, H. H. Zhang, H. Y. Zhang, J. J. Zhang, J. L. Zhang, J. Q. Zhang, J. W. Zhang, J. Y. Zhang, J. Z. Zhang, K. Zhang, L. Zhang, S. H. Zhang, X. Y. Zhang, Y. Zhang, Y. N. Zhang, Y. H. Zhang, Y. T. Zhang, Yu Zhang, Z. H. Zhang, Z. P. Zhang, Z. Y. Zhang, G. Zhao, J. W. Zhao, J. Y. Zhao, J. Z. Zhao, Lei Zhao, Ling Zhao, M. G. Zhao, Q. Zhao, Q. W. Zhao, S. J. Zhao, T. C. Zhao, Y. B. Zhao, Z. G. Zhao, A. Zhemchugov, B. Zheng, J. P. Zheng, W. J. Zheng, Y. H. Zheng, B. Zhong, L. Zhou, Li Zhou, X. Zhou, X. K. Zhou, X. R. Zhou, X. Y. Zhou, K. Zhu, K. J. Zhu, S. Zhu, X. L. Zhu, Y. C. Zhu, Y. S. Zhu, Z. A. Zhu, J. Zhuang, L. Zotti, B. S. Zou, J. H. Zou

Using a data set of 2.93 fb$^{-1}$ taken at a center-of-mass energy $\sqrt{s}$ = 3.773 GeV with the BESIII detector at the BEPCII collider, we perform a search for an extra U(1) gauge boson, also denoted as a dark photon. Read More

We perform three dimensional (3D) ideal magnetohydrodynamic (MHD) simulations to study the parametric decay instability of Alfven waves in turbulent plasmas and explore its possible applications in the solar wind. We find that, over a broad range of parameters in background turbulence amplitudes, the parametric decay instability of an Alfven wave with various amplitudes can still occur, though its growth rate in turbulent plasmas tends to be lower than both the theoretical linear theory prediction and that in the non-turbulent situations. Spatial - temporal FFT analyses of density fluctuations produced by the parametric decay instability match well with the dispersion relation of the slow MHD waves. Read More

The fast detection of terahertz radiation is of great importance for various applications such as fast imaging, high speed communications, and spectroscopy. Most commercial products capable of sensitively responding the terahertz radiation are thermal detectors, i.e. Read More

We consider the problem of channel estimation for millimeter wave (mmWave) systems, where, to minimize the hardware complexity and power consumption, an analog transmit beamforming and receive combining structure with only one radio frequency (RF) chain at the base station (BS) and mobile station (MS) is employed. Most existing works for mmWave channel estimation exploit sparse scattering characteristics of the channel. In addition to sparsity, mmWave channels may exhibit angular spreads over the angle of arrival (AoA), angle of departure (AoD), and elevation domains. Read More

We consider extended scalar sectors of the Standard Model as ultraviolet-complete motivations for studying the effective Higgs self-interaction operators of the Standard Model effective field theory. We investigate all motivated heavy scalar models which generate the dimension-6 effective operator, $|H|^6$, at tree level and proceed to identify the full set of tree-level dimension-six operators by integrating out the heavy scalars. Next we perform global fits to constrain relevant Wilson coefficients from the LHC single Higgs measurements as well as the electroweak oblique parameters $S$ and $T$. Read More

Chimera states, which consist of coexisting domains of spatially coherent and incoherent dynamics, have been widely found in nonlocally coupled oscillatory systems. We demonstrate for the first time that chimera states can emerge from excitable systems under nonlocal coupling in which isolated units only allow for the equilibrium. We theoretically reveal that nonlocal coupling induced collective oscillation is behind the occurrence of the chimera states. Read More

In typical neural machine translation~(NMT), the decoder generates a sentence word by word, packing all linguistic granularities in the same time-scale of RNN. In this paper, we propose a new type of decoder for NMT, which splits the decode state into two parts and updates them in two different time-scales. Specifically, we first predict a chunk time-scale state for phrasal modeling, on top of which multiple word time-scale states are generated. Read More

