H. C. Fu - Iowa

H. C. Fu
Are you H. C. Fu?

Claim your profile, edit publications, add additional information:

Contact Details

H. C. Fu

Pubs By Year

External Links

Pub Categories

Astrophysics of Galaxies (11)
Physics - Mesoscopic Systems and Quantum Hall Effect (9)
Computer Science - Computer Vision and Pattern Recognition (4)
Solar and Stellar Astrophysics (4)
High Energy Physics - Phenomenology (3)
Mathematics - Probability (3)
Physics - Materials Science (3)
Computer Science - Programming Languages (3)
Quantum Physics (3)
Physics - Strongly Correlated Electrons (2)
Computer Science - Cryptography and Security (2)
Computer Science - Data Structures and Algorithms (1)
Statistics - Applications (1)
Instrumentation and Methods for Astrophysics (1)
Mathematics - Numerical Analysis (1)
Mathematics - Combinatorics (1)
Nuclear Experiment (1)
Physics - Plasma Physics (1)
Computer Science - Graphics (1)
High Energy Physics - Theory (1)
Physics - Instrumentation and Detectors (1)
Physics - Space Physics (1)
Statistics - Methodology (1)

Publications Authored By H. C. Fu

We present Atacama Large Millimeter/submillimeter Array (ALMA) 870$\mu$m observations of 29 Herschel-selected submillimeter galaxies (SMGs) near QSO sightlines. We detect a total of 39 sources with 870$\mu$m flux densities between $0.7 < S_{870} < 15$ mJy in 27 of the 29 fields. Read More

We have theoretically investigated the influence of interface roughness on the scattering and mobility of electrons in thin quantum wells and cylindrical quantum wires both when electrons fill a single sub-band or many sub-bands. Mobilty is studied as a function of electron concentration and thickness of a quantum well $L$ or radius $R$ of a quantum wire. For quantum wires we studied two types of surface roughness, namely isotropically distributed random flat islands or craters of average diameter $d < R$ and atomic size height or depth $\Delta$, and cylindrically symmetric roughness where the radius varies with atomic size steps and an average distance $d$ between steps. Read More

How the solar corona is heated to high temperatures remains an unsolved mystery in solar physics. In the present study we analyse observations of 50 whole active-region loops taken with the Extreme-ultraviolet Imaging Spectrometer (EIS) on board the Hinode satellite. Eleven loops were classified as cool (<1 MK) and 39 as warm (1-2 MK) loops. Read More

Large-scale is a trend in person re-identification (re-id). It is important that real-time search be performed in a large gallery. While previous methods mostly focus on discriminative learning, this paper makes the attempt in integrating deep learning and hashing into one framework to evaluate the efficiency and accuracy for large-scale person re-id. Read More

We consider the problem of developing automated techniques for solving recurrence relations to aid the expected-runtime analysis of programs. Several classical textbook algorithms have quite efficient expected-runtime complexity, whereas the corresponding worst-case bounds are either inefficient (e.g. Read More

We study the problem of developing efficient approaches for proving worst-case bounds of non-deterministic recursive programs. Ranking functions are sound and complete for proving termination and worst-case bounds of nonrecursive programs. First, we apply ranking functions to recursion, resulting in measure functions. Read More

We theoretically investigate the chiral topological excitons emerging in the monolayer transition metal dichalcogenides, where a bulk energy gap of valley excitons is opened up by a position dependent external magnetic field. We find two emerging chiral topological nontrivial excitons states, which exactly connects to the bulk topological properties, i.e. Read More

A system of measuring total cross section for thermal neutrons,the photoneutron source (PNS, phase 1),has been developed for the acquisition of nuclear data from the Thorium Molten Salt Reactor(TMSR) at the Shanghai Institute of Applied Physics (SINAP). It is an electron LINAC accelerator pulsed neutron facility that uses the time-of-flight (TOF) technique. It is recording the neutron TOF and identifying neutrons and {\gamma}-rays by using a digital-signal-processing technique. Read More

In this paper, we study the $B \to K^*$ transition form factors (TFFs) within the QCD light-cone sum rules (LCSR) approach. Two correlators, i.e. Read More

