H. Berger - Ecole Polytechnique Federale de Lausanne

H. Berger
Are you H. Berger?

Claim your profile, edit publications, add additional information:

Contact Details

Name
H. Berger
Affiliation
Ecole Polytechnique Federale de Lausanne
City
Lausanne
Country
Switzerland

Pubs By Year

Pub Categories

 
Physics - Materials Science (28)
 
Physics - Strongly Correlated Electrons (23)
 
Physics - Mesoscopic Systems and Quantum Hall Effect (9)
 
Physics - Superconductivity (8)
 
Physics - Other (1)

Publications Authored By H. Berger

We report magnetic and thermodynamic properties of a $4d^1$ (Mo$^{5+}$) magnetic insulator MoOPO$_4$ single crystal, which realizes a $J_1$-$J_2$ Heisenberg spin-$1/2$ model on a stacked square lattice. The specific-heat measurements show a magnetic transition at 16 K which is also confirmed by magnetic susceptibility, ESR, and neutron diffraction measurements. Magnetic entropy deduced from the specific heat corresponds to a two-level degree of freedom per Mo$^{5+}$ ion, and the effective moment from the susceptibility corresponds to the spin-only value. Read More

2017May
Affiliations: 1Institute of Physics, Zagreb, Croatia, 2Institute of Physics, Zagreb, Croatia, 3Department of Physics, Faculty of Science, University of Zagreb, Zagreb, Croatia, 41. Physikalisches Institut, Universität Stuttgart, Stuttgart, Germany, 5Ecole Polytechnique Fédérale de Lausanne, LPMC, Lausanne, Switzerland, 6Ecole Polytechnique Fédérale de Lausanne, LPMC, Lausanne, Switzerland, 71. Physikalisches Institut, Universität Stuttgart, Stuttgart, Germany, 8Institute of Physics, Zagreb, Croatia, 9Institute of Physics, Zagreb, Croatia

The controversy regarding the precise nature of the high-temperature phase of 1T-TiSe2 lasts for decades. It has intensified in recent times when new evidence for the excitonic origin of the low-temperature charge-density wave state started to unveil. Here we address the problem of the high-temperature phase through precise measurements and detailed analysis of the optical response of 1T-TiSe2 single crystals. Read More

Chiral magnets with topologically nontrivial spin order such as Skyrmions have generated enormous interest in both fundamental and applied sciences. We report broadband microwave spectroscopy performed on the insulating chiral ferrimagnet Cu$_{2}$OSeO$_{3}$. For the damping of magnetization dynamics we find a remarkably small Gilbert damping parameter of about $1\times10^{-4}$ at 5 K. Read More

We present results from light scattering experiments on three insulating antiferromagnetic cuprates, YBa$_2$Cu$_3$O$_{6.05}$, Bi$_2$Sr$_2$YCu$_2$O$_{8+\delta}$, and La$_2$CuO$_4$ as a function of polarization and excitation energy. The spectral shape in $B_{1g}$ symmetry is found to be nearly universal and independent of the excitation energy. Read More

Linear dichroism -- the polarization dependent absorption of electromagnetic waves -- is routinely exploited in applications as diverse as structure determination of DNA or polarization filters in optical technologies. Here filamentary absorbers with a large length-to-width ratio are a prerequisite. For magnetization dynamics in the few GHz frequency regime strictly linear dichroism was not observed for more than eight decades. Read More

We present a detailed study of the phase diagram of copper intercalated TiSe$_2$ single crystals, combining local Hall-probe magnetometry, tunnel diode oscillator technique (TDO), specific heat and angle-resolved photoemission spectroscopy measurements. A series of the Cu$_x$TiSe$_2$ samples from three different sources with various copper content $x$ and superconducting critical temperatures $T_c$ have been investigated. We first show that the vortex penetration mechanism is dominated by geometrical barriers enabling a precise determination of the lower critical field, $H_{c1}$. Read More

