H. B. Liu - Istituto di Radioastronomia, Bologna, Italy

H. B. Liu
Are you H. B. Liu?

Claim your profile, edit publications, add additional information:

Contact Details

Name
H. B. Liu
Affiliation
Istituto di Radioastronomia, Bologna, Italy
City
Bologna
Country
Italy

Pubs By Year

Pub Categories

 
Computer Science - Computation and Language (8)
 
Computer Science - Computer Vision and Pattern Recognition (7)
 
Computer Science - Learning (5)
 
Mathematics - Analysis of PDEs (4)
 
Astrophysics of Galaxies (4)
 
High Energy Physics - Experiment (3)
 
Computer Science - Information Theory (3)
 
High Energy Physics - Theory (3)
 
General Relativity and Quantum Cosmology (3)
 
Mathematics - Information Theory (3)
 
Computer Science - Artificial Intelligence (3)
 
Physics - Mesoscopic Systems and Quantum Hall Effect (3)
 
Mathematics - Spectral Theory (2)
 
Mathematics - Optimization and Control (2)
 
Physics - Materials Science (2)
 
Mathematics - Mathematical Physics (2)
 
Mathematical Physics (2)
 
Solar and Stellar Astrophysics (2)
 
Statistics - Machine Learning (2)
 
Mathematics - Combinatorics (2)
 
Physics - Fluid Dynamics (1)
 
Mathematics - Numerical Analysis (1)
 
Mathematics - Dynamical Systems (1)
 
Earth and Planetary Astrophysics (1)
 
Physics - Instrumentation and Detectors (1)
 
Computer Science - Multimedia (1)
 
Nuclear Theory (1)
 
Physics - Classical Physics (1)
 
Cosmology and Nongalactic Astrophysics (1)
 
Physics - Plasma Physics (1)
 
Physics - Strongly Correlated Electrons (1)

Publications Authored By H. B. Liu

It remains a challenge to efficiently extract spatialtemporal data from skeleton sequences for 3D human action recognition. Since 3D convolutional neural network(3DCNN) is a powerful tool to simultaneously learn features from both spatial and temporal dimensions, in this paper, we propose a two-stream model using 3DCNN. To our best knowledge, this is the first application of 3DCNN to action recognition based on skeleton sequences. Read More

Developments in deep generative models have allowed for tractable learning of high-dimensional data distributions. While the employed learning procedures typically assume that training data is drawn i.i. Read More

We present ten $R$-band photometric observations of eight different transits of the hot Jupiter HAT-P-33b, which has been targeted by our Transiting Exoplanet Monitoring Project (TEMP). The data were obtained by two telescopes at the Xinglong Station of National Astronomical Observatories of China (NAOC) from 2013 December through 2016 January, and exhibit photometric scatter of $1.6-3. Read More

Recently, learning equivariant representations has attracted considerable research attention. Dieleman et al. introduce four operations which can be inserted to CNN to learn deep representations equivariant to rotation. Read More

Unsupervised structure learning in high-dimensional time series data has attracted a lot of research interests. For example, segmenting and labelling high dimensional time series can be helpful in behavior understanding and medical diagnosis. Recent advances in generative sequential modeling have suggested to combine recurrent neural networks with state space models (e. Read More

We consider Einstein-Horndeski-Maxwell gravity, together with a cosmological constant and multiple Horndeski axions. We construct charged AdS planar black holes in general dimensions where the Horndeski anxions span over the planar directions. We analyse the thermodynamics and obtain the black hole volumes. Read More

We present systematic studies of the transient dynamics of GaAs by ultrafast time-resolved optical reflectivity. In photo excited non-equilibrium states, we found a sign reverse in transient reflectivity spectra $\Delta R/R$ (t $>$ 0), from positive around room temperature to negative at cryogenic temperatures. The former corresponds to a transient free carrier metallic state, while the latter is attributed to an exciton insulating state, in which the transient electronic properties is mostly dominated by excitons, resulting in a transient metal-insulator transition (MIT). Read More

We interpret convolutional networks as adaptive filters and combine them with so-called MuxOut layers to efficiently upscale low resolution images. We formalize this interpretation by deriving a linear and space-variant structure of a convolutional network when its activations are fixed. We introduce general purpose algorithms to analyze a network and show its overall filter effect for each given location. Read More

A new gas puff imaging (GPI) diagnostic has been developed on HL-2A tokamak to study two-dimensional plasma edge turbulence in poloidal vs radial plane. During a discharge, neutral helium or deuterium gas is puffed at the edge of the plasma through a rectangular multi-capillary nozzle to generate a gas cloud on the observing plane. Then a specially designed telescope and a high-speed camera are used to observe and photograph the emission from the neutral gas cloud. Read More