Color theme or color palette can deeply influence the quality and the feeling of a photograph or a graphical design. Although color palettes may come from different sources such as online crowd-sourcing, photographs and graphical designs, in this paper, we consider color palettes extracted from fine art collections, which we believe to be an abundant source of stylistic and unique color themes. We aim to capture color styles embedded in these collections by means of statistical models and to build practical applications upon these models. Read More

Precision medicine is an emerging scientific topic for disease treatment and prevention that takes into account individual patient characteristics. It is an important direction for clinical research, and many statistical methods have been recently proposed. One of the primary goals of precision medicine is to obtain an optimal individual treatment rule (ITR), which can help make decisions on treatment selection according to each patient's specific characteristics. Read More

Induced from a 5/3 filling factor quantum Hall state in a single layer two-dimensional electron gas, unexpected even denominator plateaus quantized at (h/e^2)/(3/2) and (h/e^2)/(15/8) are observed under confinement. The quantum Hall plateaus develop below 300 mK at a local filling factor of 5/3, with a quantization of 0.04%. Read More

We report the discovery of a mysterious giant $H_{\alpha}$ blob that is $\sim 8$ kpc away from the main MaNGA target 1-24145, one component of a dry galaxy merger, identified in the first-year SDSS-IV MaNGA data. The size of the $H_{\alpha}$ blob is $\sim$ 3-4 kpc in radius, and the $H_{\alpha}$ distribution is centrally concentrated. However, there is no optical continuum counterpart in deep broadband images reaching $\sim$26. Read More

Mobile applications (apps) often transmit sensitive data through network with various intentions. Some transmissions are needed to fulfill the app's functionalities. However, transmissions with malicious receivers may lead to privacy leakage and tend to behave stealthily to evade detection. Read More

Connecting in-situ measured solar-wind plasma properties with typical regions on the Sun can provide an effective constraint and test to various solar wind models. We examine the statistical characteristics of the solar wind with an origin in different types of source regions. We find that the speed distribution of coronal hole (CH) wind is bimodal with the slow wind peaking at ~400 km/s and a fast at ~600 km/s. Read More

This article deals with the weak error for averaging principle for two-time-scale system of jump-diffusion stochastic differential equation. Under suitable conditions, it is proved that the rate of weak convergence to the averaged effective dynamics is of order $1$ via an asymptotic expansion approach. Read More

This article deals with the weak errors for averaging principle for a stochastic wave equation in a bounded interval $[0,L]$, perturbed by a oscillating term arising as the solution of a stochastic reaction-diffusion equation evolving with respect to the fast time. Under suitable conditions, it is proved that the rate of weak convergence to the averaged effective dynamics is of order $1$ via an asymptotic expansion approach. Read More

A previous formal derivation of the effective chiral Lagrangian for low-lying pseudoscalar mesons from first-principles QCD without approximations [Wang et al., Phys. Rev. Read More

Two-dimensional quantum spin Hall (QSH) insulators with reasonably wide band gaps are imperative for the development of various innovative technologies. Through systematic density functional calculations and tight-binding simulations, we found that stanene on {\alpha}-alumina surface may possess a sizeable topologically nontrivial band gap (~0.25 eV) at the {\Gamma} point. Read More

We study the termination problem for nondeterministic recursive probabilistic programs. First, we show that a ranking-supermartingales-based approach is both sound and complete for bounded terminiation (i.e. Read More

We present the results of combined deep Keck/NIRC2, HST/WFC3 near-infrared and Herschel far infrared observations of an extremely star forming dusty lensed galaxy identified from the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS J133542.9+300401). The galaxy is gravitationally lensed by a massive WISE identified galaxy cluster at $z\sim1$. Read More

We report the observations of an electron vortex magnetic hole corresponding to a new type of coherent structures in the magnetosheath turbulent plasma using the Magnetospheric Multiscale (MMS) mission data. The magnetic hole is characterized by a magnetic depression, a density peak, a total electron temperature increase (with a parallel temperature decrease but a perpendicular temperature increase), and strong currents carried by the electrons. The current has a dip in the center of the magnetic hole and a peak in the outer region of the magnetic hole. Read More