The chiral magnet Cu$_{2}$OSeO$_{3}$ hosts a skyrmion lattice, that may be equivalently described as a superposition of plane waves or lattice of particle-like topological objects. A thermal gradient may break up the skyrmion lattice and induce rotating domains raising the question which of these scenarios better describes the violent dynamics at the domain boundaries. Here we show that in an inhomogeneous temperature gradient caused by illumination in a Lorentz Transmission Electron Microscope different parts of the skyrmion lattice can be set into motion with different angular velocities. Read More

We report a single-crystal neutron diffraction and inelastic neutron scattering study on the spin 1/2 cuprate Cu$_3$Bi(SeO$_3$)$_2$O$_2$Cl, complemented by dielectric and electric polarization measurements. The study clarifies a number of open issues concerning this complex material, whose frustrated interactions on a kagome-like lattice, combined with Dzyaloshinskii-Moriya interactions, are expected to stabilize an exotic canted antiferromagnetic order. In particular, we determine the nature of the structural transition occurring at 115 K, the magnetic structure below 25 K resolved in the updated space group, and the microscopic ingredients at the origin of this magnetic arrangement. Read More

We report measurements of Shubnikov-de Haas oscillations in the giant Rashba semiconductor BiTeCl under applied pressures up to ~2.5 GPa. We observe two distinct oscillation frequencies, corresponding to the Rashba-split inner and outer Fermi surfaces. Read More

Materials where the electron filling is close to commensurate filling provide one of the great challenges in materials science. Several proposals of unconventional orderings, where the electronic liquid self-organizes into components with distinct properties, were recently put forward, in particular in cuprates and pnictides where electronic nematic orders have been observed. The electrons self-organization is expected to yield complex intra and inter unit cell patterns, and a reduction of dimensionality. Read More

Nanoscale chiral skyrmions in noncentrosymmetric helimagnets are promising binary state variables in high-density, low-energy nonvolatile memory. Skyrmions are ubiquitous as an ordered, single-domain lattice phase, which makes it difficult to write information unless they are spatially broken up into smaller units, each representing a bit. Thus, the formation and manipulation of skyrmion lattice domains is a prerequisite for memory applications. Read More

At ambient pressure, BiTeI is the first material found to exhibit a giant Rashba splitting of the bulk electronic bands. At low pressures, BiTeI undergoes a transition from trivial insulator to topological insulator. At still higher pressures, two structural transitions are known to occur. Read More

High-resolution angle-resolved photoemission spectroscopy (ARPES) data reveal evidence of a crossover from one-dimensional (1D) to three-dimensional (3D) behavior in the prototypical charge density wave (CDW) material NbSe3. In the low-temperature 3D regime, gaps in the electronic structure are observed due to two incommensurate CDWs, in agreement with x-ray diffraction and electronic-structure calculations. At higher temperatures we observe a spectral weight depletion that approaches the power-law behavior expected in 1D. Read More

Using time- and angle-resolved photoemission spectroscopy with selective near- and mid-infrared photon excitations, we investigate the femtosecond dynamics of the charge density wave (CDW) phase in 1$T$-TiSe$_2$, as well as the dynamics of CDW fluctuations at 240 K. In the CDW phase, we observe the coherent oscillation of the CDW amplitude mode. At 240 K, we single out an ultrafast component in the recovery of the CDW correlations, which we explain as the manifestation of electron-hole correlations. Read More

We here report a detailed high-pressure infrared transmission study of BiTeCl and BiTeBr. We follow the evolution of two band transitions: the optical excitation $\beta$ between two Rashba-split conduction bands, and the absorption $\gamma$ across the band gap. In the low pressure range, $p< 4$~GPa, for both compounds $\beta$ is approximately constant with pressure and $\gamma$ decreases, in agreement with band structure calculations. Read More