2017May
Authors: BESIII Collaboration, M. Ablikim, M. N. Achasov, S. Ahmed, M. Albrecht, M. Alekseev, A. Amoroso, F. F. An, Q. An, J. Z. Bai, Y. Bai, O. Bakina, R. Baldini Ferroli, Y. Ban, D. W. Bennett, J. V. Bennett, N. Berger, M. Bertani, D. Bettoni, J. M. Bian, F. Bianchi, E. Boger, I. Boyko, R. A. Briere, H. Cai, X. Cai, O. Cakir, A. Calcaterra, G. F. Cao, S. A. Cetin, J. Chai, J. F. Chang, G. Chelkov, G. Chen, H. S. Chen, J. C. Chen, M. L. Chen, S. J. Chen, X. R. Chen, Y. B. Chen, X. K. Chu, G. Cibinetto, H. L. Dai, J. P. Dai, A. Dbeyssi, D. Dedovich, Z. Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, C. Dong, J. Dong, L. Y. Dong, M. Y. Dong, O. Dorjkhaidav, Z. L. Dou, S. X. Du, P. F. Duan, J. Fang, S. S. Fang, X. Fang, Y. Fang, R. Farinelli, L. Fava, S. Fegan, F. Feldbauer, G. Felici, C. Q. Feng, E. Fioravanti, M. Fritsch, C. D. Fu, Q. Gao, X. L. Gao, Y. Gao, Y. G. Gao, Z. Gao, B. Garillon, I. Garzia, K. Goetzen, L. Gong, W. X. Gong, W. Gradl, M. Greco, M. H. Gu, S. Gu, Y. T. Gu, A. Q. Guo, L. B. Guo, R. P. Guo, Y. P. Guo, Z. Haddadi, S. Han, X. Q. Hao, F. A. Harris, K. L. He, X. Q. He, F. H. Heinsius, T. Held, Y. K. Heng, T. Holtmann, Z. L. Hou, C. Hu, H. M. Hu, T. Hu, Y. Hu, G. S. Huang, J. S. Huang, S. H. Huang, X. T. Huang, X. Z. Huang, Z. L. Huang, T. Hussain, W. Ikegami Andersson, Q. Ji, Q. P. Ji, X. B. Ji, X. L. Ji, X. S. Jiang, X. Y. Jiang, J. B. Jiao, Z. Jiao, D. P. Jin, S. Jin, Y. Jin, T. Johansson, A. Julin, N. Kalantar-Nayestanaki, X. L. Kang, X. S. Kang, M. Kavatsyuk, B. C. Ke, T. Khan, A. Khoukaz, P. Kiese, R. Kliemt, L. Koch, O. B. Kolcu, B. Kopf, M. Kornicer, M. Kuemmel, M. Kuhlmann, A. Kupsc, W. Kühn, J. S. Lange, M. Lara, P. Larin, L. Lavezzi, H. Leithoff, C. Leng, C. Li, Cheng Li, D. M. Li, F. Li, F. Y. Li, G. Li, H. B. Li, H. J. Li, J. C. Li, Jin Li, K. Li, K. Li, K. J. Li, Lei Li, P. L. Li, P. R. Li, Q. Y. Li, T. Li, W. D. Li, W. G. Li, X. L. Li, X. N. Li, X. Q. Li, Z. B. Li, H. Liang, Y. F. Liang, Y. T. Liang, G. R. Liao, D. X. Lin, B. Liu, B. J. Liu, C. X. Liu, D. Liu, F. H. Liu, Fang Liu, Feng Liu, H. B. Liu, H. H. Liu, H. H. Liu, H. M. Liu, J. B. Liu, J. Y. Liu, K. Liu, K. Y. Liu, Ke Liu, L. D. Liu, P. L. Liu, Q. Liu, S. B. Liu, X. Liu, Y. B. Liu, Z. A. Liu, Zhiqing Liu, Y. F. Long, X. C. Lou, H. J. Lu, J. G. Lu, Y. Lu, Y. P. Lu, C. L. Luo, M. X. Luo, X. L. Luo, X. R. Lyu, F. C. Ma, H. L. Ma, L. L. Ma, M. M. Ma, Q. M. Ma, T. Ma, X. N. Ma, X. Y. Ma, Y. M. Ma, F. E. Maas, M. Maggiora, Q. A. Malik, Y. J. Mao, Z. P. Mao, S. Marcello, Z. X. Meng, J. G. Messchendorp, G. Mezzadri, J. Min, T. J. Min, R. E. Mitchell, X. H. Mo, Y. J. Mo, C. Morales Morales, G. Morello, N. Yu. Muchnoi, H. Muramatsu, A. Mustafa, Y. Nefedov, F. Nerling, I. B. Nikolaev, Z. Ning, S. Nisar, S. L. Niu, X. Y. Niu, S. L. Olsen, Q. Ouyang, S. Pacetti, Y. Pan, M. Papenbrock, P. Patteri, M. Pelizaeus, J. Pellegrino, H. P. Peng, K. Peters, J. Pettersson, J. L. Ping, R. G. Ping, A. Pitka, R. Poling, V. Prasad, H. R. Qi, M. Qi, T. . Y. Qi, S. Qian, C. F. Qiao, N. Qin, X. S. Qin, Z. H. Qin, J. F. Qiu, K. H. Rashid, C. F. Redmer, M. Richter, M. Ripka, M. Rolo, G. Rong, Ch. Rosner, A. Sarantsev, M. Savrié, C. Schnier, K. Schoenning, W. Shan, M. Shao, C. P. Shen, P. X. Shen, X. Y. Shen, H. Y. Sheng, M. R. Shepherd, J. J. Song, W. M. Song, X. Y. Song, S. Sosio, C. Sowa, S. Spataro, G. X. Sun, J. F. Sun, L. Sun, S. S. Sun, X. H. Sun, Y. J. Sun, Y. K Sun, Y. Z. Sun, Z. J. Sun, Z. T. Sun, C. J. Tang, G. Y. Tang, X. Tang, I. Tapan, M. Tiemens, B. T. Tsednee, I. Uman, G. S. Varner, B. Wang, B. L. Wang, D. Wang, D. Y. Wang, Dan Wang, K. Wang, L. L. Wang, L. S. Wang, M. Wang, P. Wang, P. L. Wang, W. P. Wang, X. F. Wang, Y. Wang, Y. D. Wang, Y. F. Wang, Y. Q. Wang, Z. Wang, Z. G. Wang, Z. H. Wang, Z. Y. Wang, Z. Y. Wang, T. Weber, D. H. Wei, J. H. Wei, P. Weidenkaff, S. P. Wen, U. Wiedner, M. Wolke, L. H. Wu, L. J. Wu, Z. Wu, L. Xia, Y. Xia, D. Xiao, H. Xiao, Y. J. Xiao, Z. J. Xiao, X. H. Xie, Y. G. Xie, Y. H. Xie, X. A. Xiong, Q. L. Xiu, G. F. Xu, J. J. Xu, L. Xu, Q. J. Xu, Q. N. Xu, X. P. Xu, L. Yan, W. B. Yan, W. C. Yan, Y. H. Yan, H. J. Yang, H. X. Yang, L. Yang, Y. H. Yang, Y. X. Yang, M. Ye, M. H. Ye, J. H. Yin, Z. Y. You, B. X. Yu, C. X. Yu, J. S. Yu, C. Z. Yuan, Y. Yuan, A. Yuncu, A. A. Zafar, Y. Zeng, Z. Zeng, B. X. Zhang, B. Y. Zhang, C. C. Zhang, D. H. Zhang, H. H. Zhang, H. Y. Zhang, J. Zhang, J. L. Zhang, J. Q. Zhang, J. W. Zhang, J. Y. Zhang, J. Z. Zhang, K. Zhang, L. Zhang, S. Q. Zhang, X. Y. Zhang, Y. Zhang, Y. Zhang, Y. H. Zhang, Y. T. Zhang, Yu Zhang, Z. H. Zhang, Z. P. Zhang, Z. Y. Zhang, G. Zhao, J. W. Zhao, J. Y. Zhao, J. Z. Zhao, Lei Zhao, Ling Zhao, M. G. Zhao, Q. Zhao, S. J. Zhao, T. C. Zhao, Y. B. Zhao, Z. G. Zhao, A. Zhemchugov, B. Zheng, J. P. Zheng, W. J. Zheng, Y. H. Zheng, B. Zhong, L. Zhou, X. Zhou, X. K. Zhou, X. R. Zhou, X. Y. Zhou, J. Zhu, K. Zhu, K. J. Zhu, S. Zhu, S. H. Zhu, X. L. Zhu, Y. C. Zhu, Y. S. Zhu, Z. A. Zhu, J. Zhuang, B. S. Zou, J. H. Zou