The control of the spin-Seebeck current is still a challenging task for the development of spin caloritronic devices. Here, we construct a spin-Seebeck device by inserting a strongly correlated quantum dot (QD) between the metal lead and magnetic insulator. Using the slave-particle approach and non-crossing approximation, we find that the spin-Seebeck effect increases significantly when the energy level of the QD locates near the Fermi level of the metal lead due to the enhancement of spin flipping and occurrences of quantum resonance. Read More

There is a trend to acquire high accuracy land-cover maps using multi-source classification methods, most of which are based on data fusion, especially pixel- or feature-level fusions. A probabilistic graphical model (PGM) approach is proposed in this research for 30 m resolution land-cover mapping with multi-temporal Landsat and MODerate Resolution Imaging Spectroradiometer (MODIS) data. Independent classifiers were applied to two single-date Landsat 8 scenes and the MODIS time-series data, respectively, for probability estimation. Read More

The human visual system excels at detecting local blur of visual images, but the underlying mechanism is mysterious. Traditional views of blur such as reduction in local or global high-frequency energy and loss of local phase coherence have fundamental limitations. For example, they cannot well discriminate flat regions from blurred ones. Read More

In this article, we investigate averaging principle for stochastic hyperbolic-parabolic equations with slow and fast time-scales, in which both the slow and fast components are perturbed by multiplicative noise. Particularly, we prove that the rate of strong convergence for the slow component to the averaged dynamics is of order 1/2. This extends the results for finite dimensional stochastic dynamical systems to the infinite dimension case. Read More

Some theories predict that the filling factor 5/2 fractional quantum Hall state can exhibit non-Abelian statistics, which makes it a candidate for fault-tolerant topological quantum computation. Although the non-Abelian Pfaffian state and its particle-hole conjugate, the anti-Pfaffian state, are the most plausible wave functions for the 5/2 state, there are a number of alternatives with either Abelian or non-Abelian statistics. Recent experiments suggest that the tunneling exponents are more consistent with an Abelian state rather than a non-Abelian state. Read More

We have studied the breakdown of the integer quantum Hall (QH) effect with fully broken symmetry, in an ultra-high mobility graphene device sandwiched between two single crystal hexagonal boron nitride substrates. The evolution and stabilities of the QH states are studied quantitatively through the nonlinear transport with dc Hall voltage bias. The mechanism of the QH breakdown in graphene and the movement of the Fermi energy with the electrical Hall field are discussed. Read More

We present a sample of 80 candidate strongly lensed galaxies with flux density above 100mJy at 500{\mu}m extracted from the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS), over an area of 600 square degrees. Available imaging and spectroscopic data allow us to confirm the strong lensing in 20 cases and to reject it in one case. For other 8 objects the lensing scenario is strongly supported by the presence of two sources along the same line of sight with distinct photometric redshifts. Read More

Galaxies grow through both internal and external processes. In about 10% of nearby red galaxies with little star formation, gas and stars are counter-rotating, demonstrating the importance of external gas acquisition in these galaxies. However, systematic studies of such phenomena in blue, star-forming galaxies are rare, leaving uncertain the role of external gas acquisition in driving evolution of blue galaxies. Read More

With the availability of large integral-field unit (IFU) spectral surveys of nearby galaxies, there is now the potential to extract spectral information from across the bulges and discs of galaxies in a systematic way. This information can address questions such as how these components built up with time, how galaxies evolve and whether their evolution depends on other properties of the galaxy such as its mass or environment. We present BUDDI, a new approach to fit the two-dimensional light profiles of galaxies as a function of wavelength to extract the spectral properties of these galaxies' discs and bulges. Read More

Single photons are very useful resources in quantum information science. In real applications it is often required that the photons have a well-defined spectral (or equivalently temporal) modal structure. For example, a rising exponential pulse is able to fully excite a two-level atom while a Gaussian pulse cannot. Read More

Various small-scale structures abound in the solar atmosphere above active regions, playing an important role in the dynamics and evolution therein. We report on a new class of small-scale transition region structures in active regions, characterized by strong emissions but extremely narrow Si IV line profiles as found in observations taken with the Interface Region Imaging Spectrograph (IRIS). Tentatively named as Narrow-line-width UV bursts (NUBs), these structures are located above sunspots and comprise of one or multiple compact bright cores at sub-arcsecond scales. Read More