In this paper, a non-convex fraction function $P_{a}(x)$ is studied to replace the $\ell_{0}$-norm $\|x\|_{0}$ in quasi-linear compressed sensing and the iterative fraction thresholding algorithm is proposed to solve the regularization problem $(QP_{a}^{\lambda})$. For different $a>0$, we can get a much more better result by adjusting the values of the parameter $a$, which is one of the advantages for the iterative fraction thresholding algorithm comparing with some state-of-art methods. Numerical experiments show that our method performs much better comparing with some state-of-art methods. Read More

This paper is concerned with the theoretical study of plasmonic resonances for linear elasticity governed by the Lam\'e system in $\mathbb{R}^3$, and their application for cloaking due to anomalous localized resonances. We derive a very general and novel class of elastic structures that can induce plasmonic resonances. It is shown that if either one of the two convexity conditions on the Lam\'e parameters is broken, then we can construct certain plasmon structures that induce resonances. Read More

Given a compact Riemannian manifold $M$, we consider a warped product $\bar M = I \times_h M$ where $I$ is an open interval in $\Bbb R$. For a positive function $\psi$ defined on $\bar M$, we generalized the arguments in \cite{GRW2015} and \cite{RW16}, to obtain the curvature estimates for Hessian equations $\sigma_k(\kappa)=\psi(V,\nu(V))$. We also obtain some existence results for the starshaped compact hypersurface $\Sigma$ satisfying the above equation with various assumptions. Read More

Deep neural networks (DNNs) play a key role in many applications. Current studies focus on crafting adversarial samples against DNN-based image classifiers by introducing some imperceptible perturbations to the input. However, DNNs for natural language processing have not got the attention they deserve. Read More

2017Apr
Authors: Derek Ward-Thompson, Kate Pattle, Pierre Bastien, Ray S. Furuya, Woojin Kwon, Shih-Ping Lai, Keping Qiu, David Berry, Minho Choi, Simon Coudé, James Di Francesco, Thiem Hoang, Erica Franzmann, Per Friberg, Sarah F. Graves, Jane S. Greaves, Martin Houde, Doug Johnstone, Jason M. Kirk, Patrick M. Koch, Jungmi Kwon, Chang Won Lee, Di Li, Brenda C. Matthews, Joseph C. Mottram, Harriet Parsons, Andy Pon, Ramprasad Rao, Mark Rawlings, Hiroko Shinnaga, Sarah Sadavoy, Sven van Loo, Yusuke Aso, Do-Young Byun, Eswariah Chakali, Huei-Ru Chen, Mike C. -Y. Chen, Wen Ping Chen, Tao-Chung Ching, Jungyeon Cho, Antonio Chrysostomou, Eun Jung Chung, Yasuo Doi, Emily Drabek-Maunder, Stewart P. S. Eyres, Jason Fiege, Rachel K. Friesen, Gary Fuller, Tim Gledhill, Matt J. Griffin, Qilao Gu, Tetsuo Hasegawa, Jennifer Hatchell, Saeko S. Hayashi, Wayne Holland, Tsuyoshi Inoue, Shu-ichiro Inutsuka, Kazunari Iwasaki, Il-Gyo Jeong, Ji-hyun Kang, Miju Kang, Sung-ju Kang, Koji S. Kawabata, Francisca Kemper, Gwanjeong Kim, Jongsoo Kim, Kee-Tae Kim, Kyoung Hee Kim, Mi-Ryang Kim, Shinyoung Kim, Kevin M. Lacaille, Jeong-Eun Lee, Sang-Sung Lee, Dalei Li, Hua-bai Li, Hong-Li Liu, Junhao Liu, Sheng-Yuan Liu, Tie Liu, A-Ran Lyo, Steve Mairs, Masafumi Matsumura, Gerald H. Moriarty-Schieven, Fumitaka Nakamura, Hiroyuki Nakanishi, Nagayoshi Ohashi, Takashi Onaka, Nicolas Peretto, Tae-Soo Pyo, Lei Qian, Brendan Retter, John Richer, Andrew Rigby, Jean-François Robitaille, Giorgio Savini, Anna M. M. Scaife, Archana Soam, Motohide Tamura, Ya-Wen Tang, Kohji Tomisaka, Hongchi Wang, Jia-Wei Wang, Anthony P. Whitworth, Hsi-Wei Yen, Hyunju Yoo, Jinghua Yuan, Chuan-Peng Zhang, Guoyin Zhang, Jianjun Zhou, Lei Zhu, Philippe André, C. Darren Dowell, Sam Falle, Yusuke Tsukamoto