In Ti-intercalated self-doped $1T$-TiSe$_2$ crystals, the charge density wave (CDW) superstructure induces two nonequivalent sites for Ti dopants. Recently, it has been shown that increasing Ti doping dramatically influences the CDW by breaking it into phase-shifted domains. Here, we report scanning tunneling microscopy and spectroscopy experiments that reveal a dopant-site dependence of the CDW gap. Read More

We investigate the spin-stripe mechanism responsible for the peculiar nanometer modulation of the incommensurate magnetic order that emerges between the vector-chiral and the spin-density-wave phase in the frustrated zigzag spin-1/2 chain compound $\beta$-TeVO$_4$. A combination of magnetic-torque, neutron-diffraction and spherical-neutron-polarimetry measurements is employed to determine the complex magnetic structures of all three ordered phases. Based on these results, we develop a simple phenomenological model, which exposes the exchange anisotropy as the key ingredient for the spin-stripe formation in frustrated spin systems. Read More

The complex electronic properties of $\mathrm{ZrTe_5}$ have recently stimulated in-depth investigations that assigned this material to either a topological insulator or a 3D Dirac semimetal phase. Here we report a comprehensive experimental and theoretical study of both electronic and structural properties of $\mathrm{ZrTe_5}$, revealing that the bulk material is a strong topological insulator (STI). By means of angle-resolved photoelectron spectroscopy, we identify at the top of the valence band both a surface and a bulk state. Read More

We use a combination of experimental techniques to demonstrate a general occurrence of spin-orbit interaction (SOI) in graphene on transition metal dichalcogenide (TMD) substrates. Our measurements indicate that SOI is ultra-strong and extremely robust, despite it being merely interfacially-induced, with neither graphene nor the TMD substrates changing their structure. This is found to be the case irrespective of the TMD material used, of the transport regime, of the carrier type in the graphene band, and of the thickness of the graphene multilayer. Read More

Magnetic skyrmions in chiral magnets are nanoscale, topologically-protected magnetization swirls that are promising candidates for spintronics memory carriers. Therefore, observing and manipulating the skyrmion state on the surface level of the materials are of great importance for future applications. Here, we report a controlled way of creating a multidomain skyrmion state near the surface of a Cu$_{2}$OSeO$_{3}$ single crystal, observed by soft resonant elastic x-ray scattering. Read More

We report the study of the skyrmion state near the surface of Cu$_2$OSeO$_3$ using soft resonant elastic x-ray scattering (REXS) at the Cu $L_3$ edge. Within the lateral sampling area of $200 \times 200$ $\mu$m$^2$, we found a long-range-ordered skyrmion lattice phase as well as the formation of skyrmion domains via the multiple splitting of the diffraction spots. In a recent REXS study of the skyrmion phase of Cu$_2$OSeO$_3$ [Phys. Read More

Recent experimental advances in atomically thin transition metal dichalcogenide (TMD) metals have unveiled a range of interesting phenomena including the coexistence of charge-density-wave (CDW) order and superconductivity down to the monolayer limit. The atomic thickness of two-dimensional (2D) TMD metals also opens up the possibility for control of these electronic phase transitions by electrostatic gating. Here we demonstrate reversible tuning of superconductivity and CDW order in model 2D TMD metal NbSe$_2$ by an ionic liquid gate. Read More

A new type of Weyl semimetal state, in which the energy values of Weyl nodes are not the local extrema, has been theoretically proposed recently, namely type II Weyl semimetal. Distinguished from type I semimetal (e.g. Read More

We examine the experimental and theoretical electron-energy loss spectra in 2$H$-Cu$_{0.2}$NbS$_2$ and find that the 1 eV plasmon in this material does not exhibit the regular positive quadratic plasmon dispersion that would be expected for a normal broad-parabolic-band system. Instead we find a nearly non-dispersing plasmon in the momentum-transfer range $q<0. Read More

