# H. Benaoum - Jefferson Lab Hall A Collaboration

## Contact Details

NameH. Benaoum |
||

AffiliationJefferson Lab Hall A Collaboration |
||

Location |
||

## Pubs By Year |
||

## Pub CategoriesNuclear Experiment (7) High Energy Physics - Phenomenology (5) High Energy Physics - Theory (5) Mathematical Physics (3) Mathematics - Mathematical Physics (3) Cosmology and Nongalactic Astrophysics (2) General Relativity and Quantum Cosmology (2) High Energy Physics - Experiment (1) |

## Publications Authored By H. Benaoum

**Authors:**M. Defurne, M. Amaryan, K. A. Aniol, M. Beaumel, H. Benaoum, P. Bertin, M. Brossard, A. Camsonne, J. -P. Chen, E. Chudakov, B. Craver, F. Cusanno, C. W. de Jager, A. Deur, R. Feuerbach, C. Ferdi, J. -M. Fieschi, S. Frullani, E. Fuchey, M. Garcon, F. Garibaldi, O. Gayou, G. Gavalian, R. Gilman, J. Gomez, P. Gueye, P. A. M. Guichon, B. Guillon, O. Hansen, D. Hayes, D. Higinbotham, T. Holmstrom, C. E. Hyde, H. Ibrahim, R. Igarashi, X. Jiang, H. S. Jo, L. J. Kaufman, A. Kelleher, C. Keppel, A. Kolarkar, E. Kuchina, G. Kumbartzki, G. Laveissière, J. J. LeRose, R. Lindgren, N. Liyanage, H. -J. Lu, D. J. Margaziotis, M. Mazouz, Z. -E. Meziani, K. McCormick, R. Michaels, B. Michel, B. Moffit, P. Monaghan, C. Muñoz Camacho, S. Nanda, V. Nelyubin, R. Paremuzyan, M. Potokar, Y. Qiang, R. D. Ransome, J. -S. Réal, B. Reitz, Y. Roblin, J. Roche, F. Sabatié, A. Saha, S. Sirca, K. Slifer, P. Solvignon, R. Subedi, V. Sulkosky, P. E. Ulmer, E. Voutier, K. Wang, L. B. Weinstein, B. Wojtsekhowski, X. Zheng, L. Zhu

We present final results on the photon electroproduction ($\vec{e}p\rightarrow ep\gamma$) cross section in the deeply virtual Compton scattering (DVCS) regime and the valence quark region from Jefferson Lab experiment E00-110. Results from an analysis of a subset of these data were published before, but the analysis has been improved which is described here at length, together with details on the experimental setup. Furthermore, additional data have been analyzed resulting in photon electroproduction cross sections at new kinematic settings, for a total of 588 experimental bins. Read More