We present the first results from the B-fields In STar-forming Region Observations (BISTRO) survey, using the Sub-millimetre Common-User Bolometer Array 2 (SCUBA-2) camera, with its associated polarimeter (POL-2), on the James Clerk Maxwell Telescope (JCMT) in Hawaii. We discuss the survey's aims and objectives. We describe the rationale behind the survey, and the questions which the survey will aim to answer. Read More

The polyhedron projection for 360-degree video is becoming more and more popular since it can lead to much less geometry distortion compared with the equirectangular projection. However, in the polyhedron projection, we can observe very obvious texture discontinuity in the area near the face boundary. Such a texture discontinuity may lead to serious quality degradation when motion compensation crosses the discontinuous face boundary. Read More

2017Apr
Authors: BESIII collaboration, M. Ablikim, M. N. Achasov, S. Ahmed, O. Albayrak, M. Albrecht, M. Alekseev, A. Amoroso, F. F. An, Q. An, J. Z. Bai, O. Bakina, R. Baldini Ferroli, Y. Ban, D. W. Bennett, J. V. Bennett, N. Berger, M. Bertani, D. Bettoni, J. M. Bian, F. Bianchi, E. Boger, I. Boyko, R. A. Briere, H. Cai, X. Cai, O. Cakir, A. Calcaterra, G. F. Cao, S. A. Cetin, J. Chai, J. F. Chang, G. Chelkov, G. Chen, H. S. Chen, J. C. Chen, M. L. Chen, P. L. Chen, S. J. Chen, X. R. Chen, Y. B. Chen, X. K. Chu, G. Cibinetto, H. L. Dai, J. P. Dai, A. Dbeyssi, D. Dedovich, Z. Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. DeMori, Y. Ding, C. Dong, J. Dong, L. Y. Dong, M. Y. Dong, O. Dorjkhaidav, Z. L. Dou, S. X. Du, P. F. Duan, J. Fang, S. S. Fang, X. Fang, Y. Fang, R. Farinelli, L. Fava, S. Fegan, F. Feldbauer, G. Felici, C. Q. Feng, E. Fioravanti, M. Fritsch, C. D. Fu, Gao, Q. Gao, X. L. Gao, Y. Gao, Z. Gao, I. Garzia, K. Goetzen, L. Gong, W. X. Gong, W. Gradl, M. Greco, M. H. Gu, S. Gu, Y. T. Gu, A. Q. Guo, L. B. Guo, R. P. Guo, Y. P. Guo, Z. Haddadi, A. Hafner, S. Han, X. Q. Hao, F. A. Harris, K. L. He, X. Q. He, F. H. Heinsius, T. Held, Y. K. Heng, T. Holtmann, Z. L. Hou, C. Hu, H. M. Hu, T. Hu, Y. Hu, G. S. Huang, J. S. Huang, X. T. Huang, X. Z. Huang, Z. L. Huang, T. Hussain, W. Ikegami Andersson, Q. Ji, Q. P. Ji, X. B. Ji, X. L. Ji, X. S. Jiang, X. Y. Jiang, J. B. Jiao, Z. Jiao, D. P. Jin, S. Jin, T. Johansson, A. Julin, N. Kalantar-Nayestanaki, X. L. Kang, X. S. Kang, M. Kavatsyuk, B. C. Ke, Tabassum KhanKhan, P. Kiese, R. Kliemt, B. Kloss, L. K. Koch, O. B. Kolcu, B. Kopf, M. Kornicer, M. Kuemmel, M. Kuhlmann, A. Kupsc, W. Kühn, J. S. Lange, M. Lara, P. Larin, L. Lavezzi, H. Leithoff, C. Leng, C. Li, ChengLi, D. M. Li, F. Li, F. Y. Li, G. Li, H. B. Li, H. J. Li, J. C. Li, JinLi, K. Li, K. Li, LeiLi, P. L. Li, P. R. Li, Q. Y. Li, T. Li, W. D. Li, W. G. Li, X. L. Li, X. N. Li, X. Q. Li, Z. B. Li, H. Liang, Y. F. Liang, Y. T. Liang, G. R. Liao, D. X. Lin, B