G. Shaughnessy - Argonne and Northwestern

G. Shaughnessy
Are you G. Shaughnessy?

Claim your profile, edit publications, add additional information:

Contact Details

Name
G. Shaughnessy
Affiliation
Argonne and Northwestern
City
Atlanta
Country
United States

Pubs By Year

External Links

Pub Categories

 
High Energy Physics - Phenomenology (50)
 
High Energy Physics - Experiment (25)
 
High Energy Astrophysical Phenomena (10)
 
Cosmology and Nongalactic Astrophysics (5)
 
Astrophysics (5)
 
Instrumentation and Methods for Astrophysics (1)

Publications Authored By G. Shaughnessy

After the extraordinary discovery of the Higgs boson at the LHC, the next goal is to pin down its underlying dynamics by measuring the Higgs self-couplings, along with its couplings to gauge and matter particles. As a prototype model of new physics in the scalar sector, we consider the Two Higgs Doublet Model (2HDM) with CP-conservation, and evaluate the prospects for measuring the trilinear scalar couplings among the CP-even Higgs bosons $h$ and $H$ ($\lambda^{hhh}$, $\lambda^{hhH}$, $\lambda^{hHH}$) at LHC14. The continuum and resonant production of CP-even Higgs boson pairs, $hh$ and $hH$, offer complementary probes of the scalar potential away from the light-Higgs decoupling limit. Read More

We advocate a search for an extended scalar sector at the LHC via $hh$ production, where $h$ is the 125 GeV Higgs boson. A resonance feature in the $hh$ invariant mass is a smoking gun of an $s$-channel heavy Higgs resonance, $H$. With one $h$ decaying to two photons and the other decaying to $b$-quarks, the resonant signal may be discoverable above the $hh$ continuum background for $M_H<$ 1 TeV. Read More

We consider a simplified model of fermionic dark matter which couples exclusively to the right-handed top quark via a renormalizable interaction with a color-charged scalar. We first compute the relic abundance of this type of dark matter and investigate constraints placed on the model parameter space by the latest direct detection data. We also perform a detailed analysis for the production of dark matter at the LHC for this model. Read More

We simulate the measurement of the triscalar Higgs coupling at LHC(8,14) via pair production of h(125 GeV). We find that the most promising hh final state is bb gamma gamma. We account for deviations of the triscalar coupling from its SM value and study the effects of this coupling on the hh cross-section and distributions with cut-based and multivariate methods. Read More

In this Report we discuss the four complementary searches for the identity of dark matter: direct detection experiments that look for dark matter interacting in the lab, indirect detection experiments that connect lab signals to dark matter in our own and other galaxies, collider experiments that elucidate the particle properties of dark matter, and astrophysical probes sensitive to non-gravitational interactions of dark matter. The complementarity among the different dark matter searches is discussed qualitatively and illustrated quantitatively in several theoretical scenarios. Our primary conclusion is that the diversity of possible dark matter candidates requires a balanced program based on all four of those approaches. Read More

2013Oct

This report summarizes the work of the Energy Frontier Higgs Boson working group of the 2013 Community Summer Study (Snowmass). We identify the key elements of a precision Higgs physics program and document the physics potential of future experimental facilities as elucidated during the Snowmass study. We study Higgs couplings to gauge boson and fermion pairs, double Higgs production for the Higgs self-coupling, its quantum numbers and $CP$-mixing in Higgs couplings, the Higgs mass and total width, and prospects for direct searches for additional Higgs bosons in extensions of the Standard Model. Read More

The discovery at the LHC of a scalar particle with properties that are so far consistent with the SM Higgs boson is one of the most important advances in the history of particle physics. The challenge of future collider experiments is to determine whether its couplings will show deviations from the SM Higgs, as this would indicate new physics at the TeV scale, and also to probe the flavor structure of the Yukawa couplings. As a benchmark alternative to the SM Higgs, we consider a generic two Higgs doublet model (2HDM) and analyze the precision to which the LHC14, an ILC250, 500, 1000 GeV and a 125 GeV Muon Collider (MC) can determine the gauge and Yukawa couplings. Read More

The historic LHC discovery of the 125 GeV particle with properties that closely resemble the Standard Model (SM) Higgs boson verifies our understanding of electroweak symmetry breaking, but solidifies the need for a resolution to the hierarchy problem. Many extensions of the SM that address the hierarchy problem contain a non-minimal Higgs sector. Therefore, as a benchmark alternative to the SM Higgs mechanism, we study a general 2 Higgs doublet model (2HDM-G) framework for evaluating future sensitivity to Higgs couplings. Read More

We examine the NMSSM at the cosmic frontier in the post Higgs discovery world. For DM relic abundance consistent with measurement, we find the neutralino can either be singlino or bino dominated. Wino and higgsino DM generally yield a lower abundance, but offer opportunities of detection at IceCube. Read More

