# H. E. Logan - Carleton University

## Contact Details

NameH. E. Logan |
||

AffiliationCarleton University |
||

CityOttawa |
||

CountryCanada |
||

## Pubs By Year |
||

## External Links |
||

## Pub CategoriesHigh Energy Physics - Phenomenology (50) High Energy Physics - Experiment (20) Cosmology and Nongalactic Astrophysics (3) High Energy Physics - Theory (1) |

## Publications Authored By H. E. Logan

**Affiliations:**

^{1}Carleton U.,

^{2}Carleton U.

**Category:**High Energy Physics - Phenomenology

The scalar septet model extends the Standard Model Higgs sector by an isospin septet with hypercharge chosen to preserve $\rho \equiv M_W^2/M_Z^2 \cos^2\theta_W = 1$. In this paper we constrain the model at high septet masses using perturbative unitarity of longitudinal vector boson scattering amplitudes. We also apply the constraints from LHC searches for doubly-charged Higgs bosons produced in vector boson fusion, which constrain the model at lower septet masses. Read More

We study two models of scalar dark matter from "large" electroweak multiplets with isospin $5/2$ ($n=6$ members) and $7/2$ ($n=8$), whose scalar potentials preserve a $Z_2$ symmetry. Because of large annihilation cross sections due to electroweak interactions, these scalars can constitute all the dark matter only for masses in the multi-TeV range. For such high masses, Sommerfeld enhancement and co-annihilations play important roles in the dark matter relic abundance calculation. Read More