. Liu, B. J. Liu, C. X. Liu, D. Liu, F. H. Liu, FangLiu, FengLiu, H. B. Liu, H. H. Liu, H. H. Liu, H. M. Liu, J. B. Liu, J. P. Liu, J. Y. Liu, K. Liu, K. Y. Liu, KeLiu, L. D. Liu, P. L. Liu, Q. Liu, S. B. Liu, X. Liu, Y. B. Liu, Y. Y. Liu, Z. A. Liu, ZhiqingLiu, Y. F. Long, X. C. Lou, H. J. Lu, J. G. Lu, Y. Lu, Y. P. Lu, C. L. Luo, M. X. Luo, T. Luo, X. L. Luo, X. R. Lyu, F. C. Ma, H. L. Ma, L. L. Ma, M. M. Ma, Q. M. Ma, T. Ma, X. N. Ma, X. Y. Ma, Y. M. Ma, F. E. Maas, M. Maggiora, Q. A. Malik, Y. J. Mao, Z. P. Mao, S. Marcello, J. G. Messchendorp, G. Mezzadri, J. Min, T. J. Min, R. E. Mitchell, X. H. Mo, Y. J. Mo, C. Morales Morales, G. Morello, N. Yu. Muchnoi, H. Muramatsu, P. Musiol, A. Mustafa, Y. Nefedov, F. Nerling, I. B. Nikolaev, Z. Ning, S. Nisar, S. L. Niu, X. Y. Niu, S. L. Olsen, Q. Ouyang, S. Pacetti, Y. Pan, P. Patteri, M. Pelizaeus, J. Pellegrino, H. P. Peng, K. Peters, J. Pettersson, J. L. Ping, R. G. Ping, R. Poling, V. Prasad, H. R. Qi, M. Qi, S. Qian, C. F. Qiao, J. J. Qin, N. Qin, X. S. Qin, Z. H. Qin, J. F. Qiu, K. H. Rashid, C. F. Redmer, M. Richter, M. Ripka, G. Rong, Ch. Rosner, X. D. Ruan, A. Sarantsev, M. Savrié, C. Schnier, K. Schoenning, W. Shan, M. Shao, C. P. Shen, P. X. Shen, X. Y. Shen, H. Y. Sheng, J. J. Song, X. Y. Song, S. Sosio, C. Sowa, S. Spataro, G. X. Sun, J. F. Sun, S. S. Sun, X. H. Sun, Y. J. Sun, Y. KSun, Y. Z. Sun, Z. J. Sun, Z. T. Sun, C. J. Tang, X. Tang, I. Tapan, M. Tiemens, TsTsednee, I. Uman, G. S. Varner, B. Wang, B. L. Wang, D. Wang, D. Y. Wang, DanWang, K. Wang, L. L. Wang, L. S. Wang, M. Wang, P. Wang, P. L. Wang, W. P. Wang, X. F. Wang, Y. D. Wang, Y. F. Wang, Y. Q. Wang, Z. Wang, Z. G. Wang, Z. H. Wang, Z. Y. Wang, Z. Y. Wang, T. Weber, D. H. Wei, P. Weidenkaff, S. P. Wen, U. Wiedner, M. Wolke, L. H. Wu, L. J. Wu, Z. Wu, L. Xia, Y. Xia, D. Xiao, Y. J. Xiao, Z. J. Xiao, Y. G. Xie, YuehongXie, X. A. Xiong, Q. L. Xiu, G. F. Xu, J. J. Xu, L. Xu, Q. J. Xu, Q. N. Xu, X. P. Xu, L. Yan, W. B. Yan, W. C. Yan, Y. H. Yan, H. J. Yang, H. X. Yang, L. Yang, Y. H. Yang, Y. X. Yang, M. Ye, M. H. Ye, J. H. Yin, Z. Y. You, B. X. Yu, C. X. Yu, J. S. Yu, C. Z. Yuan, Y. Yuan, A. Yuncu, A. A. Zafar, Y. Zeng, Z. Zeng, B. X. Zhang, B. Y. Zhang, C. C. Zhang, D. H. Zhang, H. H. Zhang, H. Y. Zhang, J. Zhang, J. L. Zhang, J. Q. Zhang, J. W. Zhang, J. Y. Zhang, J. Z. Zhang, K. Zhang, L. Zhang, S. Q. Zhang, X. Y. Zhang, Y. Zhang, Y. Zhang, Y. H. Zhang, Y. T. Zhang, YuZhang, Z. H. Zhang, Z. P. Zhang, Z. Y. Zhang, G. Zhao, J. W. Zhao, J. Y. Zhao, J. Z. Zhao, LeiZhao, LingZhao, M. G. Zhao, Q. Zhao, S. J. Zhao, T. C. Zhao, Y. B. Zhao, Z. G. Zhao, A. Zhemchugov, B. Zheng, J. P. Zheng, W. J. Zheng, Y. H. Zheng, B. Zhong, L. Zhou, X. Zhou, X. K. Zhou, X. R. Zhou, X. Y. Zhou, Y. X. Zhou, K. Zhu, K. J. Zhu, S. Zhu, S. H. Zhu, X. L. Zhu, Y. C. Zhu, Y. S. Zhu, Z. A. Zhu, J. Zhuang, L. Zotti, B. S. Zou, J. H. Zou