We present first evidence for the process $e^+e^-\to \gamma\eta_c(1S)$ at six center-of-mass energies between 4.01 and 4.60~GeV using data collected by the BESIII experiment operating at BEPCII. Read More

A charging method for electric vehicle using multi battery series mode which consisted of the following steps was introduced: the battery series is firstly charged at a constant power with a charging current of I1. When the terminal voltage over the battery series has reached the 1st threshold voltage, the charging current will reduce to I2 and the power remains constant. When the terminal voltage over the battery series has reached the 2nd threshold voltage, the charging current will reduce to I3 and the power remains constant (the 2nd threshold voltage is larger than 1st threshold voltage). Read More

Understanding the properties of dust emission in the microwave domain is an important premise for the next generation of cosmic microwave background (CMB) experiments, devoted to the measurement of the primordial $B$-modes of polarization. In this paper, we compare three solutions to thermal dust emission by the Planck Collaboration \cite{PlanckDust03,planck_16,planck_com} to point out significant differences between their respective parameters (the spectral index $\beta$, the optical depth $\tau$ and the dust temperature $T_d$). These differences originate from e. Read More

For a sequence $(H_i)_{i=1}^k$ of graphs, let $\mathrm{nim}(n;H_1,\ldots, H_k)$ denote the maximum number of edges not contained in any monochromatic copy of $H_i$ in colour $i$, over all $k$-edge-colourings of $K_n$. When each $H_i$ is connected and non-bipartite, we introduce a variant of Ramsey number that determines the limit of $\mathrm{nim}(n;H_1,\ldots, H_k)/{n\choose 2}$ as $n\to\infty$ and prove the corresponding stability result. Furthermore, if each $H_i$ is strongly-colour-critical (in particular if each $H_i$ is a clique), then we determine $\mathrm{nim}(n;H_1,\ldots, H_k)$ exactly for all sufficiently large $n$. Read More