When a three-dimensional electron gas is subjected to a very strong magnetic field, it can reach a quasi-one-dimensional state in which all electrons occupy the lowest Landau level. This state is referred to as the extreme quantum limit (EQL) and has been studied in the physics of pulsars and bulk semiconductors. Here we present a theory of the EQL phase in electron accumulation layers created by an external electric field $E$ at the surface of a semiconductor with a large Bohr radius such as InSb, PbTe, SrTiO$_3$ (STO), and particularly in the LaAlO$_3$/SrTiO$_3$ (LAO/STO) heterostructure. Read More

Authors: SDSS Collaboration, Franco D. Albareti, Carlos Allende Prieto, Andres Almeida, Friedrich Anders, Scott Anderson, Brett H. Andrews, Alfonso Aragon-Salamanca, Maria Argudo-Fernandez, Eric Armengaud, Eric Aubourg, Vladimir Avila-Reese, Carles Badenes, Stephen Bailey, Beatriz Barbuy, Kat Barger, Jorge Barrera-Ballesteros, Curtis Bartosz, Sarbani Basu, Dominic Bates, Giuseppina Battaglia, Falk Baumgarten, Julien Baur, Julian Bautista, Timothy C. Beers, Francesco Belfiore, Matthew Bershady, Sara Bertran de Lis, Jonathan C. Bird, Dmitry Bizyaev, Guillermo A. Blanc, Michael Blanton, Michael Blomqvist, Adam S. Bolton, J. Borissova, Jo Bovy, William Nielsen Brandt, Jonathan Brinkmann, Joel R. Brownstein, Kevin Bundy, Etienne Burtin, Nicolas G. Busca, Hugo Orlando Camacho Chavez, M. Cano Diaz, Michele Cappellari, Ricardo Carrera, Yanping Chen, Brian Cherinka, Edmond Cheung, Cristina Chiappini, Drew Chojnowski, Chia-Hsun Chuang, Haeun Chung, Rafael Fernando Cirolini, Nicolas Clerc, Roger E. Cohen, Julia M. Comerford, Johan Comparat, Marie-Claude Cousinou, Kevin Covey, Jeffrey D. Crane, Rupert Croft, Katia Cunha, Luiz da Costa, Gabriele da Silva Ilha, Jeremy Darling, James W. Davidson Jr., Kyle Dawson, Nathan De Lee, Axel de la Macorra, Sylvain de la Torre, Alice Deconto Machado, Timothee Delubac, Aleksandar M. Diamond-Stanic, John Donor, Juan Jose Downes, Niv Drory, Helion du Mas des Bourboux, Cheng Du, Tom Dwelly, Garrett Ebelke, Arthur Eigenbrot, Daniel J. Eisenstein, Yvonne P. Elsworth, Eric Emsellem, Michael Eracleous, Stephanie Escoffier, Michael L. Evans, Jesus Falcon-Barroso, Xiaohui Fan, Ginevra Favole, Emma Fernandez-Alvar, J. G. Fernandez-Trincado, Diane Feuillet, Scott W. Fleming, Andreu Font-Ribera, Gordon Freischlad, Peter Frinchaboy, Hai Fu, Yang Gao, D. A. Garcia-Hernandez, Ana E. Garcia Perez, Rafael A. Garcia, R. Garcia-Dias, Patrick Gaulme, Junqiang Ge, Douglas Geisler, Hector Gil Marin, Bruce Gillespie, Leo Girardi, Daniel Goddard, Yilen Gomez Maqueo Chew, Violeta Gonzalez-Perez, Kathleen Grabowski, Paul Green, Catherine J. Grier, Thomas Grier, Hong Guo, Julien Guy, Alex Hagen, Matt Hall, Paul Harding, R. E. Harley, Sten Hasselquist, Suzanne Hawley, Christian R. Hayes, Fred Hearty, Saskia Hekker, Hector Hernandez Toledo, Shirley Ho, David W. Hogg, Kelly Holley-Bockelmann, Jon A. Holtzman, Parker H. Holzer, Jian Hu, Daniel Huber, Timothy Alan Hutchinson, Ho Seong Hwang, Hector J. Ibarra-Medel, Inese I. Ivans, KeShawn Ivory, Kurt Jaehnig, Trey W. Jensen, Jennifer A. Johnson, Amy Jones, Eric Jullo, T. Kallinger, Karen Kinemuchi, David