We observe for the first time the process $e^{+}e^{-} \rightarrow \eta h_c$ with data collected by the BESIII experiment. Significant signals are observed at the center-of-mass energy $\sqrt{s}=4.226$ GeV, and the Born cross section is measured to be $(9. Read More

In this paper, we consider the singular isothermal sphere lensing model that has a spherically symmetric power-law mass distribution $\rho_{tot}(r)\sim r^{-\gamma}$. We investigate whether the mass density power-law index $\gamma$ is cosmologically evolutionary by using the strong gravitational lensing (SGL) observation, in combination with other cosmological observations. We also check whether the constraint result of $\gamma$ is affected by the cosmological model, by considering several simple dynamical dark energy models. Read More

Distributed actor languages are an effective means of constructing scalable reliable systems, and the Erlang programming language has a well-established and influential model. While Erlang model conceptually provides reliable scalability, it has some inherent scalability limits and these force developers to depart from the model at scale. This article establishes the scalability limits of Erlang systems, and reports the work to improve the language scalability. Read More

Quantum confined few electrons in artificial atoms and molecules have made it possible to detect and manipulate single-electron charge and spin states. Its most popular model systems consist of quantum-dot molecules realized in a gate-defined two-dimensional (2D) electron gas, such as GaAs semiconducting heterostructures. The recent focus on 2D materials, including graphene, has attracted significant interest on possible applications to quantum electronics. Read More

CTR prediction in real-world business is a difficult machine learning problem with large scale nonlinear sparse data. In this paper, we introduce an industrial strength solution with model named Large Scale Piece-wise Linear Model (LS-PLM). We formulate the learning problem with $L_1$ and $L_{2,1}$ regularizers, leading to a non-convex and non-smooth optimization problem. Read More