2017May
Authors: M. Ablikim, M. N. Achasov, X. C. Ai, O. Albayrak, M. Albrecht, D. J. Ambrose, A. Amoroso, F. F. An, Q. An, J. Z. Bai, R. Baldini Ferroli, Y. Ban, D. W. Bennett, J. V. Bennett, M. Bertani, D. Bettoni, J. M. Bian, F. Bianchi, E. Boger, I. Boyko, R. A. Briere, H. Cai, X. Cai, O. Cakir, A. Calcaterra, G. F. Cao, S. A. Cetin, J. F. Chang, G. Chelkov, G. Chen, H. S. Chen, H. Y. Chen, J. C. Chen, M. L. Chen, S. J. Chen, X. Chen, X. R. Chen, Y. B. Chen, H. P. Cheng, X. K. Chu, G. Cibinetto, H. L. Dai, J. P. Dai, A. Dbeyssi, D. Dedovich, Z. Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. De Mori, Y. Ding, C. Dong, J. Dong, L. Y. Dong, M. Y. Dong, S. X. Du, P. F. Duan, E. E. Eren, J. Z. Fan, J. Fang, S. S. Fang, X. Fang, Y. Fang, L. Fava, F. Feldbauer, G. Felici, C. Q. Feng, E. Fioravanti, M. Fritsch, C. D. Fu, Q. Gao, X. Y. Gao, Y. Gao, Z. Gao, I. Garzia, C. Geng, K. Goetzen, W. X. Gong, W. Gradl, M. Greco, M. H. Gu, Y. T. Gu, Y. H. Guan, A. Q. Guo, L. B. Guo, Y. Guo, Y. P. Guo, Z. Haddadi, A. Hafner, S. Han, Y. L. Han, X. Q. Hao, F. A. Harris, K. L. He, Z. Y. He, T. Held, Y. K. Heng, Z. L. Hou, C. Hu, H. M. Hu, J. F. Hu, T. Hu, Y. Hu, G. M. Huang, G. S. Huang, H. P. Huang, J. S. Huang, X. T. Huang, Y. Huang, T. Hussain, Q. Ji, Q. P. Ji, X. B. Ji, X. L. Ji, L. L. Jiang, L. W. Jiang, X. S. Jiang, X. Y. Jiang, J. B. Jiao, Z. Jiao, D. P. Jin, S. Jin, T. Johansson, A. Julin, N. Kalantar-Nayestanaki, X. L. Kang, X. S. Kang, M. Kavatsyuk, B. C. Ke, P. Kiese, R. Kliemt, B. Kloss, O. B. Kolcu, B. Kopf, M. Kornicer, W. Kuehn, A. Kupsc, J. S. Lange, M. Lara, P. Larin, C. Leng, C. Li, C. H. Li, Cheng Li, D. M. Li, F. Li, G. Li, H. B. Li, J. C. Li, Jin Li, K. Li, K. Li, Lei Li, P. R. Li, T. Li, W. D. Li, W. G. Li, X. L. Li, X. M. Li, X. N. Li, X. Q. Li, Z. B. Li, H. Liang, Y. F. Liang, Y. T. Liang, G. R. Liao, D. X. Lin, B. J. Liu, C. X. Liu, F. H. Liu, Fang Liu, Feng Liu, H. B. Liu, H. H. Liu, H. H. Liu, H. M. Liu, J. Liu, J. B. Liu, J. P. Liu, J. Y. Liu, K. Liu, K. Y. Liu, L. D. Liu, P. L. Liu, Q. Liu, S. B. Liu, X. Liu, X. X. Liu, Y. B. Liu, Z. A. Liu, Zhiqiang Liu, Zhiqing Liu, H. Loehner, X. C. Lou, H. J. Lu, J. G. Lu, R. Q. Lu, Y. Lu, Y. P. Lu, C. L. Luo, M. X. Luo, T. Luo, X. L. Luo, M. Lv, X. R. Lyu, F. C. Ma, H. L. Ma, L. L. Ma, Q. M. Ma, T. Ma, X. N. Ma, X. Y. Ma, F. E. Maas, M. Maggiora, Y. J. Mao, Z. P. Mao, S. Marcello, J. G. Messchendorp, J. Min, T. J. Min, R. E. Mitchell, X. H. Mo, Y. J. Mo, C. Morales Morales, K. Moriya, N. Yu. Muchnoi, H. Muramatsu, Y. Nefedov, F. Nerling, I. B. Nikolaev, Z. Ning, S. Nisar, S. L. Niu, X. Y. Niu, S. L. Olsen, Q. Ouyang, S. Pacetti, P. Patteri, M. Pelizaeus, H. P. Peng, K. Peters, J. Pettersson, J. L. Ping, R. G. Ping, R. Poling, V. Prasad, Y. N. Pu, M. Qi, S. Qian, C. F. Qiao, L. Q. Qin, N. Qin, X. S. Qin, Y. Qin, Z. H. Qin, J. F. Qiu, K. H. Rashid, C. F. Redmer, H. L. Ren, M. Ripka, G. Rong, Ch. Rosner, X. D. Ruan, V. Santoro, A. Sarantsev, M. Savrié, K. Schoenning, S. Schumann, W. Shan, M. Shao, C. P. Shen, P. X. Shen, X. Y. Shen, H. Y. Sheng, W. M. Song, X. Y. Song, S. Sosio, S. Spataro, G. X. Sun, J. F. Sun, S. S. Sun, Y. J. Sun, Y. Z. Sun, Z. J. Sun, Z. T. Sun, C. J. Tang, X. Tang, I. Tapan, E. H. Thorndike, M. Tiemens, M. Ullrich, I. Uman, G. S. Varner, B. Wang, B. L. Wang, D. Wang, D. Y. Wang, K. Wang, L. L. Wang, L. S. Wang, M. Wang, P. Wang, P. L. Wang, S. G. Wang, W. Wang, X. F. Wang, Y. D. Wang, Y. F. Wang, Y. Q. Wang, Z. Wang, Z. G. Wang, Z. H. Wang, Z. Y. Wang, T. Weber, D. H. Wei, J. B. Wei, P. Weidenkaff, S. P. Wen, U. Wiedner, M. Wolke, L. H. Wu, Z. Wu, L. G. Xia, Y. Xia, D. Xiao, H. Xiao, Z. J. Xiao, Y. G. Xie, Q. L. Xiu, G. F. Xu, L. Xu, Q. J. Xu, Q. N. Xu, X. P. Xu, L. Yan, W. B. Yan, W. C. Yan, Y. H. Yan, H. J. Yang, H. X. Yang, L. Yang, Y. Yang, Y. X. Yang, H. Ye, M. Ye, M. H. Ye, J. H. Yin, B. X. Yu, C. X. Yu, H. W. Yu, J. S. Yu, C. Z. Yuan, W. L. Yuan, Y. Yuan, A. Yuncu, A. A. Zafar, A. Zallo, Y. Zeng, B. X. Zhang, B. Y. Zhang, C. Zhang, C. C. Zhang, D. H. Zhang, H. H. Zhang, H. Y. Zhang, J. J. Zhang, J. L. Zhang, J. Q. Zhang, J. W. Zhang, J. Y. Zhang, J. Z. Zhang, K. Zhang, L. Zhang, S. H. Zhang, X. Y. Zhang, Y. Zhang, Y. N. Zhang, Y. H. Zhang, Y. T. Zhang, Yu Zhang, Z. H. Zhang, Z. P. Zhang, Z. Y. Zhang, G. Zhao, J. W. Zhao, J. Y. Zhao, J. Z. Zhao, Lei Zhao, Ling Zhao, M. G. Zhao, Q. Zhao, Q. W. Zhao, S. J. Zhao, T. C. Zhao, Y. B. Zhao, Z. G. Zhao, A. Zhemchugov, B. Zheng, J. P. Zheng, W. J. Zheng, Y. H. Zheng, B. Zhong, L. Zhou, Li Zhou, X. Zhou, X. K. Zhou, X. R. Zhou, X. Y. Zhou, K. Zhu, K. J. Zhu, S. Zhu, X. L. Zhu, Y. C. Zhu, Y. S. Zhu, Z. A. Zhu, J. Zhuang, L. Zotti, B. S. Zou, J. H. Zou

Using a data set of 2.93 fb$^{-1}$ taken at a center-of-mass energy $\sqrt{s}$ = 3.773 GeV with the BESIII detector at the BEPCII collider, we perform a search for an extra U(1) gauge boson, also denoted as a dark photon. Read More

Replacing hand-engineered pipelines with end-to-end deep learning systems has enabled strong results in applications like speech and object recognition. However, the causality and latency constraints of production systems put end-to-end speech models back into the underfitting regime and expose biases in the model that we show cannot be overcome by "scaling up", i.e. Read More

We are concerned with a novel sensor-based gesture input/instruction technology which enables human beings to interact with computers conveniently. The human being wears an emitter on the finger or holds a digital pen that generates a time harmonic point charge. The inputs/instructions are performed through moving the finger or the digital pen. Read More