**Authors:**G. M. Urciuoli

^{1}, F. Cusanno

^{2}, S. Marrone

^{3}, A. Acha

^{4}, P. Ambrozewicz

^{5}, K. A. Aniol

^{6}, P. Baturin

^{7}, P. Y. Bertin

^{8}, H. Benaoum

^{9}, K. I. Blomqvist

^{10}, W. U. Boeglin

^{11}, H. Breuer

^{12}, P. Brindza

^{13}, P. Bydzovsky

^{14}, A. Camsonne

^{15}, C. C. Chang

^{16}, J. -P. Chen

^{17}, Seonho Choi

^{18}, E. A. Chudakov

^{19}, E. Cisbani

^{20}, S. Colilli

^{21}, L. Coman

^{22}, B. J. Craver

^{23}, G. De Cataldo

^{24}, C. W. de Jager

^{25}, R. De Leo

^{26}, A. P. Deur

^{27}, C. Ferdi

^{28}, R. J. Feuerbach

^{29}, E. Folts

^{30}, R. Fratoni

^{31}, S. Frullani

^{32}, F. Garibaldi

^{33}, O. Gayou

^{34}, F. Giuliani

^{35}, J. Gomez

^{36}, M. Gricia

^{37}, J. O. Hansen

^{38}, D. Hayes

^{39}, D. W. Higinbotham

^{40}, T. K. Holmstrom

^{41}, C. E. Hyde

^{42}, H. F. Ibrahim

^{43}, M. Iodice

^{44}, X. Jiang

^{45}, L. J. Kaufman

^{46}, K. Kino

^{47}, B. Kross

^{48}, L. Lagamba

^{49}, J. J. LeRose

^{50}, R. A. Lindgren

^{51}, M. Lucentini

^{52}, D. J. Margaziotis

^{53}, P. Markowitz

^{54}, Z. E. Meziani

^{55}, K. McCormick

^{56}, R. W. Michaels

^{57}, D. J. Millener

^{58}, T. Miyoshi

^{59}, B. Moffit

^{60}, P. A. Monaghan

^{61}, M. Moteabbed

^{62}, C. Munoz Camacho

^{63}, S. Nanda

^{64}, E. Nappi

^{65}, V. V. Nelyubin

^{66}, B. E. Norum

^{67}, Y. Okasyasu

^{68}, K. D. Paschke

^{69}, C. F. Perdrisat

^{70}, E. Piasetzky

^{71}, V. A. Punjabi

^{72}, Y. Qiang

^{73}, P. E. Reimer

^{74}, J. Reinhold

^{75}, B. Reitz

^{76}, R. E. Roche

^{77}, V. M. Rodriguez

^{78}, A. Saha

^{79}, F. Santavenere

^{80}, A. J. Sarty

^{81}, J. Segal

^{82}, A. Shahinyan

^{83}, J. Singh

^{84}, S. Sirca

^{85}, R. Snyder

^{86}, P. H. Solvignon

^{87}, M. Sotona

^{88}, R. Subedi

^{89}, V. A. Sulkosky

^{90}, T. Suzuki

^{91}, H. Ueno

^{92}, P. E. Ulmer

^{93}, P. Veneroni

^{94}, E. Voutier

^{95}, B. B. Wojtsekhowski

^{96}, X. Zheng

^{97}, C. Zorn

^{98}

**Affiliations:**

^{1}Jefferson Lab Hall A Collaboration,

^{2}Jefferson Lab Hall A Collaboration,

^{3}Jefferson Lab Hall A Collaboration,

^{4}Jefferson Lab Hall A Collaboration,

^{5}Jefferson Lab Hall A Collaboration,

^{6}Jefferson Lab Hall A Collaboration,

^{7}Jefferson Lab Hall A Collaboration,

^{8}Jefferson Lab Hall A Collaboration,

^{9}Jefferson Lab Hall A Collaboration,

^{10}Jefferson Lab Hall A Collaboration,

^{11}Jefferson Lab Hall A Collaboration,

^{12}Jefferson Lab Hall A Collaboration,

^{13}Jefferson Lab Hall A Collaboration,

^{14}Jefferson Lab Hall A Collaboration,

^{15}Jefferson Lab Hall A Collaboration,

^{16}Jefferson Lab Hall A Collaboration,

^{17}Jefferson Lab Hall A Collaboration,

^{18}Jefferson Lab Hall A Collaboration,

^{19}Jefferson Lab Hall A Collaboration,

^{20}Jefferson Lab Hall A Collaboration,

^{21}Jefferson Lab Hall A Collaboration,

^{22}Jefferson Lab Hall A Collaboration,

^{23}Jefferson Lab Hall A Collaboration,

^{24}Jefferson Lab Hall A Collaboration,

^{25}Jefferson Lab Hall A Collaboration,

^{26}Jefferson Lab Hall A Collaboration,

^{27}Jefferson Lab Hall A Collaboration,

^{28}Jefferson Lab Hall A Collaboration,

^{29}Jefferson Lab Hall A Collaboration,

^{30}Jefferson Lab Hall A Collaboration,

^{31}Jefferson Lab Hall A Collaboration,

^{32}Jefferson Lab Hall A Collaboration,

^{33}Jefferson Lab Hall A Collaboration,

^{34}Jefferson Lab Hall A Collaboration,

^{35}Jefferson Lab Hall A Collaboration,

^{36}Jefferson Lab Hall A Collaboration,

^{37}Jefferson Lab Hall A Collaboration,

^{38}Jefferson Lab Hall A Collaboration,

^{39}Jefferson Lab Hall A Collaboration,

^{40}Jefferson Lab Hall A Collaboration,

^{41}Jefferson Lab Hall A Collaboration,

^{42}Jefferson Lab Hall A Collaboration,

^{43}Jefferson Lab Hall A Collaboration,