**Authors:**D. de Florian

^{1}, C. Grojean

^{2}, F. Maltoni

^{3}, C. Mariotti

^{4}, A. Nikitenko

^{5}, M. Pieri

^{6}, P. Savard

^{7}, M. Schumacher

^{8}, R. Tanaka

^{9}, R. Aggleton

^{10}, M. Ahmad

^{11}, B. Allanach

^{12}, C. Anastasiou

^{13}, W. Astill

^{14}, S. Badger

^{15}, M. Badziak

^{16}, J. Baglio

^{17}, E. Bagnaschi

^{18}, A. Ballestrero

^{19}, A. Banfi

^{20}, D. Barducci

^{21}, M. Beckingham

^{22}, C. Becot

^{23}, G. Bélanger

^{24}, J. Bellm

^{25}, N. Belyaev

^{26}, F. U. Bernlochner

^{27}, C. Beskidt

^{28}, A. Biekötter

^{29}, F. Bishara

^{30}, W. Bizon

^{31}, N. E. Bomark

^{32}, M. Bonvini

^{33}, S. Borowka

^{34}, V. Bortolotto

^{35}, S. Boselli

^{36}, F. J. Botella

^{37}, R. Boughezal

^{38}, G. C. Branco

^{39}, J. Brehmer

^{40}, L. Brenner

^{41}, S. Bressler

^{42}, I. Brivio

^{43}, A. Broggio

^{44}, H. Brun

^{45}, G. Buchalla

^{46}, C. D. Burgard

^{47}, A. Calandri

^{48}, L. Caminada

^{49}, R. Caminal Armadans

^{50}, F. Campanario

^{51}, J. Campbell

^{52}, F. Caola

^{53}, C. M. Carloni Calame

^{54}, S. Carrazza

^{55}, A. Carvalho

^{56}, M. Casolino

^{57}, O. Cata

^{58}, A. Celis

^{59}, F. Cerutti

^{60}, N. Chanon

^{61}, M. Chen

^{62}, X. Chen

^{63}, B. Chokoufé Nejad

^{64}, N. Christensen

^{65}, M. Ciuchini

^{66}, R. Contino

^{67}, T. Corbett

^{68}, R. Costa

^{69}, D. Curtin

^{70}, M. Dall'Osso

^{71}, A. David

^{72}, S. Dawson

^{73}, J. de Blas

^{74}, W. de Boer

^{75}, P. de Castro Manzano

^{76}, C. Degrande

^{77}, R. L. Delgado

^{78}, F. Demartin

^{79}, A. Denner

^{80}, B. Di Micco

^{81}, R. Di Nardo

^{82}, S. Dittmaier

^{83}, A. Dobado

^{84}, T. Dorigo

^{85}, F. A. Dreyer

^{86}, M. Dührssen

^{87}, C. Duhr

^{88}, F. Dulat

^{89}, K. Ecker

^{90}, K. Ellis

^{91}, U. Ellwanger

^{92}, C. Englert

^{93}, D. Espriu

^{94}, A. Falkowski

^{95}, L. Fayard

^{96}, R. Feger

^{97}, G. Ferrera

^{98}, A. Ferroglia

^{99}, N. Fidanza

^{100}, T. Figy

^{101}, M. Flechl

^{102}, D. Fontes

^{103}, S. Forte

^{104}, P. Francavilla

^{105}, E. Franco

^{106}, R. Frederix

^{107}, A. Freitas

^{108}, F. F. Freitas

^{109}, F. Frensch

^{110}, S. Frixione

^{111}, B. Fuks

^{112}, E. Furlan

^{113}, S. Gadatsch

^{114}, J. Gao

^{115}, Y. Gao

^{116}, M. V. Garzelli

^{117}, T. Gehrmann

^{118}, R. Gerosa

^{119}, M. Ghezzi

^{120}, D. Ghosh

^{121}, S. Gieseke

^{122}, D. Gillberg

^{123}, G. F. Giudice

^{124}, E. W. N. Glover

^{125}, F. Goertz

^{126}, D. Gonçalves

^{127}, J. Gonzalez-Fraile

^{128}, M. Gorbahn

^{129}, S. Gori

^{130}, C. A. Gottardo

^{131}, M. Gouzevitch

^{132}, P. Govoni

^{133}, D. Gray

^{134}, M. Grazzini

^{135}, N. Greiner

^{136}, A. Greljo

^{137}, J. Grigo

^{138}, A. V. Gritsan

^{139}, R. Gröber

^{140}, S. Guindon

^{141}, H. E. Haber

^{142}, C. Han

^{143}, T. Han

^{144}, R. Harlander

^{145}, M. A. Harrendorf

^{146}, H. B. Hartanto

^{147}, C. Hays

^{148}, S. Heinemeyer

^{149}, G. Heinrich

^{150}, M. Herrero

^{151}, F. Herzog

^{152}, B. Hespel

^{153}, V. Hirschi

^{154}, S. Hoeche

^{155}, S. Honeywell

^{156}, S. J. Huber

^{157}, C. Hugonie

^{158}, J. Huston

^{159}, A. Ilnicka

^{160}, G. Isidori

^{161}, B. Jäger

^{162}, M. Jaquier

^{163}, S. P. Jones

^{164}, A. Juste

^{165}, S. Kallweit

^{166}, A. Kaluza

^{167}, A. Kardos

^{168}, A. Karlberg

^{169}, Z. Kassabov

^{170}, N. Kauer

^{171}, D. I. Kazakov

^{172}, M. Kerner

^{173}, W. Kilian

^{174}, F. Kling

^{175}, K. Köneke

^{176}, R. Kogler

^{177}, R. Konoplich

^{178}, S. Kortner

^{179}, S. Kraml

^{180}, C. Krause

^{181}, F. Krauss

^{182}, M. Krawczyk

^{183}, A. Kulesza

^{184}, S. Kuttimalai

^{185}, R. Lane

^{186}, A. Lazopoulos

^{187}, G. Lee

^{188}, P. Lenzi

^{189}, I. M. Lewis

^{190}, Y. Li

^{191}, S. Liebler

^{192}, J. Lindert

^{193}, X. Liu

^{194}, Z. Liu

^{195}, F. J. Llanes-Estrada

^{196}, H. E. Logan

^{197}, D. Lopez-Val

^{198}, I. Low

^{199}, G. Luisoni

^{200}, P. Maierhöfer

^{201}, E. Maina

^{202}, B. Mansoulié

^{203}, H. Mantler

^{204}, M. Mantoani

^{205}, A. C. Marini

^{206}, V. I. Martinez Outschoorn

^{207}, S. Marzani

^{208}, D. Marzocca

^{209}, A. Massironi

^{210}, K. Mawatari

^{211}, J. Mazzitelli

^{212}, A. McCarn

^{213}, B. Mellado

^{214}, K. Melnikov

^{215}, S. B. Menari

^{216}, L. Merlo

^{217}, C. Meyer

^{218}, P. Milenovic

^{219}, K. Mimasu

^{220}, S. Mishima

^{221}, B. Mistlberger

^{222}, S. -O. Moch

^{223}, A. Mohammadi

^{224}, P. F. Monni

^{225}, G. Montagna

^{226}, M. Moreno Llácer

^{227}, N. Moretti

^{228}, S. Moretti

^{229}, L. Motyka

^{230}, A. Mück

^{231}, M. Mühlleitner

^{232}, S. Munir

^{233}, P. Musella

^{234}, P. Nadolsky

^{235}, D. Napoletano

^{236}, M. Nebot

^{237}, C. Neu

^{238}, M. Neubert

^{239}, R. Nevzorov

^{240}, O. Nicrosini

^{241}, J. Nielsen

^{242}, K. Nikolopoulos

^{243}, J. M. No

^{244}, C. O'Brien

^{245}, T. Ohl

^{246}, C. Oleari

^{247}, T. Orimoto

^{248}, D. Pagani

^{249}, C. E. Pandini

^{250}, A. Papaefstathiou

^{251}, A. S. Papanastasiou

^{252}, G. Passarino

^{253}, B. D. Pecjak

^{254}, M. Pelliccioni

^{255}, G. Perez

^{256}, L. Perrozzi

^{257}, F. Petriello

^{258}, G. Petrucciani

^{259}, E. Pianori

^{260}, F. Piccinini

^{261}, M. Pierini

^{262}, A. Pilkington

^{263}, S. Plätzer

^{264}, T. Plehn

^{265}, R. Podskubka

^{266}, C. T. Potter

^{267}, S. Pozzorini

^{268}, K. Prokofiev

^{269}, A. Pukhov

^{270}, I. Puljak

^{271}, M. Queitsch-Maitland

^{272}, J. Quevillon

^{273}, D. Rathlev

^{274}, M. Rauch

^{275}, E. Re

^{276}, M. N. Rebelo

^{277}, D. Rebuzzi

^{278}, L. Reina

^{279}, C. Reuschle

^{280}, J. Reuter

^{281}, M. Riembau

^{282}, F. Riva

^{283}, A. Rizzi

^{284}, T. Robens

^{285}, R. Röntsch

^{286}, J. Rojo

^{287}, J. C. Romão

^{288}, N. Rompotis

^{289}, J. Roskes

^{290}, R. Roth

^{291}, G. P. Salam

^{292}, R. Salerno

^{293}, M. O. P. Sampaio

^{294}, R. Santos

^{295}, V. Sanz

^{296}, J. J. Sanz-Cillero

^{297}, H. Sargsyan

^{298}, U. Sarica

^{299}, P. Schichtel

^{300}, J. Schlenk

^{301}, T. Schmidt

^{302}, C. Schmitt

^{303}, M. Schönherr

^{304}, U. Schubert

^{305}, M. Schulze

^{306}, S. Sekula

^{307}, M. Sekulla

^{308}, E. Shabalina

^{309}, H. S. Shao

^{310}, J. Shelton

^{311}, C. H. Shepherd-Themistocleous

^{312}, S. Y. Shim

^{313}, F. Siegert

^{314}, A. Signer

^{315}, J. P. Silva

^{316}, L. Silvestrini

^{317}, M. Sjodahl

^{318}, P. Slavich

^{319}, M. Slawinska

^{320}, L. Soffi

^{321}, M. Spannowsky

^{322}, C. Speckner

^{323}, D. M. Sperka

^{324}, M. Spira

^{325}, O. Stål

^{326}, F. Staub

^{327}, T. Stebel

^{328}, T. Stefaniak

^{329}, M. Steinhauser

^{330}, I. W. Stewart

^{331}, M. J. Strassler

^{332}, J. Streicher

^{333}, D. M. Strom

^{334}, S. Su

^{335}, X. Sun

^{336}, F. J. Tackmann

^{337}, K. Tackmann

^{338}, A. M. Teixeira

^{339}, R. Teixeira de Lima

^{340}, V. Theeuwes

^{341}, R. Thorne

^{342}, D. Tommasini

^{343}, P. Torrielli

^{344}, M. Tosi

^{345}, F. Tramontano

^{346}, Z. Trócsányi

^{347}, M. Trott

^{348}, I. Tsinikos

^{349}, M. Ubiali

^{350}, P. Vanlaer

^{351}, W. Verkerke

^{352}, A. Vicini

^{353}, L. Viliani

^{354}, E. Vryonidou

^{355}, D. Wackeroth

^{356}, C. E. M. Wagner

^{357}, J. Wang

^{358}, S. Wayand

^{359}, G. Weiglein

^{360}, C. Weiss

^{361}, M. Wiesemann

^{362}, C. Williams

^{363}, J. Winter

^{364}, D. Winterbottom

^{365}, R. Wolf

^{366}, M. Xiao

^{367}, L. L. Yang

^{368}, R. Yohay

^{369}, S. P. Y. Yuen

^{370}, G. Zanderighi

^{371}, M. Zaro

^{372}, D. Zeppenfeld

^{373}, R. Ziegler

^{374}, T. Zirke

^{375}, J. Zupan

^{376}

**Affiliations:**

^{1}eds.,

^{2}eds.,

^{3}eds.,

^{4}eds.,

^{5}eds.,

^{6}eds.,

^{7}eds.,

^{8}eds.,

^{9}eds.,

^{10}The LHC Higgs Cross Section Working Group,

^{11}The LHC Higgs Cross Section Working Group,

^{12}The LHC Higgs Cross Section Working Group,

^{13}The LHC Higgs Cross Section Working Group,

^{14}The LHC Higgs Cross Section Working Group,

^{15}The LHC Higgs Cross Section Working Group,

^{16}The LHC Higgs Cross Section Working Group,

^{17}The LHC Higgs Cross Section Working Group,

^{18}The LHC Higgs Cross Section Working Group,

^{19}The LHC Higgs Cross Section Working Group,

^{20}The LHC Higgs Cross Section Working Group,

^{21}The LHC Higgs Cross Section Working Group,

^{22}The LHC Higgs Cross Section Working Group,

^{23}The LHC Higgs Cross Section Working Group,

^{24}The LHC Higgs Cross Section Working Group,

^{25}The LHC Higgs Cross Section Working Group,

^{26}The LHC Higgs Cross Section Working Group,

^{27}The LHC Higgs Cross Section Working Group,

^{28}The LHC Higgs Cross Section Working Group,

^{29}The LHC Higgs Cross Section Working Group,

^{30}The LHC Higgs Cross Section Working Group,

^{31}The LHC Higgs Cross Section Working Group,

^{32}The LHC Higgs Cross Section Working Group,

^{33}The LHC Higgs Cross Section Working Group,

^{34}The LHC Higgs Cross Section Working Group,

^{35}The LHC Higgs Cross Section Working Group,

^{36}The LHC Higgs Cross Section Working Group,