Argument Component Boundary Detection (ACBD) is an important sub-task in argumentation mining; it aims at identifying the word sequences that constitute argument components, and is usually considered as the first sub-task in the argumentation mining pipeline. Existing ACBD methods heavily depend on task-specific knowledge, and require considerable human efforts on feature-engineering. To tackle these problems, in this work, we formulate ACBD as a sequence labeling problem and propose a variety of Recurrent Neural Network (RNN) based methods, which do not use domain specific or handcrafted features beyond the relative position of the sentence in the document. Read More

Multiple scattering of an electromagnetic wave as it passes through an object is a fundamental problem that limits the performance of current imaging systems. In this paper, we describe a new technique-called Series Expansion with Accelerated Gradient Descent on Lippmann-Schwinger Equation (SEAGLE)-for robust imaging under multiple scattering based on a combination of a new nonlinear forward model and a total variation (TV) regularizer. The proposed forward model can account for multiple scattering, which makes it advantageous in applications where linear models are inaccurate. Read More

This paper studies the asymptotic behavior of smooth solutions to the generalized Hall-magneto-hydrodynamics system (1.1) with one single diffusion on the whole space $\R^3$. We establish that, in the inviscid resistive case, the energy $\|b(t)\|_2^2$ vanishes and $\|u(t)\|_2^2$ converges to a constant as time tends to infinity provided the velocity is bounded in $W^{1-\alpha,\frac3\alpha}(\R^3)$; in the viscous non-resistive case, the energy $\|u(t)\|_2^2$ vanishes and $\|b(t)\|_2^2$ converges to a constant provided the magnetic field is bounded in $W^{1-\beta,\infty}(\R^3)$. Read More

Large-scale multi-relational embedding refers to the task of learning the latent representations for entities and relations in large knowledge graphs. An effective and scalable solution for this problem is crucial for the true success of knowledge-based inference in a broad range of applications. This paper proposes a novel framework for optimizing the latent representations with respect to the \textit{analogical} properties of the embedded entities and relations. Read More

Argumentation mining aims at automatically extracting the premises-claim discourse structures in natural language texts. There is a great demand for argumentation corpora for customer reviews. However, due to the controversial nature of the argumentation annotation task, there exist very few large-scale argumentation corpora for customer reviews. Read More

We are concerned with the inverse scattering problem of recovering an inhomogeneous medium by the associated acoustic wave measurement. We prove that a single far-field pattern of low acoustic frequency determines the values of a perturbation to the refractive index on the corners of its support. As a consequence if the perturbation is piecewise constant with either a polyhedral nest geometry or a known polyhedral cell geometry, we establish the injectivity of the perturbation to far-field map for a fixed incident plane-wave. Read More

In this paper, we study the complementary dual codes in more general setting (which are called Galois LCD codes) by a uniform method. A necessary and sufficient condition for linear codes to be Galois LCD codes is determined, and constacyclic codes to be Galois LCD codes are characterized. Some illustrative examples which constacyclic codes are Galois LCD MDS codes are provided as well. Read More

This paper is concerned with the theoretical study of plasmonic resonances for linear elasticity governed by the Lam\'e system in $\mathbb{R}^3$, and their application for cloaking due to anomalous localized resonances. We derive a very general and novel class of elastic structures that can induce plasmonic resonances. It is shown that if either one of the two convexity conditions on the Lam\'e parameters is broken, then we can construct certain plasmon structures that induce resonances. Read More

The ground-state properties of nuclei with 8 $\le$ Z $\le$ 120 from the proton drip line to the neutron drip line have been investigated using the relativistic continuum Hartree-Bogoliubov (RCHB) theory with the relativistic density functional PC-PK1. With the effects of the continuum included, there are totally 9035 nuclei predicted to be bound, which largely extends the existing nuclear landscapes predicted with other methods. The calculated binding energies, separation energies, neutron and proton Fermi surfaces, root-mean-square (rms) radii of neutron, proton, matter, and charge distributions, ground-state spins and parities are tabulated. Read More

2017Apr
Authors: Derek Ward-Thompson, Kate Pattle, Pierre Bastien, Ray S. Furuya, Woojin Kwon, Shih-Ping Lai, Keping Qiu, David Berry, Minho Choi, Simon Coudé, James Di Francesco, Thiem Hoang, Erica Franzmann, Per Friberg, Sarah F. Graves, Jane S. Greaves, Martin Houde, Doug Johnstone, Jason M. Kirk, Patrick M. Koch, Jungmi Kwon, Chang Won Lee, Di Li, Brenda C. Matthews, Joseph C. Mottram, Harriet Parsons, Andy Pon, Ramprasad Rao, Mark Rawlings, Hiroko Shinnaga, Sarah Sadavoy, Sven van Loo, Yusuke Aso, Do-Young Byun, Eswariah Chakali, Huei-Ru Chen, Mike C. -Y. Chen, Wen Ping Chen, Tao-Chung Ching, Jungyeon Cho, Antonio Chrysostomou, Eun Jung Chung, Yasuo Doi, Emily Drabek-Maunder, Stewart P. S. Eyres, Jason Fiege, Rachel K. Friesen, Gary Fuller, Tim Gledhill, Matt J. Griffin, Qilao Gu, Tetsuo Hasegawa, Jennifer Hatchell, Saeko S. Hayashi, Wayne Holland, Tsuyoshi Inoue, Shu-ichiro Inutsuka, Kazunari Iwasaki, Il-Gyo Jeong, Ji-hyun Kang, Miju Kang, Sung-ju Kang, Koji S. Kawabata, Francisca Kemper, Gwanjeong Kim, Jongsoo Kim, Kee-Tae Kim, Kyoung Hee Kim, Mi-Ryang Kim, Shinyoung Kim, Kevin M. Lacaille, Jeong-Eun Lee, Sang-Sung Lee, Dalei Li, Hua-bai Li, Hong-Li Liu, Junhao Liu, Sheng-Yuan Liu, Tie Liu, A-Ran Lyo, Steve Mairs, Masafumi Matsumura, Gerald H. Moriarty-Schieven, Fumitaka Nakamura, Hiroyuki Nakanishi, Nagayoshi Ohashi, Takashi Onaka, Nicolas Peretto, Tae-Soo Pyo, Lei Qian, Brendan Retter, John Richer, Andrew Rigby, Jean-François Robitaille, Giorgio Savini, Anna M. M. Scaife, Archana Soam, Motohide Tamura, Ya-Wen Tang, Kohji Tomisaka, Hongchi Wang, Jia-Wei Wang, Anthony P. Whitworth, Hsi-Wei Yen, Hyunju Yoo, Jinghua Yuan, Chuan-Peng Zhang, Guoyin Zhang, Jianjun Zhou, Lei Zhu, Philippe André, C. Darren Dowell, Sam Falle, Yusuke Tsukamoto