^{44}Jefferson Lab Hall A Collaboration,

^{45}Jefferson Lab Hall A Collaboration,

^{46}Jefferson Lab Hall A Collaboration,

^{47}Jefferson Lab Hall A Collaboration,

^{48}Jefferson Lab Hall A Collaboration,

^{49}Jefferson Lab Hall A Collaboration,

^{50}Jefferson Lab Hall A Collaboration,

^{51}Jefferson Lab Hall A Collaboration,

^{52}Jefferson Lab Hall A Collaboration,

^{53}Jefferson Lab Hall A Collaboration,

^{54}Jefferson Lab Hall A Collaboration,

^{55}Jefferson Lab Hall A Collaboration,

^{56}Jefferson Lab Hall A Collaboration,

^{57}Jefferson Lab Hall A Collaboration,

^{58}Jefferson Lab Hall A Collaboration,

^{59}Jefferson Lab Hall A Collaboration,

^{60}Jefferson Lab Hall A Collaboration,

^{61}Jefferson Lab Hall A Collaboration,

^{62}Jefferson Lab Hall A Collaboration,

^{63}Jefferson Lab Hall A Collaboration,

^{64}Jefferson Lab Hall A Collaboration,

^{65}Jefferson Lab Hall A Collaboration,

^{66}Jefferson Lab Hall A Collaboration,

^{67}Jefferson Lab Hall A Collaboration,

^{68}Jefferson Lab Hall A Collaboration,

^{69}Jefferson Lab Hall A Collaboration,

^{70}Jefferson Lab Hall A Collaboration,

^{71}Jefferson Lab Hall A Collaboration,

^{72}Jefferson Lab Hall A Collaboration,

^{73}Jefferson Lab Hall A Collaboration,

^{74}Jefferson Lab Hall A Collaboration,

^{75}Jefferson Lab Hall A Collaboration,

^{76}Jefferson Lab Hall A Collaboration,

^{77}Jefferson Lab Hall A Collaboration,

^{78}Jefferson Lab Hall A Collaboration,

^{79}Jefferson Lab Hall A Collaboration,

^{80}Jefferson Lab Hall A Collaboration,

^{81}Jefferson Lab Hall A Collaboration,

^{82}Jefferson Lab Hall A Collaboration,

^{83}Jefferson Lab Hall A Collaboration,

^{84}Jefferson Lab Hall A Collaboration,

^{85}Jefferson Lab Hall A Collaboration,

^{86}Jefferson Lab Hall A Collaboration,

^{87}Jefferson Lab Hall A Collaboration,

^{88}Jefferson Lab Hall A Collaboration,

^{89}Jefferson Lab Hall A Collaboration,

^{90}Jefferson Lab Hall A Collaboration,

^{91}Jefferson Lab Hall A Collaboration,

^{92}Jefferson Lab Hall A Collaboration,

^{93}Jefferson Lab Hall A Collaboration,

^{94}Jefferson Lab Hall A Collaboration,

^{95}Jefferson Lab Hall A Collaboration,

^{96}Jefferson Lab Hall A Collaboration,

^{97}Jefferson Lab Hall A Collaboration,

^{98}Jefferson Lab Hall A Collaboration

**Category:**Nuclear Experiment

In the absence of accurate data on the free two-body hyperon-nucleon interaction, the spectra of hypernuclei can provide information on the details of the effective hyperon-nucleon interaction. Electroproduction of the hypernucleus Lambda-9Li has been studied for the first time with sub-MeV energy resolution in Hall A at Jefferson Lab on a 9Be target. In order to increase the counting rate and to provide unambiguous kaon identification, two superconducting septum magnets and a Ring Imaging CHerenkov detector (RICH) were added to the Hall A standard equipment. Read More

In this paper, we investigate the viscous modified Chaplygin gas cosmological model. Solutions for different values of the viscosity parameter are obtained using both analytical and numerical methods. We have calculated the deceleration and defined {\em newly} statefinder $\{r, s \}$ pair in D dimensions. Read More

Motivated by recent measurements which strongly support a nonzero reactor mixing angle $\theta_{13}$, we study a deviation from $S_3$ neutrino discrete symmetry by explicitly breaking the neutrino mass matrix with a general retrocirculant matrix. We show that nonzero $\theta_{13}$ and nonzero CP violation parameter $J_{CP}$ arise due to the difference between $y_2$ and $y_3$. We demonstrate that it is possible to obtain the experimentally favored results for neutrino masses and mixing angles from this mass matrix. Read More