Kirkby, Mark Klaene, Jean-Paul Kneib, Juna A. Kollmeier, Ivan Lacerna, Richard R. Lane, Dustin Lang, Pierre Laurent, David R. Law, Jean-Marc Le Goff, Alexie Leauthaud, Cheng Li, Ran Li, Chen Li, Niu Li, Fu-Heng Liang, Yu Liang, Marcos Lima, Lihwai Lin, Lin Lin, Yen-Ting Lin, Dan Long, Sara Lucatello, Nicholas MacDonald, Chelsea L. MacLeod, J. Ted Mackereth, Suvrath Mahadevan, Marcio Antonio-Geimba Maia, Roberto Maiolino, Steven R. Majewski, Olena Malanushenko, Nicolas Dullius Mallmann, Arturo Manchado, Claudia Maraston, Rui Marques-Chaves, Inma Martinez Valpuesta, Karen L. Masters, Savita Mathur, Ian D. McGreer, Andrea Merloni, Michael R. Merrifield, Szabolcs Meszaros, Andres Meza, Andrea Miglio, Ivan Minchev, Karan Molaverdikhani, Antonio D. Montero-Dorta, Benoit Mosser, Demitri Muna, Adam Myers, Preethi Nair, Kirpal Nandra, Melissa Ness, Jeffrey A. Newman, Robert C. Nichol, David L. Nidever, Christian Nitschelm, Julia O'Connell, Audrey Oravetz, Nelson Padilla, Nathalie Palanque-Delabrouille, Kaike Pan, John Parejko, Isabelle Paris, John A. Peacock, Sebastien Peirani, Marcos Pellejero-Ibanez, Samantha Penny, Will J. Percival, Jeffrey W. Percival, Ismael Perez-Fournon, Patrick Petitjean, Matthew Pieri, Marc H. Pinsonneault, Alice Pisani, Francisco Prada, Abhishek Prakash, Natalie Price-Jones, M. Jordan Raddick, Mubdi Rahman, Anand Raichoor, Sandro Barboza Rembold, A. M. Reyna, James Rich, Hannah Richstein, Jethro Ridl, Rogerio Riffel, Rogemar A. Riffel, Hans-Walter Rix, Annie C. Robin, Constance M. Rockosi, Sergio Rodriguez-Torres, Thaise S. Rodrigues, Natalie Roe, A. Roman Lopes, Carlos Roman-Zuniga, Ashley J. Ross, Graziano Rossi, John Ruan, Rossana Ruggeri, Jessie C. Runnoe, Salvador Salazar-Albornoz, Mara Salvato, Ariel G. Sanchez, Sebastian F. Sanchez, Jose R. Sanchez-Gallego, Basilio Xavier Santiago, Ricardo Schiavon, Jaderson S. Schimoia, Eddie Schlafly, David J. Schlegel, Donald P. Schneider, Ralph Schoenrich, Mathias Schultheis, Axel Schwope, Hee-Jong Seo, Aldo Serenelli, Branimir Sesar, Zhengyi Shao, Matthew Shetrone, Michael Shull, Victor Silva Aguirre, M. F. Skrutskie, Anže Slosar, Michael Smith, Verne V. Smith, Jennifer Sobeck, Garrett Somers, Diogo Souto, David V. Stark, Keivan G. Stassun, Matthias Steinmetz, Dennis Stello, Thaisa Storchi Bergmann, Michael A. Strauss, Alina Streblyanska, Guy S. Stringfellow, Genaro Suarez, Jing Sun, Manuchehr Taghizadeh-Popp, Baitian Tang, Charling Tao, Jamie Tayar, Mita Tembe, Daniel Thomas, Jeremy Tinker, Rita Tojeiro, Christy Tremonti, Nicholas Troup, Jonathan R. Trump, Eduardo Unda-Sanzana, O. Valenzuela, Remco van den Bosch, Mariana Vargas-Magana, Jose Alberto Vazquez, Sandro Villanova, M. Vivek, Nicole Vogt, David Wake, Rene Walterbos, Yuting Wang, Enci Wang, Benjamin Alan Weaver, Anne-Marie Weijmans, David H. Weinberg, Kyle B. Westfall, David G. Whelan, Eric Wilcots, Vivienne Wild, Rob A. Williams, John Wilson, W. M. Wood-Vasey, Dominika Wylezalek, Ting Xiao, Renbin Yan, Meng Yang, Jason E. Ybarra, Christophe Yeche, Fang-Ting Yuan, Nadia Zakamska, Olga Zamora, Gail Zasowski, Kai Zhang, Cheng Zhao, Gong-Bo Zhao, Zheng Zheng, Zheng Zheng, Zhi-Min Zhou, Guangtun Zhu, Joel C. Zinn, Hu Zou