Recently, the switching between the different charge-ordered phases of 1T-TaS2 has been probed by ultrafast techniques, revealing unexpected phenomena such as "hidden" metastable states and peculiar photoexcited charge patterns. Here, we apply broadband pump-probe spectroscopy with varying excitation energy to study the ultrafast optical properties of 1T-TaS2 in the visible regime. By scanning the excitation energy in the near-IR region we unravel the coupling between different charge excitations and the low-lying charge-density wave state. Read More

The impact of variable Ti self-doping on the 1T-TiSe2 charge density wave (CDW) is studied by scanning tunneling microscopy. Supported by density functional theory we show that agglomeration of intercalated-Ti atoms acts as preferential nucleation centers for the CDW that breaks up in phaseshifted CDW domains whose size directly depends on the intercalated-Ti concentration and which are separated by atomically-sharp phase boundaries. The close relationship between the diminution of the CDW domain size and the disappearance of the anomalous peak in the temperature dependent resistivity allows to draw a coherent picture of the 1T-TiSe2 CDW phase transition and its relation to excitons. Read More

Isotropic and anisotropic magnetic behavior of the frustrated spin chain compound $\beta$-TeVO$_4$ is reported. Three magnetic transitions observed in zero magnetic field are tracked in fields applied along different crystallographic directions using magnetization, heat capacity, and magnetostriction measurements. Qualitatively different temperature-field diagrams are obtained below 10 T for the field applied along $a$ or $b$ and along $c$, respectively. Read More

We report on the temperature dependence of the $ZrTe_5$ electronic properties, studied at equilibrium and out of equilibrium, by means of time and angle resolved photoelectron spectroscopy. Our results unveil the dependence of the electronic band structure across the Fermi energy on the sample temperature. This finding is regarded as the dominant mechanism responsible for the anomalous resistivity observed at T* $\sim$ 160 K along with the change of the charge carrier character from holelike to electronlike. Read More

Bound electronic excitations play a major role in the electrodynamics of insulators and are typically described by the concept of Wannier-Mott and Frenkel excitons. The former represent hydrogenic electron-hole pairs delocalized over several unit cells of a crystal and they occur in materials with high dielectric constant; the latter correspond to a correlated electron-hole pair localized on a single lattice site and they mostly prevail in molecular solids. Between these two extremes, an intermediate type of excitons exists, typically referred to as charge-transfer excitons. Read More

When thinned down to the atomic scale, many layered van der Waals materials exhibit an interesting evolution of their electronic properties, whose main aspects can be accounted for by changes in the single-particle band structure. Phenomena driven by interactions are also observed, but identifying experimentally systematic trends in their thickness dependence is challenging. Here, we explore the evolution of gate-induced superconductivity in exfoliated MoS2 multilayers ranging from bulk-like to individual monolayers. Read More

The recent discovery of magnetic skyrmion lattices initiated a surge of interest in the scientific community. Several novel phenomena have been shown to emerge from the interaction of conducting electrons with the skyrmion lattice, such as a topological Hall-effect and a spin-transfer torque at ultra-low current densities. In the insulating compound Cu2OSeO3, magneto-electric coupling enables control of the skyrmion lattice via electric fields, promising a dissipation-less route towards novel spintronic devices. Read More

Using a new variant of photoelectron spectroscopy, we measure the homogeneous near-nodal pairing ($\Delta$) and pair-breaking self-energy ($\Gamma_S$) processes for a wide range of doping levels of Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$. For all samples we find that the pairing extends above the superconducting transition T$_c$ to a scale T$_{Pair}$ that is distinct from the antinodal pseudogap scale T$^*$ and near but slightly above T$_c$. We find that $\Delta$ and T$_{Pair}$ are related with a strong coupling ratio 2$\Delta$ /k$_B$T$_{Pair}\approx6$ across the entire doping phase diagram, i. Read More