**Authors:**P. Monaghan, R. Shneor, R. Subedi, B. D. Anderson, K. Aniol, J. Annand, J. Arrington, H. Benaoum, F. Benmokhtar, P. Bertin, W. Bertozzi, W. Boeglin, J. P. Chen, Seonho Choi, E. Chudakov, C. Ciofi degli Atti, E. Cisbani, W. Cosyn, B. Craver, C. W. de Jager, R. J. Feuerbach, E. Folts, S. Frullani, F. Garibaldi, O. Gayou, S. Gilad, R. Gilman, O. Glamazdin, J. Gomez, O. Hansen, D. W. Higinbotham, T. Holmstrom, H. Ibrahim, R. Igarashi, E. Jans, X. Jiang, Y. Jiang, L. Kaufman, A. Kelleher, A. Kolarkar, E. Kuchina, G. Kumbartzki, J. J. LeRose, R. Lindgren, N. Liyanage, D. J. Margaziotis, P. Markowitz, S. Marrone, M. Mazouz, D. Meekins, R. Michaels, B. Moffit, H. Morita, S. Nanda, C. F. Perdrisat, E. Piasetzky, M. Potokar, V. Punjabi, Y. Qiang, J. Reinhold, B. Reitz, G. Ron, G. Rosner, J. Ryckebusch, A. Saha, B. Sawatzky, J. Segal, A. Shahinyan, S. Sirca, K. Slifer, P. Solvignon, V. Sulkosky, N. Thompson, P. E. Ulmer, G. M. Urciuoli, E. Voutier, K. Wang, J. W. Watson, L. B. Weinstein, B. Wojtsekhowski, S. Wood, H. Yao, X. Zheng, L. Zhu

**Category:**Nuclear Experiment

The five-fold differential cross section for the 12C(e,e'p)11B reaction was determined over a missing momentum range of 200-400 MeV/c, in a kinematics regime with Bjorken x > 1 and Q2 = 2.0 (GeV/c)2. A comparison of the results and theoretical models and previous lower missing momentum data is shown. Read More

Modified Chaplygin gas as an exotic fluid has been introduced in [34]. Essential features of the modified Chaplygin gas as a cosmological model are discussed. Observational constraints on the parameters of the model have been included. Read More

**Authors:**The HAPPEX, PREX Collaborations, :, S. Abrahamyan, A. Acha, A. Afanasev, Z. Ahmed, H. Albataineh, K. Aniol, D. S. Armstrong, W. Armstrong, J. Arrington, T. Averett, B. Babineau, S. L. Bailey, J. Barber, A. Barbieri, A. Beck, V. Bellini, R. Beminiwattha, H. Benaoum, J. Benesch, F. Benmokhtar, P. Bertin, T. Bielarski, W. Boeglin, P. Bosted, F. Butaru, E. Burtin, J. Cahoon, A. Camsonne, M. Canan, P. Carter, C. C. Chang, G. D. Cates, Y. C. Chao, C. Chen, J. P. Chen, Seonho Choi, E. Chudakov, E. Cisbani, B. Craver, F. Cusanno, M. M. Dalton, R. De Leo, K. de Jager, W. Deconinck, P. Decowski, D. Deepa, X. Deng, A. Deur, D. Dutta, A. Etile, C. Ferdi, R. J. Feuerbach, J. M. Finn, D. Flay, G. B. Franklin, M. Friend, S. Frullani, E. Fuchey, S. A. Fuchs, K. Fuoti, F. Garibaldi, E. Gasser, R. Gilman, A. Giusa, A. Glamazdin, L. E. Glesener, J. Gomez, M. Gorchtein, J. Grames, K. Grimm, C. Gu, O. Hansen, J. Hansknecht, O. Hen, D. W. Higinbotham, R. S. Holmes, T. Holmstrom, C. J. Horowitz, J. Hoskins, J. Huang, T. B. Humensky, C. E. Hyde, H. Ibrahim, F. Itard, C. M. Jen, E. Jensen, X. Jiang, G. Jin, S. Johnston, J. Katich, L. J. Kaufman, A. Kelleher, K. Kliakhandler, P. M. King, A. Kolarkar, S. Kowalski, E. Kuchina, K. S. Kumar, L. Lagamba, D. Lambert, P. LaViolette, J. Leacock, J. Leckey IV, J. H. Lee, J. J. LeRose, D. Lhuillier, R. Lindgren, N. Liyanage, N. Lubinsky, J. Mammei, F. Mammoliti, D. J. Margaziotis, P. Markowitz, M. Mazouz, K. McCormick, A. McCreary, D. McNulty, D. G. Meekins, L. Mercado, Z. E. Meziani, R. W. Michaels, M. Mihovilovic, B. Moffit, P. Monaghan, N. Muangma, C. Munoz-Camacho, S. Nanda, V. Nelyubin, D. Neyret, Nuruzzaman, Y. Oh, K. Otis, A. Palmer, D. Parno, K. D. Paschke, S. K. Phillips, M. Poelker, R. Pomatsalyuk, M. Posik, M. Potokar, K. Prok, A. J. R. Puckett, X. Qian, Y. Qiang, B. Quinn, A. Rakhman, P. E. Reimer, B. Reitz, S. Riordan, J. Roche, P. Rogan, G. Ron, G. Russo, K. Saenboonruang, A. Saha, B. Sawatzky, A. Shahinyan, R. Silwal, J. Singh, S. Sirca, K. Slifer, R. Snyder, P. Solvignon, P. A. Souder, M. L. Sperduto, R. Subedi, M. L. Stutzman, R. Suleiman, V. Sulkosky, C. M. Sutera, W. A. Tobias, W. Troth, G. M. Urciuoli, P. Ulmer, A. Vacheret, E. Voutier, B. Waidyawansa, D. Wang, K. Wang, J. Wexler, A. Whitbeck, R. Wilson, B. Wojtsekhowski, X. Yan, H. Yao, Y. Ye, Z. Ye, V. Yim, L. Zana, X. Zhan, J. Zhang, Y. Zhang, X. Zheng, V. Ziskin, P. Zhu