The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) began observations in July 2014. It pursues three core programs: APOGEE-2, MaNGA, and eBOSS. In addition, eBOSS contains two major subprograms: TDSS and SPIDERS. Read More

The MaNGA Survey (Mapping Nearby Galaxies at Apache Point Observatory) is one of three core programs in the Sloan Digital Sky Survey IV. It is obtaining integral field spectroscopy (IFS) for 10K nearby galaxies at a spectral resolution of R~2000 from 3,622-10,354A. The design of the survey is driven by a set of science requirements on the precision of estimates of the following properties: star formation rate surface density, gas metallicity, stellar population age, metallicity, and abundance ratio, and their gradients; stellar and gas kinematics; and enclosed gravitational mass as a function of radius. Read More

Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) is an optical fiber-bundle integral-field unit (IFU) spectroscopic survey that is one of three core programs in the fourth-generation Sloan Digital Sky Survey (SDSS-IV). With a spectral coverage of 3622 - 10,354 Angstroms and an average footprint of ~ 500 arcsec^2 per IFU the scientific data products derived from MaNGA will permit exploration of the internal structure of a statistically large sample of 10,000 low redshift galaxies in unprecedented detail. Comprising 174 individually pluggable science and calibration IFUs with a near-constant data stream, MaNGA is expected to obtain ~ 100 million raw-frame spectra and ~ 10 million reduced galaxy spectra over the six-year lifetime of the survey. Read More

Affiliations: 1Gemini Observatory Chile, 2Arizona State University, 3Gemini Observatory Chile, 4University of Iowa, 5Australian National University, 6University of Alabama, 7Harvard-Smithsonian Center for Astrophysics, 8California Polytechnic State University, 9Harvard-Smithsonian Center for Astrophysics, 10Gemini Observatory Chile

We report the discovery of 14 Lyman-alpha blobs (LABs) at z~0.3, existing at least 4-7 billion years later in the Universe than all other LABs known. Their optical diameters are 20-70 kpc, and GALEX data imply Ly-alpha luminosities of (0. Read More

We revisit the $\rho$-meson longitudinal leading-twist distribution amplitude (DA) $\phi_{2;\rho}^\|$ by using the QCD sum rules approach within the background field theory. To improve the accuracy of the sum rules for its moments $\langle\xi_{n;\rho}^\|\rangle$, we include the next-to-leading order QCD correction to the perturbative part and keep all non-perturbative condensates up to dimension-six consistently within the background field theory. The first two moments read $\langle \xi_{2;\rho}^\| \rangle|_{1{\rm GeV}} = 0. Read More

We present the first results from an on-going survey to characterize the circumgalactic medium (CGM) of the massive high-redshift galaxies detected as submillimeter galaxies (SMGs). We constructed a parent sample of 163 SMG-QSO pairs with separations less than $\sim$36 arcsec by cross-matching far-infrared-selected galaxies from Herschel with spectroscopically confirmed QSOs. The Herschel sources were selected to match the properties of SMGs. Read More