Interfacial interactions allow the electronic properties of graphene to be modified, as recently demonstrated by the appearance of satellite Dirac cones in the band structure of graphene on hexagonal boron nitride (hBN) substrates. Ongoing research strives to explore interfacial interactions in a broader class of materials in order to engineer targeted electronic properties. Here we show that at an interface with a tungsten disulfide (WS2) substrate, the strength of the spin-orbit interaction (SOI) in graphene is very strongly enhanced. Read More

Two-dimensional transition metal dichalcogenides with strong spin-orbit interactions and valley-dependent Berry curvature effects have attracted tremendous recent interests. Although novel single-particle and excitonic phenomena related to spin-valley coupling have been extensively studied, effects of spin-momentum locking on collective quantum phenomena remain unexplored. Here we report an observation of superconducting monolayer NbSe$_2$ with an in-plane upper critical field over six times of the Pauli paramagnetic limit by magneto-transport measurements. Read More

Two-dimensional (2D) atomic materials possess very different properties from their bulk counterparts. While changes in the single-particle electronic properties have been extensively investigated, modifications in the many-body collective phenomena in the exact 2D limit, where interaction effects are strongly enhanced, remain mysterious. Here we report a combined optical and electrical transport study on the many-body collective-order phase diagram of 2D NbSe$_2$. Read More

We present an experimental study of macroscopic and microscopic magnetic anisotropy of a spin tetramer system \cso using torque magnetometry and ESR spectroscopy. Large rotation of macroscopic magnetic axes with temperature observed from torque magnetometry agrees reasonably well with the rotation of the $\mathbf{g}$ tensor above $T \gtrsim 50$~K. Below 50~K, the $\mathbf{g}$ tensor is temperature independent, while macroscopic magnetic axes continue to rotate. Read More

Motifs of periodic modulations are encountered in a variety of natural systems, where at least two rival states are present. In strongly correlated electron systems such behaviour has typically been associated with competition between short- and long-range interactions, e.g. Read More

Insulating helimagnetic Cu2OSeO3 shows sizeable magnetoelectric effects in its skyrmion phase. Using magnetization measurements, magneto-current analysis and dielectric spectroscopy, we provide a thorough investigation of magnetoelectric coupling, polarization and dielectric constants of the ordered magnetic and polar phases of single-crystalline Cu2OSeO3 in external magnetic fields up to 150 mT and at temperatures below 60 K. From these measurements we construct a detailed phase diagram. Read More

We present a detailed low temperature scanning tunneling microscopy study of the commensurate charge density wave (CDW) in 1$T$-TiSe$_2$ in the presence of single atom defects. We find no significant modification of the CDW lattice in single crystals with native defects concentrations where some bulk probes already measure substantial reductions in the CDW phase transition signature. Systematic analysis of STM micrographs combined with density functional theory modelling of atomic defect patterns indicate that the observed CDW modulation lies in the Se surface layer. Read More

We report resistivity, thermoelectric power and thermal conductivity of MoS2 single crystals prepared by chemical vapour transport (CVT) method using I2, Br2 and TeCl4 as transport agents. The material presents low-lying donor and acceptor levels, which dominate the in-plane charge transport. Intercalates into the Van der Waals gap strongly influence the inter-plane resistivity. Read More

We investigate transport through ionic liquid gated field effect transistors (FETs) based on exfoliated crystals of semiconducting WS$_2$. Upon electron accumulation, at surface densities close to -or just larger than- 10$^{14}$ cm$^{-2}$, transport exhibits metallic behavior, with the surface resistivity decreasing pronouncedly upon cooling. A detailed characterization as a function of temperature and magnetic field clearly shows the occurrence of a gate-induced superconducting transition below a critical temperature $T_c \approx 4$ K, a finding that represents the first demonstration of superconductivity in tungsten-based semiconducting transition metal dichalcogenides. Read More