**Category:**Nuclear Experiment

We have measured the beam-normal single-spin asymmetry $A_n$ in the elastic scattering of 1-3 GeV transversely polarized electrons from $^1$H and for the first time from $^4$He, $^{12}$C, and $^{208}$Pb. For $^1$H, $^4$He and $^{12}$C, the measurements are in agreement with calculations that relate $A_n$ to the imaginary part of the two-photon exchange amplitude including inelastic intermediate states. Surprisingly, the $^{208}$Pb result is significantly smaller than the corresponding prediction using the same formalism. Read More

Recent experiments indicate a departure from the exact Tri-Bimaximal mixing by measuring definitive non-zero value of $\theta_{13}$. Within the framework of type I seesaw mechanism, we reconstruct the triangular Dirac neutrino mass matrix from the $\mu-\tau$ symmetric mass matrix. The deviation from $\mu-\tau$ symmetry is then parametrized by adding dimensionless parameters $y_i$ in the triangular mass matrix. Read More

Global fits to neutrino oscillation data are compatible with tri-bimaximal mixing pattern, which predicts $\theta_{23} = \frac{\pi}{4}, \theta_{12} = \sin^{-1} (\frac{1}{\sqrt{3}})$ and $\theta_{13} = 0$. We propose here to parametrize the tri-bimaximal mixing matrix $V_{TBM}$ by its hermitian generator $H_{TBM}$ using the exponential map. Then we use the exponential map to express the deviations from tri-bimaximal pattern by deriving the hermitian matrices $H_{z=0}$ and $H_1$. Read More

In this paper, we introduce the h-analogue of Fibonacci numbers for non-commutative h-plane. For h h'= 1 and h = 0, these are just the usual Fibonacci numbers as it should be. We also derive a collection of identities for these numbers. Read More

**Authors:**R. Subedi, R. Shneor, P. Monaghan, B. D. Anderson, K. Aniol, J. Annand, J. Arrington, H. Benaoum, F. Benmokhtar, W. Bertozzi, W. Boeglin, J. -P. Chen, Seonho Choi, E. Cisbani, B. Craver, S. Frullani, F. Garibaldi, S. Gilad, R. Gilman, O. Glamazdin, J. -O. Hansen, D. W. Higinbotham, T. Holmstrom, H. Ibrahim, R. Igarashi, C. W. de Jager, E. Jans, X. Jiang, L. Kaufman, A. Kelleher, A. Kolarkar, G. Kumbartzki, J. J. LeRose, R. Lindgren, N. Liyanage, D. J. Margaziotis, P. Markowitz, S. Marrone, M. Mazouz, D. Meekins, R. Michaels, B. Moffit, C. F. Perdrisat, E. Piasetzky, M. Potokar, V. Punjabi, Y. Qiang, J. Reinhold, G. Ron, G. Rosner, A. Saha, B. Sawatzky, A. Shahinyan, S. Širca, K. Slifer, P. Solvignon, V. Sulkosky, G. Urciuoli, E. Voutier, J. W. Watson, L. B. Weinstein, B. Wojtsekhowski, S. Wood, X. -C. Zheng, L. Zhu