^{37}The LHC Higgs Cross Section Working Group,

^{38}The LHC Higgs Cross Section Working Group,

^{39}The LHC Higgs Cross Section Working Group,

^{40}The LHC Higgs Cross Section Working Group,

^{41}The LHC Higgs Cross Section Working Group,

^{42}The LHC Higgs Cross Section Working Group,

^{43}The LHC Higgs Cross Section Working Group,

^{44}The LHC Higgs Cross Section Working Group,

^{45}The LHC Higgs Cross Section Working Group,

^{46}The LHC Higgs Cross Section Working Group,

^{47}The LHC Higgs Cross Section Working Group,

^{48}The LHC Higgs Cross Section Working Group,

^{49}The LHC Higgs Cross Section Working Group,

^{50}The LHC Higgs Cross Section Working Group,

^{51}The LHC Higgs Cross Section Working Group,

^{52}The LHC Higgs Cross Section Working Group,

^{53}The LHC Higgs Cross Section Working Group,

^{54}The LHC Higgs Cross Section Working Group,

^{55}The LHC Higgs Cross Section Working Group,

^{56}The LHC Higgs Cross Section Working Group,

^{57}The LHC Higgs Cross Section Working Group,

^{58}The LHC Higgs Cross Section Working Group,

^{59}The LHC Higgs Cross Section Working Group,

^{60}The LHC Higgs Cross Section Working Group,

^{61}The LHC Higgs Cross Section Working Group,

^{62}The LHC Higgs Cross Section Working Group,

^{63}The LHC Higgs Cross Section Working Group,

^{64}The LHC Higgs Cross Section Working Group,

^{65}The LHC Higgs Cross Section Working Group,

^{66}The LHC Higgs Cross Section Working Group,

^{67}The LHC Higgs Cross Section Working Group,

^{68}The LHC Higgs Cross Section Working Group,

^{69}The LHC Higgs Cross Section Working Group,

^{70}The LHC Higgs Cross Section Working Group,

^{71}The LHC Higgs Cross Section Working Group,

^{72}The LHC Higgs Cross Section Working Group,

^{73}The LHC Higgs Cross Section Working Group,

^{74}The LHC Higgs Cross Section Working Group,

^{75}The LHC Higgs Cross Section Working Group,

^{76}The LHC Higgs Cross Section Working Group,

^{77}The LHC Higgs Cross Section Working Group,

^{78}The LHC Higgs Cross Section Working Group,

^{79}The LHC Higgs Cross Section Working Group,

^{80}The LHC Higgs Cross Section Working Group,

^{81}The LHC Higgs Cross Section Working Group,

^{82}The LHC Higgs Cross Section Working Group,

^{83}The LHC Higgs Cross Section Working Group,

^{84}The LHC Higgs Cross Section Working Group,

^{85}The LHC Higgs Cross Section Working Group,

^{86}The LHC Higgs Cross Section Working Group,

^{87}The LHC Higgs Cross Section Working Group,

^{88}The LHC Higgs Cross Section Working Group,

^{89}The LHC Higgs Cross Section Working Group,

^{90}The LHC Higgs Cross Section Working Group,

^{91}The LHC Higgs Cross Section Working Group,

^{92}The LHC Higgs Cross Section Working Group,

^{93}The LHC Higgs Cross Section Working Group,

^{94}The LHC Higgs Cross Section Working Group,

^{95}The LHC Higgs Cross Section Working Group,

^{96}The LHC Higgs Cross Section Working Group,

^{97}The LHC Higgs Cross Section Working Group,

^{98}The LHC Higgs Cross Section Working Group,

^{99}The LHC Higgs Cross Section Working Group,

^{100}The LHC Higgs Cross Section Working Group,

^{101}The LHC Higgs Cross Section Working Group,

^{102}The LHC Higgs Cross Section Working Group,

^{103}The LHC Higgs Cross Section Working Group,

^{104}The LHC Higgs Cross Section Working Group,

^{105}The LHC Higgs Cross Section Working Group,

^{106}The LHC Higgs Cross Section Working Group,

^{107}The LHC Higgs Cross Section Working Group,

^{108}The LHC Higgs Cross Section Working Group,

^{109}The LHC Higgs Cross Section Working Group,

^{110}The LHC Higgs Cross Section Working Group,

^{111}The LHC Higgs Cross Section Working Group,

^{112}The LHC Higgs Cross Section Working Group,

^{113}The LHC Higgs Cross Section Working Group,

^{114}The LHC Higgs Cross Section Working Group,

^{115}The LHC Higgs Cross Section Working Group,

^{116}The LHC Higgs Cross Section Working Group,

^{117}The LHC Higgs Cross Section Working Group,

^{118}The LHC Higgs Cross Section Working Group,

^{119}The LHC Higgs Cross Section Working Group,

^{120}The LHC Higgs Cross Section Working Group,

^{121}The LHC Higgs Cross Section Working Group,

^{122}The LHC Higgs Cross Section Working Group,

^{123}The LHC Higgs Cross Section Working Group,

^{124}The LHC Higgs Cross Section Working Group,

^{125}The LHC Higgs Cross Section Working Group,

^{126}The LHC Higgs Cross Section Working Group,

^{127}The LHC Higgs Cross Section Working Group,

^{128}The LHC Higgs Cross Section Working Group,

^{129}The LHC Higgs Cross Section Working Group,

^{130}The LHC Higgs Cross Section Working Group,

^{131}The LHC Higgs Cross Section Working Group,

^{132}The LHC Higgs Cross Section Working Group,

^{133}The LHC Higgs Cross Section Working Group,

^{134}The LHC Higgs Cross Section Working Group,

^{135}The LHC Higgs Cross Section Working Group,

^{136}The LHC Higgs Cross Section Working Group,

^{137}The LHC Higgs Cross Section Working Group,

^{138}The LHC Higgs Cross Section Working Group,

^{139}The LHC Higgs Cross Section Working Group,

^{140}The LHC Higgs Cross Section Working Group,

^{141}The LHC Higgs Cross Section Working Group,

^{142}The LHC Higgs Cross Section Working Group,

^{143}The LHC Higgs Cross Section Working Group,

^{144}The LHC Higgs Cross Section Working Group,

^{145}The LHC Higgs Cross Section Working Group,

^{146}The LHC Higgs Cross Section Working Group,

^{147}The LHC Higgs Cross Section Working Group,

^{148}The LHC Higgs Cross Section Working Group,

^{149}The LHC Higgs Cross Section Working Group,

^{150}The LHC Higgs Cross Section Working Group,

^{151}The LHC Higgs Cross Section Working Group,

^{152}The LHC Higgs Cross Section Working Group,

^{153}The LHC Higgs Cross Section Working Group,

^{154}The LHC Higgs Cross Section Working Group,

^{155}The LHC Higgs Cross Section Working Group,

^{156}The LHC Higgs Cross Section Working Group,

^{157}The LHC Higgs Cross Section Working Group,

^{158}The LHC Higgs Cross Section Working Group,

^{159}The LHC Higgs Cross Section Working Group,

^{160}The LHC Higgs Cross Section Working Group,

^{161}The LHC Higgs Cross Section Working Group,

^{162}The LHC Higgs Cross Section Working Group,

^{163}The LHC Higgs Cross Section Working Group,

^{164}The LHC Higgs Cross Section Working Group,

^{165}The LHC Higgs Cross Section Working Group,

^{166}The LHC Higgs Cross Section Working Group,

^{167}The LHC Higgs Cross Section Working Group,

^{168}The LHC Higgs Cross Section Working Group,

^{169}The LHC Higgs Cross Section Working Group,

^{170}The LHC Higgs Cross Section Working Group,

^{171}The LHC Higgs Cross Section Working Group,

^{172}The LHC Higgs Cross Section Working Group,

^{173}The LHC Higgs Cross Section Working Group,

^{174}The LHC Higgs Cross Section Working Group,

^{175}The LHC Higgs Cross Section Working Group,

^{176}The LHC Higgs Cross Section Working Group,

^{177}The LHC Higgs Cross Section Working Group,

^{178}The LHC Higgs Cross Section Working Group,

^{179}The LHC Higgs Cross Section Working Group,

^{180}The LHC Higgs Cross Section Working Group,

^{181}The LHC Higgs Cross Section Working Group,

^{182}The LHC Higgs Cross Section Working Group,

^{183}The LHC Higgs Cross Section Working Group,

^{184}The LHC Higgs Cross Section Working Group,

^{185}The LHC Higgs Cross Section Working Group,

^{186}The LHC Higgs Cross Section Working Group,

^{187}The LHC Higgs Cross Section Working Group,

^{188}The LHC Higgs Cross Section Working Group,

^{189}The LHC Higgs Cross Section Working Group,

^{190}The LHC Higgs Cross Section Working Group,

^{191}The LHC Higgs Cross Section Working Group,

^{192}The LHC Higgs Cross Section Working Group,

^{193}The LHC Higgs Cross Section Working Group,

^{194}The LHC Higgs Cross Section Working Group,

^{195}The LHC Higgs Cross Section Working Group,

^{196}The LHC Higgs Cross Section Working Group,

^{197}The LHC Higgs Cross Section Working Group,

^{198}The LHC Higgs Cross Section Working Group,

^{199}The LHC Higgs Cross Section Working Group,

^{200}The LHC Higgs Cross Section Working Group,

^{201}The LHC Higgs Cross Section Working Group,

^{202}The LHC Higgs Cross Section Working Group,

^{203}The LHC Higgs Cross Section Working Group,

^{204}The LHC Higgs Cross Section Working Group,

^{205}The LHC Higgs Cross Section Working Group,

^{206}The LHC Higgs Cross Section Working Group,

^{207}The LHC Higgs Cross Section Working Group,

^{208}The LHC Higgs Cross Section Working Group,

^{209}The LHC Higgs Cross Section Working Group,

^{210}The LHC Higgs Cross Section Working Group,

^{211}The LHC Higgs Cross Section Working Group,

^{212}The LHC Higgs Cross Section Working Group,

^{213}The LHC Higgs Cross Section Working Group,

^{214}The LHC Higgs Cross Section Working Group,

^{215}The LHC Higgs Cross Section Working Group,

^{216}The LHC Higgs Cross Section Working Group,

^{217}The LHC Higgs Cross Section Working Group,

^{218}The LHC Higgs Cross Section Working Group,

^{219}The LHC Higgs Cross Section Working Group,