Emergence of ferromagnetism in non-magnetic semiconductors is strongly desirable, especially in topological materials thanks to the possibility to achieve quantum anomalous Hall effect. Based on first-principles calculations, we propose that for Si thin film grown on metal substrate, the pristine Si(111)-root3xroot3 surface with a spontaneous weak reconstruction has a strong tendency of ferromagnetism and nontrivial topological properties, characterized by spin polarized Dirac-fermion surface states. In contrast to conventional routes relying on introduction of alien charge carriers or specially patterned substrates, the spontaneous magnetic order and spin-orbit coupling on the pristine silicon surface together gives rise to quantized anomalous Hall effect with a finite Chern number C=-1. Read More

In this paper, a reduced-order model (ROM) based on the proper orthogonal decomposition and the discrete empirical interpolation method is proposed for efficiently simulating time-fractional partial differential equations (TFPDEs). Both linear and nonlinear equations are considered. We demonstrate the effectiveness of the ROM by several numerical examples, in which the ROM achieves the same accuracy of the full-order model (FOM) over a long-term simulation while greatly reducing the computational cost. Read More

To fully deploy the potential of semiconductor nanocrystal films as low-cost electronic materials, a better understanding of the amount of dopants required to make their conductivity metallic is needed. In bulk semiconductors, the critical concentration of electrons at the metal-insulator transition is described by the Mott criterion. Here, we theoretically derive the critical concentration $n_c$ for films of heavily doped nanocrystals devoid of ligands at their surface and in direct contact with each other. Read More

Based on recently synthesized Ni3C12S12 class 2D metal-organic frameworks, we predict electronic properties of M3C12S12 and M3C12O12, where M is Zn, Cd, Hg, Be, or Mg with no M orbital contributions to bands near Fermi level. For M3C12S12, their band structures exhibit double Dirac cones with different Fermi velocities that are n and p type, respectively, which are switchable by few-percent strain. The crossing of two cones are symmetry-protected to be non-hybridizing, leading to two independent channels in 2D node-line semimetals at the same k-point akin to spin-channels in spintronics, rendering conetronics device possible. Read More

Laser cooling is a fundamental technique used in primary atomic frequency standards, quantum computers, quantum condensed matter physics and tests of fundamental physics, among other areas. It has been known since the early 1990s that laser cooling can, in principle, be improved by using squeezed light as an electromagnetic reservoir; while quantum feedback control using a squeezed light probe is also predicted to allow improved cooling. Here, we implement quantum feedback control of a micro-mechanical oscillator for the first time with a squeezed probe field. Read More

We present two schemes for joint remote preparation of an arbitrary four-qubit j\c{hi}i -type entangled state via three three- and (N+1)-qubit GHZ states as the quantum channel, respectively. In these schemes, two senders (or N senders) share the original state which they wish to help the receiver to remotely prepare. To complete the JRSP schemes, several novel sets of mutually orthogonal basis vectors are introduced. Read More

A spanning tree of a properly edge-colored complete graph, $K_n$, is rainbow provided that each of its edges receives a distinct color. In 1996, Brualdi and Hollingsworth conjectured that if $K_{2m}$ is properly $(2m-1)$-edge-colored, then the edges of $K_{2m}$ can be partitioned into $m$ rainbow spanning trees except when $m=2$. In 2000, Krussel et al. Read More

The exponential growth of mobile devices has raised concerns about sensitive data leakage. In this paper, we make the first attempt to identify suspicious location-related HTTP transmission flows from the user's perspective, by answering the question: Is the transmission user-intended? In contrast to previous network-level detection schemes that mainly rely on a given set of suspicious hostnames, our approach can better adapt to the fast growth of app market and the constantly evolving leakage patterns. On the other hand, compared to existing system-level detection schemes built upon program taint analysis, where all sensitive transmissions as treated as illegal, our approach better meets the user needs and is easier to deploy. Read More

We study the low temperature conductivity of the electron accumulation layer induced by the very strong electric field at the surface of $\text{SrTiO}_3$ sample. Due to the strongly nonlinear lattice dielectric response, the three-dimensional density of electrons $n(x)$ in such a layer decays with the distance from the surface $x$ very slowly as $n(x) \propto 1/x^{12/7}$. We show that when the mobility is limited by the surface scattering the contribution of such a tail to the conductivity diverges at large $x$ because of growing time electrons need to reach the surface. Read More