**Category:**Nuclear Experiment

The protons and neutrons in a nucleus can form strongly correlated nucleon pairs. Scattering experiments, where a proton is knocked-out of the nucleus with high momentum transfer and high missing momentum, show that in 12C the neutron-proton pairs are nearly twenty times as prevalent as proton-proton pairs and, by inference, neutron-neutron pairs. This difference between the types of pairs is due to the nature of the strong force and has implications for understanding cold dense nuclear systems such as neutron stars. Read More

**Authors:**F. Cusanno, G. M. Urciuoli, A. Acha, P. Ambrozewicz, K. A. Aniol, P. Baturin, P. Y. Bertin, H. Benaoum, K. I. Blomqvist, W. U. Boeglin, H. Breuer, P. Brindza, P. Bydzovsky, A. Camsonne, C. C. Chang, J. -P. Chen, Seonho Choi, E. A. Chudakov, E. Cisbani, S. Colilli, L. Coman, B. J. Craver, G. De Cataldo, C. W. de Jager, R. De Leo, A. P. Deur, C. Ferdi, R. J. Feuerbach, E. Folts, R. Fratoni, S. Frullani, F. Garibaldi, O. Gayou, F. Giuliani, J. Gomez, M. Gricia, J. O. Hansen, D. Hayes, D. W. Higinbotham, T. K. Holmstrom, C. E. Hyde, H. F. Ibrahim, M. Iodice, X. Jiang, L. J. Kaufman, K. Kino, B. Kross, L. Lagamba, J. J. LeRose, R. A. Lindgren, M. Lucentini, D. J. Margaziotis, P. Markowitz, S. Marrone, Z. E. Meziani, K. McCormick, R. W. Michaels, D. J. Millener, T. Miyoshi, B. Moffit, P. A. Monaghan, M. Moteabbed, C. Munoz Camacho, S. Nanda, E. Nappi, V. V. Nelyubin, B. E. Norum, Y. Okasyasu, K. D. Paschke, C. F. Perdrisat, E. Piasetzky, V. A. Punjabi, Y. Qiang, B. Raue, P. E. Reimer, J. Reinhold, B. Reitz, R. E. Roche, V. M. Rodriguez, A. Saha, F. Santavenere, A. J. Sarty, J. Segal, A. Shahinyan, J. Singh, S. Sirca, R. Snyder, P. H. Solvignon, M. Sotona, R. Subedi, V. A. Sulkosky, T. Suzuki, H. Ueno, P. E. Ulmer, P. Veneroni, E. Voutier, B. B. Wojtsekhowski, X. Zeng, C. Zorn

**Category:**Nuclear Experiment

An experimental study of the 16O(e,e'K^+)16N_Lambda reaction has been performed at Jefferson Lab. A thin film of falling water was used as a target. This permitted a simultaneous measurement of the p(e,e'K^+)Lambda,Sigma_0 exclusive reactions and a precise calibration of the energy scale. Read More