^{220}The LHC Higgs Cross Section Working Group,

^{221}The LHC Higgs Cross Section Working Group,

^{222}The LHC Higgs Cross Section Working Group,

^{223}The LHC Higgs Cross Section Working Group,

^{224}The LHC Higgs Cross Section Working Group,

^{225}The LHC Higgs Cross Section Working Group,

^{226}The LHC Higgs Cross Section Working Group,

^{227}The LHC Higgs Cross Section Working Group,

^{228}The LHC Higgs Cross Section Working Group,

^{229}The LHC Higgs Cross Section Working Group,

^{230}The LHC Higgs Cross Section Working Group,

^{231}The LHC Higgs Cross Section Working Group,

^{232}The LHC Higgs Cross Section Working Group,

^{233}The LHC Higgs Cross Section Working Group,

^{234}The LHC Higgs Cross Section Working Group,

^{235}The LHC Higgs Cross Section Working Group,

^{236}The LHC Higgs Cross Section Working Group,

^{237}The LHC Higgs Cross Section Working Group,

^{238}The LHC Higgs Cross Section Working Group,

^{239}The LHC Higgs Cross Section Working Group,

^{240}The LHC Higgs Cross Section Working Group,

^{241}The LHC Higgs Cross Section Working Group,

^{242}The LHC Higgs Cross Section Working Group,

^{243}The LHC Higgs Cross Section Working Group,

^{244}The LHC Higgs Cross Section Working Group,

^{245}The LHC Higgs Cross Section Working Group,

^{246}The LHC Higgs Cross Section Working Group,

^{247}The LHC Higgs Cross Section Working Group,

^{248}The LHC Higgs Cross Section Working Group,

^{249}The LHC Higgs Cross Section Working Group,

^{250}The LHC Higgs Cross Section Working Group,

^{251}The LHC Higgs Cross Section Working Group,

^{252}The LHC Higgs Cross Section Working Group,

^{253}The LHC Higgs Cross Section Working Group,

^{254}The LHC Higgs Cross Section Working Group,

^{255}The LHC Higgs Cross Section Working Group,

^{256}The LHC Higgs Cross Section Working Group,

^{257}The LHC Higgs Cross Section Working Group,

^{258}The LHC Higgs Cross Section Working Group,

^{259}The LHC Higgs Cross Section Working Group,

^{260}The LHC Higgs Cross Section Working Group,

^{261}The LHC Higgs Cross Section Working Group,

^{262}The LHC Higgs Cross Section Working Group,

^{263}The LHC Higgs Cross Section Working Group,

^{264}The LHC Higgs Cross Section Working Group,

^{265}The LHC Higgs Cross Section Working Group,

^{266}The LHC Higgs Cross Section Working Group,

^{267}The LHC Higgs Cross Section Working Group,

^{268}The LHC Higgs Cross Section Working Group,

^{269}The LHC Higgs Cross Section Working Group,

^{270}The LHC Higgs Cross Section Working Group,

^{271}The LHC Higgs Cross Section Working Group,

^{272}The LHC Higgs Cross Section Working Group,

^{273}The LHC Higgs Cross Section Working Group,

^{274}The LHC Higgs Cross Section Working Group,

^{275}The LHC Higgs Cross Section Working Group,

^{276}The LHC Higgs Cross Section Working Group,

^{277}The LHC Higgs Cross Section Working Group,

^{278}The LHC Higgs Cross Section Working Group,

^{279}The LHC Higgs Cross Section Working Group,

^{280}The LHC Higgs Cross Section Working Group,

^{281}The LHC Higgs Cross Section Working Group,

^{282}The LHC Higgs Cross Section Working Group,

^{283}The LHC Higgs Cross Section Working Group,

^{284}The LHC Higgs Cross Section Working Group,

^{285}The LHC Higgs Cross Section Working Group,

^{286}The LHC Higgs Cross Section Working Group,

^{287}The LHC Higgs Cross Section Working Group,

^{288}The LHC Higgs Cross Section Working Group,

^{289}The LHC Higgs Cross Section Working Group,

^{290}The LHC Higgs Cross Section Working Group,

^{291}The LHC Higgs Cross Section Working Group,

^{292}The LHC Higgs Cross Section Working Group,

^{293}The LHC Higgs Cross Section Working Group,

^{294}The LHC Higgs Cross Section Working Group,

^{295}The LHC Higgs Cross Section Working Group,

^{296}The LHC Higgs Cross Section Working Group,

^{297}The LHC Higgs Cross Section Working Group,

^{298}The LHC Higgs Cross Section Working Group,

^{299}The LHC Higgs Cross Section Working Group,

^{300}The LHC Higgs Cross Section Working Group,

^{301}The LHC Higgs Cross Section Working Group,

^{302}The LHC Higgs Cross Section Working Group,

^{303}The LHC Higgs Cross Section Working Group,

^{304}The LHC Higgs Cross Section Working Group,

^{305}The LHC Higgs Cross Section Working Group,

^{306}The LHC Higgs Cross Section Working Group,

^{307}The LHC Higgs Cross Section Working Group,

^{308}The LHC Higgs Cross Section Working Group,

^{309}The LHC Higgs Cross Section Working Group,

^{310}The LHC Higgs Cross Section Working Group,

^{311}The LHC Higgs Cross Section Working Group,

^{312}The LHC Higgs Cross Section Working Group,

^{313}The LHC Higgs Cross Section Working Group,

^{314}The LHC Higgs Cross Section Working Group,

^{315}The LHC Higgs Cross Section Working Group,

^{316}The LHC Higgs Cross Section Working Group,

^{317}The LHC Higgs Cross Section Working Group,

^{318}The LHC Higgs Cross Section Working Group,

^{319}The LHC Higgs Cross Section Working Group,

^{320}The LHC Higgs Cross Section Working Group,

^{321}The LHC Higgs Cross Section Working Group,

^{322}The LHC Higgs Cross Section Working Group,

^{323}The LHC Higgs Cross Section Working Group,

^{324}The LHC Higgs Cross Section Working Group,

^{325}The LHC Higgs Cross Section Working Group,

^{326}The LHC Higgs Cross Section Working Group,

^{327}The LHC Higgs Cross Section Working Group,

^{328}The LHC Higgs Cross Section Working Group,

^{329}The LHC Higgs Cross Section Working Group,

^{330}The LHC Higgs Cross Section Working Group,

^{331}The LHC Higgs Cross Section Working Group,

^{332}The LHC Higgs Cross Section Working Group,

^{333}The LHC Higgs Cross Section Working Group,

^{334}The LHC Higgs Cross Section Working Group,

^{335}The LHC Higgs Cross Section Working Group,

^{336}The LHC Higgs Cross Section Working Group,

^{337}The LHC Higgs Cross Section Working Group,

^{338}The LHC Higgs Cross Section Working Group,

^{339}The LHC Higgs Cross Section Working Group,

^{340}The LHC Higgs Cross Section Working Group,

^{341}The LHC Higgs Cross Section Working Group,

^{342}The LHC Higgs Cross Section Working Group,

^{343}The LHC Higgs Cross Section Working Group,

^{344}The LHC Higgs Cross Section Working Group,

^{345}The LHC Higgs Cross Section Working Group,

^{346}The LHC Higgs Cross Section Working Group,

^{347}The LHC Higgs Cross Section Working Group,

^{348}The LHC Higgs Cross Section Working Group,

^{349}The LHC Higgs Cross Section Working Group,

^{350}The LHC Higgs Cross Section Working Group,

^{351}The LHC Higgs Cross Section Working Group,

^{352}The LHC Higgs Cross Section Working Group,

^{353}The LHC Higgs Cross Section Working Group,

^{354}The LHC Higgs Cross Section Working Group,

^{355}The LHC Higgs Cross Section Working Group,

^{356}The LHC Higgs Cross Section Working Group,

^{357}The LHC Higgs Cross Section Working Group,

^{358}The LHC Higgs Cross Section Working Group,

^{359}The LHC Higgs Cross Section Working Group,

^{360}The LHC Higgs Cross Section Working Group,

^{361}The LHC Higgs Cross Section Working Group,

^{362}The LHC Higgs Cross Section Working Group,

^{363}The LHC Higgs Cross Section Working Group,

^{364}The LHC Higgs Cross Section Working Group,

^{365}The LHC Higgs Cross Section Working Group,

^{366}The LHC Higgs Cross Section Working Group,

^{367}The LHC Higgs Cross Section Working Group,

^{368}The LHC Higgs Cross Section Working Group,

^{369}The LHC Higgs Cross Section Working Group,

^{370}The LHC Higgs Cross Section Working Group,

^{371}The LHC Higgs Cross Section Working Group,

^{372}The LHC Higgs Cross Section Working Group,

^{373}The LHC Higgs Cross Section Working Group,

^{374}The LHC Higgs Cross Section Working Group,

^{375}The LHC Higgs Cross Section Working Group,

^{376}The LHC Higgs Cross Section Working Group

This Report summarizes the results of the activities of the LHC Higgs Cross Section Working Group in the period 2014-2016. The main goal of the working group was to present the state-of-the-art of Higgs physics at the LHC, integrating all new results that have appeared in the last few years. The first part compiles the most up-to-date predictions of Higgs boson production cross sections and decay branching ratios, parton distribution functions, and off-shell Higgs boson production and interference effects. Read More

The Georgi-Machacek model extends the Standard Model Higgs sector with the addition of isospin-triplet scalar fields in such a way as to preserve the custodial symmetry. The presence of higher-isospin scalars contributing to electroweak symmetry breaking offers the interesting possibility that the couplings of the 125 GeV Higgs boson to both gluons and vector boson pairs could be larger than those of the Standard Model Higgs boson. Constraining this possibility using measurements of Higgs production and decay at the CERN Large Hadron Collider is notoriously problematic if a new, non-Standard Model decay mode of the 125 GeV Higgs boson is present. Read More

**Affiliations:**

^{1}Carleton U.,

^{2}Carleton U.