Quantum memory, capable of stopping flying photons and storing their quantum coherence, is essential for scalable quantum technologies. A broadband quantum memory operating at room temperature will enable building large-scale quantum systems for real-life applications, for instance, high-speed quantum repeater for long-distance quantum communication and synchronised multi-photon quantum sources for quantum computing and quantum simulation. Albeit advances of pushing bandwidth from narrowband to broadband and storage media from ultra-cold atomic gas to room-temperature atomic vapour, due to either intrinsic high noises or short lifetime, it is still challenging to find a room-temperature broadband quantum memory beyond conceptional demonstration. Read More

The salt-induced microheterogeneity (MH) formation in binary liquid mixtures is studied by small-angle X-ray scattering (SAXS) and liquid state theory. Previous experiments have shown that this phenomenon occurs for antagonistic salts, whose cations and anions prefer different components of the solvent mixture. However, so far the precise mechanism leading to the characteristic length scale of MHs remained unclear. Read More

We present the successful synthesis of single-atom-thick borophene nanoribbons (BNRs) by self-assembly of boron on Ag(110) surface. The scanning tunneling microscopy (STM) studies reveal high quality BNRs: all the ribbons are along the [-110] direction of Ag(110), and can run across the steps on the surface. The width of ribbons is distributed in a narrow range around 10. Read More

Realizing long distance entanglement swapping with independent sources in the real-world condition is important for both future quantum network and fundamental study of quantum theory. Currently, demonstration over a few of tens kilometer underground optical fiber has been achieved. However, future applications demand entanglement swapping over longer distance with more complicated environment. Read More

While indirect & direct CP violations (CPV) had been established in the decays of strange & beauty mesons, none have been done for baryons. There are different "roads" for finding CP asymmetries in the decays of strange baryons; they are highly non-trivial ones. The HyperCP Collaboration had probed CPV in the decays of single $\Xi$ & $\Lambda$ [Phys. Read More

We consider the problem of channel estimation for uplink multiuser massive MIMO systems, where, in order to significantly reduce the hardware cost and power consumption, one-bit analog-to-digital converters (ADCs) are used at the base station (BS) to quantize the received signal. Channel estimation for one-bit massive MIMO systems is challenging due to the severe distortion caused by the coarse quantization. It was shown in previous studies that an extremely long training sequence is required to attain an acceptable performance. Read More

The efficiency of optical trapping is determined by the atomic dynamic dipole polarizability, whose real and imaginary parts are associated with the potential energy and photon-scattering rate respectively. In this article we develop a formalism to calculate analytically the real and imaginary parts of the scalar, vector and tensor polarizabilities of lanthanide atoms. We assume that the sum-over-state formula only comprises transitions involving electrons in the valence orbitals like $6s$, $5d$, $6p$ or $7s$, while transitions involving $4f$ core electrons are neglected. Read More

The possibility of high temperature superconductivity in organic compounds has been discussed since the pioneering work of Little in 1964, with minimal progress until the recent reports of a weak Meissner shielding effect to 43 Kelvin and then 120 Kelvin in potassium-doped para-terphenyl samples. To date however, no other signals of the superconductivity have been shown, including the zero resistance state or evidence for the formation of the Cooper pairs that are inherent to the superconducting state. Here, using high resolution photoemission spectroscopy on potassium surface-doped p-terphenyl crystals, we show spectroscopic evidence for pairing gaps at the surfaces of these materials, with the gaps persisting to 60 K or above. Read More

Generative adversarial networks (GANs) are highly effective unsupervised learning frameworks that can generate very sharp data, even for data such as images with complex, highly multimodal distributions. However GANs are known to be very hard to train, suffering from problems such as mode collapse and disturbing visual artifacts. Batch normalization (BN) techniques have been introduced to address the training problem. Read More

We compute the fermion spin distribution in the vortical fluid created in off-central high-energy heavy-ion collisions. We employ the event-by-event (3+1)D viscous hydrodynamic model. The spin polarization density is proportional to the local fluid vorticity in quantum kinetic theory. Read More