**Authors:**M. Iodice, F. Cusanno, A. Acha, P. Ambrozewicz, K. A. Aniol, P. Baturin, P. Y. Bertin, H. Benaoum, K. I. Blomqvist, W. U. Boeglin, H. Breuer, P. Brindza, P. Bydzovsky, A. Camsonne, C. C. Chang, J. -P. Chen, Seonho Choi, E. A. Chudakov, E. Cisbani, S. Colilli, L. Coman, B. J. Craver, G. DeCataldo, C. W. deJager, R. DeLeo, A. P. Deur, C. Ferdi, R. J. Feuerbach, E. Folts, R. Fratoni, S. Frullani, F. Garibaldi, O. Gayou, F. Giulani, J. Gomez, M. Gricia, J. O. Hansen, D. Hayes, D. W. Higinbotham, T. K. Holmstrom, C. E. Hyde, H. F. Ibrahim, X. Jiang, L. J. Kaufman, K. Kino, B. Kross, L. Lagamba, J. J. LeRose, R. A. Lindgren, M. Lucentini, D. J. Margaziotis, P. Markowitz, S. Marrone, Z. E. Meziani, K. McCormick, R. W. Michaels, D. J. Millener, T. Miyoshi, B. Moffit, P. A. Monaghan, M. Moteabbed, C. MunozCamacho, S. Nanda, E. Nappi, V. V. Nelyubin, B. E. Norum, Y. Okasyasu, K. D. Paschke, C. F. Perdrisat, E. Piasetzky, V. A. Punjabi, Y. Qiang, B. Raue, P. E. Reimer, J. Reinhold, B. Reitz, R. E. Roche, V. M. Rodriguez, A. Saha, F. Santavenere, A. J. Sarty, J. Segal, A. Shahinyan, J. Singh, S. Sirca, R. Snyder, P. H. Solvignon, M. Sotona, R. Subedi, V. A. Sulkosky, T. Suzuki, H. Ueno, P. E. Ulmer, G. M. Urciuoli, P. Veneroni, E. Voutier, B. B. Wojtsekhowski, X. Zheng, C. Zorn

**Category:**Nuclear Experiment

An experiment measuring electroproduction of hypernuclei has been performed in Hall A at Jefferson Lab on a $^{12}$C target. In order to increase counting rates and provide unambiguous kaon identification two superconducting septum magnets and a Ring Imaging CHerenkov detector (RICH) were added to the Hall A standard equipment. An unprecedented energy resolution of less than 700 keV FWHM has been achieved. Read More

A cosmological model with an exotic fluid is investigated. We show that the equation of state of this ``modified Chaplygin'' gas can describe the current accelerated expansion of the universe. We then reexpress it as FRW cosmological model containing a scalar field $\phi$ and find its self--interacting potential. Read More

**Affiliations:**

^{1}Mainz Uni.

**Category:**High Energy Physics - Theory

BFYM on commutative and noncommutative ${\mathbb{R}}^4$ is considered and a Seiberg-Witten gauge-equivalent transformation is constructed for these theories. Then we write the noncommutative action in terms of the ordinary fields and show that it is equivalent to the ordinary action up to higher dimensional gauge invariant terms. Read More

**Affiliations:**

^{1}Mainz Uni.

**Category:**High Energy Physics - Theory

A U(1) BF-Yang-Mills theory on noncommutative ${\mathbb{R}}^4$ is presented and in this formulation the U(1) Yang-Mills theory on noncommutative ${\mathbb{R}}^4$ is seen as a deformation of the pure BF theory. Quantization using BRST symmetry formalism is discussed and Feynman rules are given. Computations at one-loop order have been performed and their renormalization studied. Read More

**Affiliations:**

^{1}Mainz Uni.

**Category:**High Energy Physics - Phenomenology

A direct proof is given here which shows that instead of 6 complex numbers, the triangular mass matrix for each sector could just be expressed in terms of 5 by performing a specific weak basis transformation, leading therefore to a new textures for triangular mass matrices. Furthermore, starting with the set of 20 real parameters for both sectors, it can shown that 6 redundant parameters can be removed by using the rephasing freedom. Read More

**Affiliations:**

^{1}Mainz Uni.,

^{2}Syracuse Uni.

**Category:**High Energy Physics - Phenomenology

An analysis of the leptonic texture for the new triangular mass matrices has been carried out. In particular, it is shown that both bimaximal and nearly bimaximal solutions for solar and atmospheric neutrino anomalies can be generated within this pattern. We have also derived exact and compact parametrization of the leptonic mixing matrix in terms of the lepton masses and the parameters $\alpha, \beta'$ and $\delta$. Read More

**Affiliations:**

^{1}Mainz Uni.

In this letter, the (q,h)-analogue of Newton's binomial formula is obtained in the (q,h)-deformed quantum plane which reduces for h=0 to the q-analogue. For (q=1,h=0), this is just the usual one as it should be. Moreover, the h-analogue is recovered for q=1. Read More

**Affiliations:**

^{1}Mainz

In this letter, the $h$--analogue of Newton's binomial formula is obtained in the $h$--deformed quantum plane which does not have any $q$--analogue. For $h=0$, this is just the usual one as it should be. Furthermore, the binomial coefficients reduce to $\frac{n!}{(n-k)!}$ for $h=1$. Read More