We study the prospects for constraining the Higgs boson's couplings to up and down quarks using kinematic distributions in Higgs production at the CERN Large Hadron Collider. We find that the Higgs $p_T$ distribution can be used to constrain these couplings with precision competitive to other proposed techniques. With 3000 fb$^{-1}$ of data at 13 TeV in the four-lepton decay channel, we find $-0. Read More

We study the phenomenology of the Georgi-Machacek model at next-to-leading order (NLO) in QCD matched to parton shower, using a fully-automated tool chain based on MadGraph5_aMC@NLO and FeynRules. We focus on the production of the fermiophobic custodial fiveplet scalars H_5^0, H_5^+/-, and H_5^++/-- through vector boson fusion (VBF), associated production with a vector boson (V H_5), and scalar pair production (H_5 H_5). For these production mechanisms we compute NLO corrections to production rates as well as to differential distributions. Read More

**Affiliations:**

^{1}Carleton U.,

^{2}Carleton U.

We calculate the branching ratios of chi_{b0} --> tau+ tau- via an s-channel Higgs boson and estimate the sensitivity to this process from Upsilon --> gamma chi_{b0} --> gamma tau+ tau-. We show that future running at the Upsilon(3S) at a very high luminosity super B factory can put significant constraints on the Type-II two-Higgs-doublet model when the discovered 125 GeV Higgs boson is the heavier of the two CP-even scalars. Read More

We study the LHC search constraints on models that extend the Standard Model (SM) with an inert, complex scalar electroweak multiplet, $\Sigma$, with isospin T=5/2 (sextet) or T=7/2 (octet) and identical hypercharge to the SM Higgs doublet. Imposing a global $Z_2$ symmetry under which $\Sigma \to -\Sigma$, the lightest member of $\Sigma$ is stable and we require that it be neutral ($\zeta^{0,r}$) to avoid cosmological constraints from charged relics. Pair production of scalars by electroweak interactions followed by cascade decays to $\zeta^{0,r}$ through W and Z emission produces signatures similar to those of supersymmetric electroweak gauginos, and we constrain the models by recasting a collection of such searches made with data from the 8 TeV run of the LHC. Read More

**Authors:**Robyn Campbell

^{1}, Stephen Godfrey

^{2}, Heather E. Logan

^{3}, Andrea D. Peterson

^{4}, Alexandre Poulin

^{5}

**Affiliations:**

^{1}Carleton U.,

^{2}Carleton U.,

^{3}Carleton U.,

^{4}Carleton U.,

^{5}Carleton U.

Evidence for dark matter self-interactions has recently been reported based on the observation of a spatial offset between the dark matter halo and the stars in a galaxy in the cluster Abell 3827. Interpreting the offset as due to dark matter self-interactions leads to a cross section measurement of sigma_DM/m ~ (1-1.5) cm^2/g, where m is the mass of the dark matter particle. Read More

**Affiliations:**

^{1}Carleton U.

**Category:**High Energy Physics - Phenomenology

In this talk I discuss extended Higgs sectors in which the 125 GeV Higgs boson couplings to W and Z bosons can be larger than in the Standard Model. Constraints from perturbative unitarity and the electroweak rho parameter limit the number of possible models to a tractable few. Focusing on generalizations of the Georgi-Machacek model and taking advantage of the custodial symmetry, I show that existing experimental and theoretical constraints can be combined to set an upper limit on the enhancement of the Higgs couplings to W and Z bosons. Read More

The Georgi-Machacek model adds two SU(2)_L-triplet scalars to the Standard Model in such a way as to preserve custodial SU(2) symmetry. We study the generalizations of the Georgi-Machacek model to SU(2)_L representations larger than triplets. Perturbative unitarity considerations limit the possibilities to models containing only SU(2)_L quartets, quintets, or sextets. Read More

The Georgi-Machacek model adds scalar triplets to the Standard Model Higgs sector in such a way as to preserve custodial SU(2) symmetry in the scalar potential. This allows the triplets to have a non-negligible vacuum expectation value while satisfying constraints from the rho parameter. Depending on the parameters, the 125~GeV neutral Higgs particle can have couplings to WW and ZZ larger than in the Standard Model due to mixing with the triplets. Read More

**Affiliations:**

^{1}Carleton U.

Measurements of the off-shell Higgs boson production cross section in gg (--> h*) --> ZZ have recently been used by the CMS and ATLAS collaborations to indirectly constrain the total width of the Higgs boson. I point out that the interpretation of these measurements as a Higgs width constraint can be invalidated if additional neutral Higgs boson(s) are present with masses below about 350 GeV. Read More

We update the indirect constraints on the Georgi-Machacek model from $B$-physics and electroweak precision observables, including new constraints from $b \to s \gamma$ and $B^0_s \to \mu^+ \mu^-$. We illustrate the effect of these constraints on the couplings of the Standard Model-like Higgs boson by performing scans using the most general scalar potential, subject to vacuum stability and perturbativity constraints. We find that simultaneous enhancements of all the Higgs production cross sections by up to 39\% are still allowed after imposing these constraints. Read More

**Affiliations:**

^{1}Carleton U.

These lectures start with a detailed pedagogical introduction to electroweak symmetry breaking in the Standard Model, including gauge boson and fermion mass generation and the resulting predictions for Higgs boson interactions. I then survey Higgs boson decays and production mechanisms at hadron and e+e- colliders. I finish with two case studies of Higgs physics beyond the Standard Model: two-Higgs-doublet models, which I use to illustrate the concept of minimal flavor violation, and models with isospin-triplet scalar(s), which I use to illustrate the concept of custodial symmetry. Read More

We study the most general scalar potential of the Georgi-Machacek model, which adds isospin-triplet scalars to the Standard Model (SM) in a way that preserves custodial SU(2) symmetry. We show that this model possesses a decoupling limit, in which the predominantly-triplet states become heavy and degenerate while the couplings of the remaining light neutral scalar approach those of the SM Higgs boson. We find that the SM-like Higgs boson couplings to fermion pairs and gauge boson pairs can deviate from their SM values by corrections as large as $\mathcal{O}(v^2/M_{\rm new}^2)$, where $v$ is the SM Higgs vacuum expectation value and $M_{\rm new}$ is the mass scale of the predominantly-triplet states. Read More

**Authors:**R. Brock, M. E. Peskin, K. Agashe, M. Artuso, J. Campbell, S. Dawson, R. Erbacher, C. Gerber, Y. Gershtein, A. Gritsan, K. Hatakeyama, J. Huston, A. Kotwal, H. Logan, M. Luty, K. Melnikov, M. Narain, M. Papucci, F. Petriello, S. Prell, J. Qian, R. Schwienhorst, C. Tully, R. Van Kooten, D. Wackeroth, L. Wang, D. Whiteson

These reports present the results of the 2013 Community Summer Study of the APS Division of Particles and Fields ("Snowmass 2013") on the future program of particle physics in the U.S. Chapter 3, on the Energy Frontier, discusses the program of research with high-energy colliders. Read More

We study models in which the Higgs sector is extended by a single scalar electroweak multiplet Z with isospin T=5/2 (sextet) or 7/2 (octet) and the same hypercharge as the Standard Model Higgs doublet, in which Z is odd under a global Z2 symmetry. This Z2 symmetry keeps the lightest (neutral) member of Z stable and has interesting implications for phenomenology. We determine the constraints on these models from precision electroweak measurements and Higgs boson decays to two photons. Read More