We present the first results from the B-fields In STar-forming Region Observations (BISTRO) survey, using the Sub-millimetre Common-User Bolometer Array 2 (SCUBA-2) camera, with its associated polarimeter (POL-2), on the James Clerk Maxwell Telescope (JCMT) in Hawaii. We discuss the survey's aims and objectives. We describe the rationale behind the survey, and the questions which the survey will aim to answer. Read More

2017Apr
Authors: BESIII collaboration, M. Ablikim, M. N. Achasov, S. Ahmed, O. Albayrak, M. Albrecht, M. Alekseev, A. Amoroso, F. F. An, Q. An, J. Z. Bai, O. Bakina, R. Baldini Ferroli, Y. Ban, D. W. Bennett, J. V. Bennett, N. Berger, M. Bertani, D. Bettoni, J. M. Bian, F. Bianchi, E. Boger, I. Boyko, R. A. Briere, H. Cai, X. Cai, O. Cakir, A. Calcaterra, G. F. Cao, S. A. Cetin, J. Chai, J. F. Chang, G. Chelkov, G. Chen, H. S. Chen, J. C. Chen, M. L. Chen, P. L. Chen, S. J. Chen, X. R. Chen, Y. B. Chen, X. K. Chu, G. Cibinetto, H. L. Dai, J. P. Dai, A. Dbeyssi, D. Dedovich, Z. Y. Deng, A. Denig, I. Denysenko, M. Destefanis, F. DeMori, Y. Ding, C. Dong, J. Dong, L. Y. Dong, M. Y. Dong, O. Dorjkhaidav, Z. L. Dou, S. X. Du, P. F. Duan, J. Fang, S. S. Fang, X. Fang, Y. Fang, R. Farinelli, L. Fava, S. Fegan, F. Feldbauer, G. Felici, C. Q. Feng, E. Fioravanti, M. Fritsch, C. D. Fu, Gao, Q. Gao, X. L. Gao, Y. Gao, Z. Gao, I. Garzia, K. Goetzen, L. Gong, W. X. Gong, W. Gradl, M. Greco, M. H. Gu, S. Gu, Y. T. Gu, A. Q. Guo, L. B. Guo, R. P. Guo, Y. P. Guo, Z. Haddadi, A. Hafner, S. Han, X. Q. Hao, F. A. Harris, K. L. He, X. Q. He, F. H. Heinsius, T. Held, Y. K. Heng, T. Holtmann, Z. L. Hou, C. Hu, H. M. Hu, T. Hu, Y. Hu, G. S. Huang, J. S. Huang, X. T. Huang, X. Z. Huang, Z. L. Huang, T. Hussain, W. Ikegami Andersson, Q. Ji, Q. P. Ji, X. B. Ji, X. L. Ji, X. S. Jiang, X. Y. Jiang, J. B. Jiao, Z. Jiao, D. P. Jin, S. Jin, T. Johansson, A. Julin, N. Kalantar-Nayestanaki, X. L. Kang, X. S. Kang, M. Kavatsyuk, B. C. Ke, Tabassum KhanKhan, P. Kiese, R. Kliemt, B. Kloss, L. K. Koch, O. B. Kolcu, B. Kopf, M. Kornicer, M. Kuemmel, M. Kuhlmann, A. Kupsc, W. Kühn, J. S. Lange, M. Lara, P. Larin, L. Lavezzi, H. Leithoff, C. Leng, C. Li, ChengLi, D. M. Li, F. Li, F. Y. Li, G. Li, H. B. Li, H. J. Li, J. C. Li, JinLi, K. Li, K. Li, LeiLi, P. L. Li, P. R. Li, Q. Y. Li, T. Li, W. D. Li, W. G. Li, X. L. Li, X. N. Li, X. Q. Li, Z. B. Li, H. Liang, Y. F. Liang, Y. T. Liang, G. R. Liao, D. X. Lin, B. Liu, B. J. Liu, C. X. Liu, D. Liu, F. H. Liu, FangLiu, FengLiu, H. B. Liu, H. H. Liu, H. H. Liu, H. M. Liu, J. B. Liu, J. P. Liu, J. Y. Liu, K. Liu, K. Y. Liu, KeLiu, L. D. Liu, P. L. Liu, Q. Liu, S. B. Liu, X. Liu, Y. B. Liu, Y. Y. Liu, Z. A. Liu, ZhiqingLiu, Y. F. Long, X. C. Lou, H. J. Lu, J. G. Lu, Y. Lu, Y. P. Lu, C. L. Luo, M. X. Luo, T. Luo, X. L. Luo, X. R. Lyu, F. C. Ma, H. L. Ma, L. L. Ma, M. M. Ma, Q. M. Ma, T. Ma, X. N. Ma, X. Y. Ma, Y. M. Ma, F. E. Maas, M. Maggiora, Q. A. Malik, Y. J. Mao, Z. P. Mao, S. Marcello, J. G. Messchendorp, G. Mezzadri, J. Min, T. J. Min, R. E. Mitchell, X. H. Mo, Y. J. Mo, C. Morales Morales, G. Morello, N. Yu. Muchnoi, H. Muramatsu, P. Musiol, A. Mustafa, Y. Nefedov, F. Nerling, I. B. Nikolaev, Z. Ning, S. Nisar, S. L. Niu, X. Y. Niu, S. L. Olsen, Q. Ouyang, S. Pacetti, Y. Pan, P. Patteri, M. Pelizaeus, J. Pellegrino, H. P. Peng, K. Peters, J. Pettersson, J. L. Ping, R. G. Ping, R. Poling, V. Prasad, H. R. Qi, M. Qi, S. Qian, C. F. Qiao, J. J. Qin, N. Qin, X. S. Qin, Z. H. Qin, J. F. Qiu, K. H. Rashid, C. F. Redmer, M. Richter, M. Ripka, G. Rong, Ch. Rosner, X. D. Ruan, A. Sarantsev, M. Savrié, C. Schnier, K. Schoenning, W. Shan, M. Shao, C. P. Shen, P. X. Shen, X. Y. Shen, H. Y. Sheng, J. J. Song, X. Y. Song, S. Sosio, C. Sowa, S. Spataro, G. X. Sun, J. F. Sun, S. S. Sun, X. H. Sun, Y. J. Sun, Y. KSun, Y. Z. Sun, Z. J. Sun, Z. T. Sun, C. J. Tang, X. Tang, I. Tapan, M. Tiemens, TsTsednee, I. Uman, G. S. Varner, B. Wang, B. L. Wang, D. Wang, D. Y. Wang, DanWang, K. Wang, L. L. Wang, L. S. Wang, M. Wang, P. Wang, P. L. Wang, W. P. Wang, X. F. Wang, Y. D. Wang, Y. F. Wang, Y. Q. Wang, Z. Wang, Z. G. Wang, Z. H. Wang, Z. Y. Wang, Z. Y. Wang, T. Weber, D. H. Wei, P. Weidenkaff, S. P. Wen, U. Wiedner, M. Wolke, L. H. Wu, L. J. Wu, Z. Wu, L. Xia, Y. Xia, D. Xiao, Y. J. Xiao, Z. J. Xiao, Y. G. Xie, YuehongXie, X. A. Xiong, Q. L. Xiu, G. F. Xu, J. J. Xu, L. Xu, Q. J. Xu, Q. N. Xu, X. P. Xu, L. Yan, W. B. Yan, W. C. Yan, Y. H. Yan, H. J. Yang, H. X. Yang, L. Yang, Y. H. Yang, Y. X. Yang, M. Ye, M. H. Ye, J. H. Yin, Z. Y. You, B. X. Yu, C. X. Yu, J. S. Yu, C. Z. Yuan, Y. Yuan, A. Yuncu, A. A. Zafar, Y. Zeng, Z. Zeng, B. X. Zhang, B. Y. Zhang, C. C. Zhang, D. H. Zhang, H. H. Zhang, H. Y. Zhang, J. Zhang, J. L. Zhang, J. Q. Zhang, J. W. Zhang, J. Y. Zhang, J. Z. Zhang, K. Zhang, L. Zhang, S. Q. Zhang, X. Y. Zhang, Y. Zhang, Y. Zhang, Y. H. Zhang, Y. T. Zhang, YuZhang, Z. H. Zhang, Z. P. Zhang, Z. Y. Zhang, G. Zhao, J. W. Zhao, J. Y. Zhao, J. Z. Zhao, LeiZhao, LingZhao, M. G. Zhao, Q. Zhao, S. J. Zhao, T. C. Zhao, Y. B. Zhao, Z. G. Zhao, A. Zhemchugov, B. Zheng, J. P. Zheng, W. J. Zheng, Y. H. Zheng, B. Zhong, L. Zhou, X. Zhou, X. K. Zhou, X. R. Zhou, X. Y. Zhou, Y. X. Zhou, K. Zhu, K. J. Zhu, S. Zhu, S. H. Zhu, X. L. Zhu, Y. C. Zhu, Y. S. Zhu, Z. A. Zhu, J. Zhuang, L. Zotti, B. S. Zou, J. H. Zou