We present a detailed study of the phase diagram surrounding the skyrmion lattice (SkL) phase of Cu2OSe2O3 using high-precision magnetic ac susceptibility measurements. An extensive investigation of transition dynamics around the SkL phase using the imaginary component of the susceptibility revealed that at the conical-to-SkL transition a broad dissipation region exists with a complex frequency dependence. The analysis of the observed behavior within the SkL phase indicates a distribution of relaxation times intrinsically related to SkL. Read More

Low-dimensional electron systems, as realized naturally in graphene or created artificially at the interfaces of heterostructures, exhibit a variety of fascinating quantum phenomena with great prospects for future applications. Once electrons are confined to low dimensions, they also tend to spontaneously break the symmetry of the underlying nuclear lattice by forming so-called density waves; a state of matter that currently attracts enormous attention because of its relation to various unconventional electronic properties. In this study we reveal a remarkable and surprising feature of charge density waves (CDWs), namely their intimate relation to orbital order. Read More

The prospective of optically inducing a spin polarized current for spintronic devices has generated a vast interest in the out-of-equilibrium electronic and spin structure of topological insulators (TIs). In this Letter we prove that only by measuring the spin intensity signal over several order of magnitude in spin, time and angle resolved photoemission spectroscopy (STAR-PES) experiments is it possible to comprehensively describe the optically excited electronic states in TIs materials. The experiments performed on $\mathrm{Bi_{2}Se_{3}}$ reveal the existence of a Surface-Resonance-State in the 2nd bulk band gap interpreted on the basis of fully relativistic ab-initio spin resolved photoemission calculations. Read More

Bulk Rashba systems BiTeX (X = I, Br, Cl) are emerging as important candidates for developing spintronics devices, because of the coexistence of spin-split bulk and surface states, along with the ambipolar character of the surface charge carriers. The need of studying the spin texture of strongly spin-orbit coupled materials has recently promoted circular dichroic Angular Resolved Photoelectron Spectroscopy (cd-ARPES) as an indirect tool to measure the spin and the angular degrees of freedom. Here we report a detailed photon energy dependent study of the cd-ARPES spectra in BiTeX (X = I, Br and Cl). Read More

Uniquely in Cu2OSeO3, the Skyrmions, which are topologically protected magnetic spin vortex-like objects, display a magnetoelectric coupling and can be manipulated by externally applied electric (E) fields. Here, we explore the E-field coupling to the magnetoelectric Skyrmion lattice phase, and study the response using neutron scattering. Giant E-field induced rotations of the Skyrmion lattice are achieved that span a range of $\sim$25$^{\circ}$. Read More

Strong electron interactions in solids increase effective mass, and shrink the electronic bands [1]. One of the most unique and robust experimental facts about iron-based superconductors [2-4] is the renormalization of the conduction band by factor of 3 near the Fermi level [5-9]. Obviously related to superconductivity, this unusual behaviour remains unexplained. Read More

We report measurements of Shubnikov-de Haas (SdH) oscillations in single crystals of BiTeCl at magnetic fields up to 31 T and at temperatures as low as 0.4 K. Two oscillation frequencies were resolved at the lowest temperatures, $F_{1}=65 \pm 4$ Tesla and $F_{2}=156 \pm 5$ Tesla. Read More

We present a comparative study of the optical properties - reflectance, transmission and optical conductivity - and Raman spectra of two layered bismuth-tellurohalides BiTeBr and BiTeCl at 300 K and 5 K, for light polarized in the a-b planes. Despite different space groups, the optical properties of the two compounds are very similar. Both materials are doped semiconductors, with the absorption edge above the optical gap which is lower in BiTeBr (0. Read More

We present an experimental study of macroscopic and microscopic magnetic anisotropy of a spin tetramer system SeCuO$_3$ using torque magnetometry and ESR spectroscopy. Large rotation of macroscopic magnetic axes with temperature observed from torque magnetometry agrees reasonably well with the rotation of the $\textbf{g}$ tensor above $T \gtrsim 50$~K. Below 50~K, the $\textbf{g}$ tensor is temperature independent, while macroscopic magnetic axes continue to rotate. Read More