**Authors:**S. Dawson, A. Gritsan, H. Logan, J. Qian, C. Tully, R. Van Kooten, A. Ajaib, A. Anastassov, I. Anderson, D. Asner, O. Bake, V. Barger, T. Barklow, B. Batell, M. Battaglia, S. Berge, A. Blondel, S. Bolognesi, J. Brau, E. Brownson, M. Cahill-Rowley, C. Calancha-Paredes, C. -Y. Chen, W. Chou, R. Clare, D. Cline, N. Craig, K. Cranmer, M. de Gruttola, A. Elagin, R. Essig, L. Everett, E. Feng, K. Fujii, J. Gainer, Y. Gao, I. Gogoladze, S. Gori, R. Goncalo, N. Graf, C. Grojean, S. Guindon, H. Haber, T. Han, G. Hanson, R. Harnik, S. Heinemeyer, U. Heintz, J. Hewett, Y. Ilchenko, A. Ishikawa, A. Ismail, V. Jain, P. Janot, S. Kanemura, S. Kawada, R. Kehoe, M. Klute, A. Kotwal, K. Krueger, G. Kukartsev, K. Kumar, J. Kunkle, M. Kurata, I. Lewis, Y. Li, L. Linssen, E. Lipeles, R. Lipton, T. Liss, J. List, T. Liu, Z. Liu, I. Low, T. Ma, P. Mackenzie, B. Mellado, K. Melnikov, A. Miyamoto, G. Moortgat-Pick, G. Mourou, M. Narain, H. Neal, J. Nielsen, N. Okada, H. Okawa, J. Olsen, H. Ono, P. Onyisi, N. Parashar, M. Peskin, F. Petriello, T. Plehn, C. Pollard, C. Potter, K. Prokofiev, M. Rauch, T. Rizzo, T. Robens, V. Rodriguez, P. Roloff, R. Ruiz, V. Sanz, J. Sayre, Q. Shafi, G. Shaughnessy, M. Sher, F. Simon, N. Solyak, J. Strube, J. Stupak, S. Su, T. Suehara, T. Tanabe, T. Tajima, V. Telnov, J. Tian, S. Thomas, M. Thomson, K. Tsumura, C. Un, M. Velasco, C. Wagner, S. Wang, S. Watanuki, G. Weiglein, A. Whitbeck, K. Yagyu, W. Yao, H. Yokoya, S. Zenz, D. Zerwas, Y. Zhang, Y. Zhou

This report summarizes the work of the Energy Frontier Higgs Boson working group of the 2013 Community Summer Study (Snowmass). We identify the key elements of a precision Higgs physics program and document the physics potential of future experimental facilities as elucidated during the Snowmass study. We study Higgs couplings to gauge boson and fermion pairs, double Higgs production for the Higgs self-coupling, its quantum numbers and $CP$-mixing in Higgs couplings, the Higgs mass and total width, and prospects for direct searches for additional Higgs bosons in extensions of the Standard Model. Read More

The discovery at the LHC of a scalar particle with properties that are so far consistent with the SM Higgs boson is one of the most important advances in the history of particle physics. The challenge of future collider experiments is to determine whether its couplings will show deviations from the SM Higgs, as this would indicate new physics at the TeV scale, and also to probe the flavor structure of the Yukawa couplings. As a benchmark alternative to the SM Higgs, we consider a generic two Higgs doublet model (2HDM) and analyze the precision to which the LHC14, an ILC250, 500, 1000 GeV and a 125 GeV Muon Collider (MC) can determine the gauge and Yukawa couplings. Read More

The historic LHC discovery of the 125 GeV particle with properties that closely resemble the Standard Model (SM) Higgs boson verifies our understanding of electroweak symmetry breaking, but solidifies the need for a resolution to the hierarchy problem. Many extensions of the SM that address the hierarchy problem contain a non-minimal Higgs sector. Therefore, as a benchmark alternative to the SM Higgs mechanism, we study a general 2 Higgs doublet model (2HDM-G) framework for evaluating future sensitivity to Higgs couplings. Read More

**Authors:**The LHC Higgs Cross Section Working Group, S. Heinemeyer

^{1}, C. Mariotti

^{2}, G. Passarino

^{3}, R. Tanaka

^{4}, J. R. Andersen, P. Artoisenet, E. A. Bagnaschi, A. Banfi, T. Becher, F. U. Bernlochner, S. Bolognesi, P. Bolzoni, R. Boughezal, D. Buarque, J. Campbell, F. Caola, M. Carena, F. Cascioli, N. Chanon, T. Cheng, S. Y. Choi, A. David, P. de Aquino, G. Degrassi, D. Del Re, A. Denner, H. van Deurzen, S. Diglio, B. Di Micco, R. Di Nardo, S. Dittmaier, M. Duhrssen, R. K. Ellis, G. Ferrera, N. Fidanza, M. Flechl, D. de Florian, S. Forte, R. Frederix, S. Frixione, S. Gangal, Y. Gao, M. V. Garzelli, D. Gillberg, P. Govoni, M. Grazzini, N. Greiner, J. Griffiths, A . V. Gritsan, C. Grojean, D. C. Hall, C. Hays, R. Harlander, R. Hernandez-Pinto, S. Hoche, J. Huston, T. Jubb, M. Kadastik, S. Kallweit, A. Kardos, L. Kashif, N. Kauer, H. Kim, R. Klees, M. Kramer, F. Krauss, A. Laureys, S. Laurila, S. Lehti, Q. Li, S. Liebler, X. Liu, H. E. Logan, G. Luisoni, M. Malberti, F. Maltoni, K. Mawatari, F. Maierhofer, H. Mantler, S. Martin, P. Mastrolia, O. Mattelaer, J. Mazzitelli, B. Mellado, K. Melnikov, P. Meridiani, D. J. Miller, E. Mirabella, S. O. Moch, P. Monni, N. Moretti, A. Muck, M. Muhlleitner, P. Musella, P. Nason, C. Neu, M. Neubert, C. Oleari, J. Olsen, G. Ossola, T. Peraro, K. Peters, F. Petriello, G. Piacquadio, C. T. Potter, S. Pozzorini, K. Prokofiev, I. Puljak, M. Rauch, D. Rebuzzi, L. Reina, R. Rietkerk, A. Rizzi, Y. Rotstein-Habarnau, G. P. Salam, G. Sborlini, F. Schissler, M. Schonherr, M. Schulze, M. Schumacher, F. Siegert, P. Slavich, J. M. Smillie, O. Stal, J. F. von Soden-Fraunhofen, M. Spira, I. W. Stewart, F. J. Tackmann, P. T. E. Taylor, D. Tommasini, J. Thompson, R. S. Thorne, P. Torrielli, F. Tramontano, N. V. Tran, Z. Trocsanyi, M. Ubiali, P. Vanlaer, M. Vazquez Acosta, T. Vickey, A. Vicini, W. J. Waalewijn, D. Wackeroth, C. Wagner, J. R. Walsh, J. Wang, G. Weiglein, A. Whitbeck, C. Williams, J. Yu, G. Zanderighi, M. Zanetti, M. Zaro, P. M. Zerwas, C. Zhang, T. J . E. Zirke, S. Zuberi

**Affiliations:**

^{1}eds.,

^{2}eds.,

^{3}eds.,

^{4}eds.

This Report summarizes the results of the activities in 2012 and the first half of 2013 of the LHC Higgs Cross Section Working Group. The main goal of the working group was to present the state of the art of Higgs Physics at the LHC, integrating all new results that have appeared in the last few years. This report follows the first working group report Handbook of LHC Higgs Cross Sections: 1. Read More

**Authors:**Howard Baer

^{1}, Tim Barklow

^{2}, Keisuke Fujii

^{3}, Yuanning Gao

^{4}, Andre Hoang

^{5}, Shinya Kanemura

^{6}, Jenny List

^{7}, Heather E. Logan

^{8}, Andrei Nomerotski

^{9}, Maxim Perelstein

^{10}, Michael E. Peskin

^{11}, Roman Pöschl

^{12}, Jürgen Reuter

^{13}, Sabine Riemann

^{14}, Aurore Savoy-Navarro

^{15}, Geraldine Servant

^{16}, Tim M. P. Tait

^{17}, Jaehoon Yu

^{18}

**Affiliations:**

^{1}University of Oklahoma, Department of Physics and Astronomy,

^{2}SLAC,

^{3}KEK,

^{4}TUHEP,

^{5}Universität Wien, Theoretische Physik,

^{6}University of Toyama, Department of Physics,

^{7}DESY,

^{8}Carleton University, Department of Physics,

^{9}University of Oxford, Particle Physics Department,

^{10}Cornell University, Laboratory for Elementary-Particle Physics,

^{11}SLAC,

^{12}LAL,

^{13}DESY,

^{14}DESY,

^{15}APC, CNRS/IN2P3,

^{16}CERN,

^{17}University of California, Department of Physics and Astronomy,

^{18}University of Texas, Center for Accelerator Science and Technology

**Category:**High Energy Physics - Phenomenology

The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. Read More

The Standard Model Higgs boson may be mixed with another scalar that does not couple to fermions. The electroweak quantum numbers of such an additional scalar can be determined by measuring the quartic Higgs-Higgs-vector-vector couplings, which contribute---along with the coveted triple Higgs coupling---to double Higgs production in $e^+e^-$ collisions. We show that simultaneous sensitivity to the quartic Higgs-Higgs-vector-vector coupling and the triple Higgs coupling can be obtained using measurements of the double Higgs production cross section at two different e+e- center-of-mass energies. Read More