We observe for the first time the process $e^{+}e^{-} \rightarrow \eta h_c$ with data collected by the BESIII experiment. Significant signals are observed at the center-of-mass energy $\sqrt{s}=4.226$ GeV, and the Born cross section is measured to be $(9. Read More

With the increasing demands of applications in virtual reality such as 3D films, virtual Human-Machine Interactions and virtual agents, the analysis of 3D human face analysis is considered to be more and more important as a fundamental step for those virtual reality tasks. Due to information provided by an additional dimension, 3D facial reconstruction enables aforementioned tasks to be achieved with higher accuracy than those based on 2D facial analysis. The denser the 3D facial model is, the more information it could provide. Read More

In this short note, we study pairwise edge-disjoint rainbow spanning trees in properly edge-coloured complete graphs, where a graph is rainbow if its edges have distinct colours. Brualdi and Hollingsworth conjectured that every $K_n$ properly edge-coloured by $n-1$ colours has $n/2$ edge-disjoint rainbow spanning trees. Kaneko, Kano and Suzuki later suggested this should hold for every properly edge-coloured $K_n$. Read More

We are motivated by the recent measurements of dust opacity indices beta around young stellar objects (YSOs), which suggest that efficient grain growth may have occurred earlier than the Class I stage. The present work makes use of abundant archival interferometric observations at submillimeter,millimeter, and centimeter wavelength bands to examine grain growth signatures in the dense inner regions (<1000 AU) of nine Class 0 YSOs. A systematic data analysis is performed to derive dust temperatures, optical depths, and dust opacity indices based on single-component modified black body fittings to the spectral energy distributions (SEDs). Read More

Resistively detected NMR (RDNMR) based on dynamic nuclear polarization (DNP) in a quantum Hall ferromagnet (QHF) is a highly-sensitive method for the discovery of fascinating quantum Hall phases; however, the mechanism of this DNP and in particular the role of quantum Hall edge states in it are unclear. Here we demonstrate the important but previously unrecognized effect of chiral edge modes on the nuclear spin polarization. A side-by-side comparison of the RDNMR signals from Hall bar and Corbino disk configurations allows us to distinguish the contributions of bulk and edge states to DNP in QHF. Read More

In this paper, we provide two methods of constructing quantum codes from linear codes over finite chain rings. The first one is derived from the Calderbank-Shor-Steane (CSS) construction applied to self-dual codes over finite chain rings. The second construction is derived from the CSS construction applied to Gray images of the linear codes over finite chain ring $\mathbb{F}_{p^{2m}}+u\mathbb{F}_{p^{2m}}$. Read More

Recent studies have shown that embedding textual relations using deep neural networks greatly helps relation extraction. However, many existing studies rely on supervised learning; their performance is dramatically limited by the availability of training data. In this work, we generalize textual relation embedding to the distant supervision setting, where much larger-scale but noisy training data is available. Read More