Models in which the Higgs sector is extended by a single electroweak scalar multiplet X can possess an accidental global U(1) symmetry at the renormalizable level if X has isospin T greater or equal to 2. We show that all such U(1)-symmetric models are excluded by the interplay of the cosmological relic density of the lightest (neutral) component of X and its direct detection cross section via Z exchange. The sole exception is the T=2 multiplet, whose lightest member decays on a few-day to few-year timescale via a Planck-suppressed dimension-5 operator. Read More

We test the possibility that the newly-discovered 126 GeV boson is a pseudoscalar by examining the correlations among the loop-induced pseudoscalar decay branching fractions to $\gamma\gamma$, $ZZ^*$, $Z\gamma$, and $WW^*$ final states in a model-independent way. These four decays are controlled by only two effective operators, so that the rates in $Z\gamma$ and $WW^*$ are predicted now that the rates in $\gamma\gamma$ and $ZZ^*,Z\gamma^* \to 4 \ell$ have been measured. We find that the pseudoscalar possibility is disfavored but not conclusively excluded. Read More

If the Higgs boson is composite, signs of this compositeness should appear via a formfactor-like suppression of Higgs scattering cross sections at momentum transfers above the compositeness scale. We explore this by computing the cross section for e+e- ---> ZH (Higgsstrahlung) in a warped five-dimensional gauge-Higgs unification model known as the Minimal Composite Higgs Model (MCHM). We observe that the Higgsstrahlung cross section in the MCHM is strongly suppressed compared to that in the Standard Model at center-of-mass energies above the scale of the first Kaluza-Klein excitations, due to cancellations among the contributions of successive Z boson Kaluza-Klein modes. Read More

We analyze the phenomenology of the top-pion and top-Higgs states in models with strong top dynamics, and translate the present LHC searches for the Standard Model Higgs into bounds on these scalar states. We explore the possibility that the new state at a mass of approximately 125 GeV observed at the LHC is consistent with a neutral pseudoscalar top-pion state. We demonstrate that a neutral pseudoscalar top-pion can generate the diphoton signal at the observed rate. Read More

We determine the constraints on the isospin and hypercharge of a scalar electroweak multiplet from partial-wave unitarity of tree-level scattering diagrams. The constraint from SU(2)_L interactions yields T <= 7/2 (i.e. Read More

Ongoing LHC searches for the standard model Higgs Boson in WW or ZZ decay modes strongly constrain the top-Higgs state predicted in many models with new dynamics that preferentially affects top quarks. Such a state couples strongly to top-quarks, and is therefore produced through gluon fusion at a rate that can be greatly enhanced relative to the rate for the standard model Higgs boson. As we discuss in this talk, a top-Higgs state with mass less than 300 GeV is excluded at 95% CL if the associated top-pion has a mass of 150 GeV, and the constraint is even stronger if the mass of the top-pion state exceeds the top-quark mass or if the top-pion decay constant is a substantial fraction of the weak scale. Read More

The Standard Model Higgs searches using the first 1-2 fb-1 of LHC data can be used to put interesting constraints on new scalar particles other than the Higgs. We investigate one such scenario in which electroweak symmetry is broken via strongly coupled conformal dynamics. This scenario contains a neutral scalar dilaton---the Goldstone boson associated with spontaneously broken scale invariance---with a mass below the conformal symmetry breaking scale and couplings to Standard Model particles similar (but not identical) to those of the Standard Model Higgs boson. Read More

**Affiliations:**

^{1}Carleton U.

**Category:**High Energy Physics - Phenomenology

The analyses of the first 1-2/fb of Large Hadron Collider (LHC) data are already having significant impacts on a wide range of models. In this talk I give my perspective on why we expect to find new physics at the LHC, and how such a discovery might unfold. Read More

**Affiliations:**

^{1}Carleton U.

**Category:**High Energy Physics - Phenomenology

Detection of a signal in one of the standard LHC Higgs search channels does not guarantee that the particle discovered is the Standard Model (SM) Higgs. In this talk I survey some general classes of alternatives and ways to tell them apart. Read More

LHC searches for the standard model Higgs Boson in WW or ZZ decay modes place strong constraints on the top-Higgs state predicted in many models with new dynamics preferentially affecting top quarks. Such a state couples strongly to top-quarks, and is therefore produced through gluon fusion at a rate enhanced relative to the rate for the standard model Higgs boson. A top-Higgs state with mass less than 300 GeV is excluded at 95% CL if the associated top-pion has a mass of 150 GeV, and the constraint is even stronger if the mass of the top-pion state exceeds the top-quark mass or if the top-pion decay constant is a substantial fraction of the weak scale. Read More

We show that combining a direct measurement of the Higgs total width from the H \to ZZ \to 4l lineshape with Higgs signal rate measurements allows Higgs couplings to be extracted in a model-independent way from CERN Large Hadron Collider (LHC) data. Using existing experimental studies with 30 fb-1 at one detector of the 14 TeV LHC, we show that the couplings-squared of a 190 GeV Higgs to WW, ZZ, and gg can be extracted with statistical precisions of about 10%, and a 95% confidence level upper limit on an unobserved component of the Higgs decay width of about 22% of the SM Higgs width can be set. The method can also be applied for heavier Higgs masses. Read More

We study the charged Higgs couplings to fermions in the "democratic" three-Higgs-doublet model, in which one doublet couples to down-type quarks, one to up-type quarks, and one to charged leptons. Flavor-changing neutral Higgs couplings are absent because the Glashow-Weinberg-Paschos condition for natural flavor conservation is in effect. We show that this model reproduces the coupling structure of the charged Higgs boson in the recently-proposed Yukawa-aligned two-Higgs-doublet model, with two subtle constraints that arise from the unitarity of the charged Higgs mixing matrix. Read More

We discuss the deconstructed version of a topcolor-assisted technicolor model wherein the mechanism of top quark mass generation is separated from the rest of electroweak symmetry breaking. The minimal deconstructed version of this scenario is a "triangle moose" model, where the top quark gets its mass from coupling to a top-Higgs field, while the gauge boson masses are generated from a Higgsless sector. The spectrum of the model includes scalar (top-Higgs) and pseudoscalar (top-pion) states. Read More

**Affiliations:**

^{1}Carleton U.

**Category:**High Energy Physics - Phenomenology

It was recently argued by Hooper and Goodenough [arXiv:1010.2752] that the excess gamma ray emission from within 1-2 degrees of the galactic center can be well-described by annihilation of ~8 GeV dark matter particles into tau pairs. I show that such a dark matter signal can be obtained naturally in the lepton-specific two-Higgs-doublet model extended by a stable singlet scalar dark matter candidate. Read More

**Affiliations:**

^{1}Carleton U.,

^{2}Carleton U.

**Category:**High Energy Physics - Phenomenology

We study the LHC search prospects for a model in which the neutrinos obtain Dirac masses from couplings to a second Higgs doublet with tiny vacuum expectation value. The model contains a charged Higgs boson that decays to l nu with branching fractions controlled by the neutrino masses and mixing angles as measured in neutrino oscillation experiments. The most promising signal is electroweak production of H+ H- pairs with decays to l l' pTmiss, where l l' = e+ e-, mu+ mu-, and e+- mu-+. Read More

**Affiliations:**

^{1}Carleton U.,

^{2}Carleton U.

**Category:**High Energy Physics - Phenomenology

We study the couplings of a CP-even neutral Higgs boson h in a model containing one scalar SU(2)_L doublet, one real triplet, and one complex triplet with hypercharge 1. Because the two triplets contribute to the rho parameter with opposite signs, the triplet vacuum expectation values can be sizable. We show that (i) the hWW and hZZ couplings can be larger than the corresponding values in the Standard Model, and (ii) the ratio of the WW and ZZ couplings of h can be different than the corresponding ratio in the Standard Model. Read More

We study the phenomenology of the charged Higgs boson in the "flipped" two Higgs doublet model, in which one doublet gives mass to up-type quarks and charged leptons and the other gives mass to down-type quarks. We present the charged Higgs branching ratios and summarize the indirect constraints. We extrapolate existing LEP searches for H+H- and Tevatron searches for t tbar with t --> H+ b into the flipped model and extract constraints on MH+ and the parameter tan(beta). Read More

**Affiliations:**

^{1}Carleton U.,

^{2}Carleton U.

**Category:**High Energy Physics - Phenomenology

We propose a minimal extension of the Standard Model in which neutrinos are Dirac particles and their tiny masses are explained without requiring tiny Yukawa couplings. A second Higgs doublet with a tiny vacuum expectation value provides neutrino masses while simultaneously improving the naturalness of the model by allowing a heavier Standard Model-like Higgs boson consistent with electroweak precision data. The model predicts a mu to e gamma rate potentially detectable in the current round of experiments, as well as distinctive signatures in the production and decay of the charged Higgs H+ of the second doublet which can be tested at future colliders. Read More

We study the "lepton-specific" two Higgs doublet model, in which one doublet
Phi_l gives mass to charged leptons and the other Phi_q gives mass to both up-
and down-type quarks. We examine the existing experimental constraints on the
charged Higgs boson mass and the parameter tan(beta) \equiv

We make a complete catalog of extended Higgs sectors involving SU(2)_L doublets and singlets, subject to natural flavor conservation. In each case we present the couplings of a light neutral CP-even Higgs state h in terms of the model parameters, and identify which models are distinguishable in principle based on this information. We also give explicit expressions for the model parameters in terms of h couplings and exhibit the behaviors of the couplings in the limit where the deviations from the Standard Model Higgs couplings are small. Read More

We examine various direct and indirect experimental constraints on the nearly minimal supersymmetric standard model (nMSSM) and obtain the following observations: (i) Current experiments stringently constrain the parameter space, setting a range of 1-37 GeV for the lightest neutralino (LSP), 30-140 GeV (1-250 GeV) for the lightest CP-even (CP-odd) Higgs boson, and 1.5-10 for \tan\beta; (ii) To account for the dark matter relic density, besides the s-channel exchange of a Z-boson, the s-channel exchange of a light A_1 (the lightest CP-odd Higgs boson) can also play an important role in LSP annihilation. Compared with the Z-exchange annihilation channel, the A_1 exchange channel is more favored by muon g-2 data and allows much broader regions for the parameters; (iii) In a large part of the allowed parameter space the SM-like Higgs boson may dominantly decay to LSP pair or A_1 pair and the conventional visible decays (e. Read More

We study the effect of theoretical and parametric uncertainties on the ability of future Higgs coupling measurements at the International Linear Collider (ILC) to reveal deviations from the Standard Model (SM). To quantify the impact of these uncertainties we plot Delta chi^2 = 25 contours for the deviations between the SM Higgs couplings and the light Higgs couplings in the mh-max benchmark scenario of the Minimal Supersymmetric Standard Model (MSSM). We consider the theoretical uncertainties in the SM Higgs decay partial widths and production cross section and the parametric uncertainties in the bottom and charm masses and the strong coupling alpha_s. Read More

**Authors:**U. Aglietti, A. Belyaev, S. Berge, A. Blum, R. Bonciani, J. Cammin, M. Carena, S. Chivukula, H. Davoudiasl, S. Dawson, G. Degrassi, A. Dominguez, J. Donini, T. Dorigo, B. J. Field, T. Hahn, T. Han, S. Heinemeyer, S. Hesselbach, G. -Y. Huang, I. Iashvilli, C. B. Jackson, T. Junk, S. -W. Lee, H. E. Logan, F. Maltoni, B. Mellado, S. Moretti, S. Mrenna, P. M. Nadolsky, F. I. Olness, W. Quayle, J. Rathsman, L. Reina, E. H. Simmons, A. Sopczak, A. Vicini, D. Wackeroth, C. E. M. Wagner, G. Weiglein, G. Weiglein, S. Willenbrock, S. L. Wu, C. P. Yuan

**Category:**High Energy Physics - Phenomenology

The search for Higgs bosons in both the standard model and its extensions is well under way at the Tevatron. As the integrated luminosity collected increases into the multiple inverse femptobarn range, these searches are becoming very interesting indeed. Meanwhile, the construction of the Large Hadron Collider (LHC) and its associated experiments at CERN are nearing completion. Read More

**Affiliations:**

^{1}Carleton U.

**Category:**High Energy Physics - Phenomenology

We report on two recent calculations of QCD corrections to neutralino annihilation cross sections: (1) the next-to-leading order corrections to chi chi -> g g, and (2) the contribution to the cross section for chi chi -> q qbar g arising from interference between the tree-level and loop-induced processes. Read More

We compute the cross section for chi chi -> q qbar g at order alpha_s^2/M_{squark}^6 arising from interference between the tree-level and loop-induced processes. This interference term is the same order in alpha_s as chi chi -> gg; for mass degenerate squarks M_{squark_R} = M_{squark_L} = M_{squark} we find v_{rel} sigma_{int} = [-2 m_{chi}^2 / 3 M_{squark}^2] v_{rel} sigma(chi chi -> gg). Read More

**Authors:**S. Kraml, E. Accomando, A. G. Akeroyd, E. Akhmetzyanova, J. Albert, A. Alves, N. Amapane, M. Aoki, G. Azuelos, S. Baffioni, A. Ballestrero, V. Barger, A. Bartl, P. Bechtle, G. Belanger, A. Belhouari, R. Bellan, A. Belyaev, P. Benes, K. Benslama, W. Bernreuther, M. Besancon, G. Bevilacqua, M. Beyer, M. Bluj, S. Bolognesi, M. Boonekamp, F. Borzumati, F. Boudjema, A. Brandenburg, T. Brauner, C. P. Buszello, J. M. Butterworth, M. Carena, D. Cavalli, G. Cerminara, S. Y. Choi, B. Clerbaux, C. Collard, J. A. Conley, A. Deandrea, S. De Curtis, R. Dermisek, A. De Roeck, G. Dewhirst, M. A. Diaz, J. L. Diaz-Cruz, D. D. Dietrich, M. Dolgopolov, D. Dominici, M. Dubinin, O. Eboli, J. Ellis, N. Evans, L. Fano, J. Ferland, S. Ferrag, S. P. Fitzgerald, H. Fraas, F. Franke, S. Gennai, I. F. Ginzburg, R. M. Godbole, T. Gregoire, G. Grenier, C. Grojean, S. B. Gudnason, J. F. Gunion, H. E. Haber, T. Hahn, T. Han, V. Hankele, C. Hays, S. Heinemeyer, S. Hesselbach, J. L. Hewett, K. Hidaka, M. Hirsch, W. Hollik, D. Hooper, J. Hosek, J. Hubisz, C. Hugonie, J. Kalinowski, S. Kanemura, V. Kashkan, T. Kernreiter, W. Khater, V. A. Khoze, W. Kilian, S. F. King, O. Kittel, G. Klamke, J. L. Kneur, C. Kouvaris, M. Krawczyk, P. Krstonosic, A. Kyriakis, P. Langacker, M. P. Le, H. -S. Lee, J. S. Lee, M. C. Lemaire, Y. Liao, B. Lillie, V. Litvin, H. E. Logan, B. McElrath, T. Mahmoud, E. Maina, C. Mariotti, P. Marquard, A. D. Martin, K. Mazumdar, D. J. Miller, P. Mine, K. Moenig, G. Moortgat-Pick, S. Moretti, M. M. Muhlleitner, S. Munir, R. Nevzorov, H. Newman, P. Niezurawski, A. Nikitenko, R. Noriega-Papaqui, Y. Okada, P. Osland, A. Pilaftsis, W. Porod, H. Przysiezniak, A. Pukhov, D. Rainwater, A. Raspereza, J. Reuter, S. Riemann, S. Rindani, T. G. Rizzo, E. Ros, A. Rosado, D. Rousseau, D. P. Roy, M. G. Ryskin, H. Rzehak, F. Sannino, E. Schmidt, H. Schroder, M. Schumacher, A. Semenov, E. Senaha, G. Shaughnessy, R. K. Singh, J. Terning, L. Vacavant, M. Velasco, A. Villanova del Moral, F. von der Pahlen, G. Weiglein, J. Williams, K. Williams, A. F. Zarnecki, D. Zeppenfeld, D. Zerwas, P. M. Zerwas, A. R. Zerwekh, J. Ziethe

There are many possibilities for new physics beyond the Standard Model that feature non-standard Higgs sectors. These may introduce new sources of CP violation, and there may be mixing between multiple Higgs bosons or other new scalar bosons. Alternatively, the Higgs may be a composite state, or there may even be no Higgs at all. Read More