This paper addresses a challenging problem -- how to generate multi-view cloth images from only a single view input. To generate realistic-looking images with different views from the input, we propose a new image generation model termed VariGANs that combines the strengths of the variational inference and the Generative Adversarial Networks (GANs). Our proposed VariGANs model generates the target image in a coarse-to-fine manner instead of a single pass which suffers from severe artifacts. Read More

In this work, we report a polarized Raman study on the vibrational properties of the InAs/InAs1-xSbx SLs as well as selected InAs1-xSbx alloys, all grown on GaSb substrates by either MBE or MOCVD, from both growth surface and cleaved edge. Read More

We present RACE, a new dataset for benchmark evaluation of methods in the reading comprehension task. Collected from the English exams for middle and high school Chinese students in the age range between 12 to 18, RACE consists of near 28,000 passages and near 100,000 questions generated by human experts (English instructors), and covers a variety of topics which are carefully designed for evaluating the students' ability in understanding and reasoning. In particular, the proportion of questions that requires reasoning is much larger in RACE than that in other benchmark datasets for reading comprehension, and there is a significant gap between the performance of the state-of-the-art models (43%) and the ceiling human performance (95%). Read More

In this paper, we study the heat engine where charged AdS black holes surrounded by dark energy is the working substance and the mechanical work is done via $PdV$ term in the first law of black hole thermodynamics in the extended phase space. We first investigate the effects of a kind of dark energy (quintessence field in this paper) on the efficiency of the RN-AdS black holes as heat engine defined as a rectangle closed path in the $P-V$ plane. We get the exact efficiency formula and find that quintessence field can improve the heat engine efficiency which will increase as the field density $\rho_q$ grows. Read More

The time-of-flight system consisting of plastic scintillation counters plays an important role for particle identification in the BESIII experiment at the BEPCII double ring $e^+e^-$ collider. Degradation of the detection efficiency of the barrel TOF system has been observed since the start of physical data taking and this effect has triggered intensive and systematic studies of aging effects of the detector. The aging rates of the technical attenuation lengths and relative gains are obtained based on the data acquired in past several years. Read More

Rooted from the gas kinetics, the lattice Boltzmann method is a powerful tool in modeling hydrodynamics. In the past decade, it has been extended to simulate the rarefied gas flow beyond the Navier-Stokes level, either by using the high-order Gauss-Hermite quadrature, or by introducing the relaxation time that is a function of the gas-wall distance. While the former method, with a limited number of discrete velocities (i. Read More

Efimov effect in few-body physics shows many interesting properties and the most prominent one is discrete scale invariance. Here we report the discovery of log-periodic oscillations on the magnetoresistance of stoichiometric single-crystal ZrTe5 in the ultra-quantum regime, which are virtually the most accurate manifestation of the discrete scale invariance so far with up to five periods. Characterized by this feature, the Efimov bound states have been firstly revealed in a fermionic system and even in any condensed matter systems, by showing up to five observable bound states for the first time. Read More

With electron and hole pockets touching at the Weyl node, type-II Weyl semimetal is a newly proposed topological state distinct from its type-I cousin. We numerically study the localization effect for tilted type-I as well as type-II Weyl semimetals and give the global phase diagram. For dis- ordered type-I Weyl semimetal, an intermediate three-dimensional quantum anomalous Hall phase is confirmed between Weyl semimetal phase and diffusive metal phase. Read More

This paper is concerned with the intrinsic geometric structure of interior transmission eigenfunctions arising in wave scattering theory. We numerically show that the aforementioned geometric structure can be much delicate and intriguing. The major findings can be roughly summarized as follows. Read More

High dimensional sparse learning has imposed a great computational challenge to large scale data analysis. In this paper, we are interested in a broad class of sparse learning approaches formulated as linear programs parametrized by a {\em regularization factor}, and solve them by the parametric simplex method (PSM). Our parametric simplex method offers significant advantages over other competing methods: (1) PSM naturally obtains the complete solution path for all values of the regularization parameter; (2) PSM provides a high precision dual certificate stopping criterion; (3) PSM yields sparse solutions through very few iterations, and the solution sparsity significantly reduces the computational cost per iteration. Read More

The projective special linear group $\PSL_2(n)$ is $2$-transitive for all primes $n$ and $3$-homogeneous for $n \equiv 3 \pmod{4}$ on the set $\{0,1, \cdots, n-1, \infty\}$. It is known that the extended odd-like quadratic residue codes are invariant under $\PSL_2(n)$. Hence, the extended quadratic residue codes hold an infinite family of $2$-designs for primes $n \equiv 1 \pmod{4}$, an infinite family of $3$-designs for primes $n \equiv 3 \pmod{4}$. Read More

Nonlinear optimal control problems in Hilbert spaces are considered for which we derive approximation theorems for Galerkin approximations. Approximation theorems are available in the literature. The originality of our approach relies on the identification of a set of natural assumptions that allows us to deal with a broad class of nonlinear evolution equations and cost functionals for which we derive convergence of the value functions associated with the optimal control problem of the Galerkin approximations. Read More

Citation sentiment analysis is an important task in scientific paper analysis. Existing machine learning techniques for citation sentiment analysis are focusing on labor-intensive feature engineering, which requires large annotated corpus. As an automatic feature extraction tool, word2vec has been successfully applied to sentiment analysis of short texts. Read More

Recently, Chamseddine and Mukhanov introduced a higher-derivative scalar-tensor theory which leads to a modified Friedmann equation allowing for bouncing solutions. As we note in the present work, this Friedmann equation turns out to reproduce exactly the loop quantum cosmology effective dynamics for a flat isotropic and homogeneous space-time. We generalize this result to obtain a class of scalar-tensor theories, belonging to the family of mimetic gravity, which all reproduce the loop quantum cosmology effective dynamics for flat, closed and open isotropic and homogeneous space-times. Read More

In comparison with document summarization on the articles from social media and newswire, argumentative zoning (AZ) is an important task in scientific paper analysis. Traditional methodology to carry on this task relies on feature engineering from different levels. In this paper, three models of generating sentence vectors for the task of sentence classification were explored and compared. Read More