As direct and indirect dark matter detection experiments continue to place stringent constraints on WIMP masses and couplings, it becomes imperative to expand the scope of the search for particle dark matter by looking in new and exotic places. One such place may be the core of active galactic nuclei where the density of dark matter is expected to be extremely high. Recently, several groups have explored the possibility of observing signals of dark matter from its interactions with the high-energy jets emanating from these galaxies. Read More

Lines in the energy spectrum of gamma rays are a fascinating experimental signal, which are often considered "smoking gun" evidence of dark matter annihilation. The current generation of gamma ray observatories are currently closing in on parameter space of great interest in the context of dark matter which is a thermal relic. We consider theories in which the dark matter's primary connection to the Standard Model is via the top quark, realizing strong gamma ray lines consistent with a thermal relic through the forbidden channel mechanism proposed in the Higgs in Space Model. Read More

The era of indirect detection searches for dark matter has begun, with the sensitivities of gamma-ray detectors now approaching the parameter space relevant for weakly interacting massive particles. In particular, gamma ray lines would be smoking gun signatures of dark matter annihilation, although they are typically suppressed compared to the continuum. In this paper, we pay particular attention to the 1-loop continuum generated together with the gamma-ray lines and investigate under which conditions a dark matter model can naturally lead to a line signal that is relatively enhanced. Read More

We study a two Higgs doublet model augmented by a scalar dark matter particle that provides an excellent fit to the LHC Higgs data and the Fermi-LAT 135 GeV line. The heavy CP-even Higgs boson, which predominantly mediates annihilation and scattering, must have a coupling to weak gauge bosons at or below percent level to suppress the continuum gamma-ray spectrum below the limit from the Fermi-LAT data and the anti-proton spectrum constrained by the PAMELA data. Discovering or excluding this CP-even Higgs boson at the LHC with a mass between 265 and 280 GeV and an enhanced diphoton branching ratio is crucial to test this scenario. Read More

We study the consistency of two Higgs doublet models in light of the new bosonic particle discovery at the LHC. We work within a general setup that we call the 2HDM-X, in which the quarks couple to both scalar doublets with aligned couplings such that flavor-changing neutral currents are absent at tree level. The 2HDM-X encompasses the traditional Type I, Type II, lepton specific, and flipped models, but also provides for more general possibilities. Read More

We interpret the new particle at the Large Hadron Collider as a CP-even scalar and investigate its electroweak quantum number. Assuming an unbroken custodial invariance as suggested by precision electroweak measurements, only four possibilities are allowed if the scalar decays to pairs of gauge bosons, as exemplified by a dilaton/radion, a non-dilatonic electroweak singlet scalar, an electroweak doublet scalar, and electroweak triplet scalars. We show that current LHC data already strongly disfavor both the dilatonic and non-dilatonic singlet imposters. Read More

Fermi-LAT has confirmed the excess in cosmic positron fraction observed by PAMELA, which could be explained by dark matter annihilating or decaying in the center of the galaxy. Most existing models postulate that the dark matter annihilates or decays into final states with two or four leptons, which would produce diffuse gamma ray emissions that are in tension with data measured by Fermi-LAT. We point out that the tension could be alleviated if the dark matter decays into three-body final states with a pair of leptons and a missing particle. Read More

Current limits from the Large Hadron Collider exclude a standard model-like Higgs mass above 150 GeV, by placing an upper bound on the Higgs production rate. We emphasize that, alternatively, the limit could be interpreted as a lower bound on the total decay width of the Higgs boson. If the invisible decay width of the Higgs is of the same order as the visible decay width, a heavy Higgs boson could be consistent with null results from current searches. Read More

We investigate the potential to observe double parton scattering at the Large Hadron Collider in pp -> W bb X -> mu nu bb X at 7 TeV. Our analysis tests the efficacy of several kinematic variables in isolating the double parton process of interest from the single parton process and relevant backgrounds for the first 10/fb of integrated luminosity. These variables are constructed to expose the independent nature of the two subprocesses in double parton scattering, pp -> mu nu and pp -> bb X. Read More

We investigate the potential to observe double parton scattering at the Large Hadron Collider in p p -> W b bbar X -> l nu b bbar X at 7 TeV. Our analysis tests the efficacy of several kinematic variables in isolating the double parton process of interest from the single parton process and relevant backgrounds for the first 10 inverse fb of integrated luminosity. These variables are constructed to expose the independent nature of the two subprocesses in double parton scattering, pp -> l nu X and pp -> b bbar X. Read More

An electroweak singlet scalar can couple to pairs of vector bosons through loop-induced dimension five operators. Compared to a Standard Model Higgs boson, the singlet decay widths in the diphotons and Z gamma channels are generically enhanced, while decays into massive final states like WW and ZZ are kinematically disfavored. The overall event rates into gamma gamma and Z gamma can exceed the Standard Model expectations by orders of magnitude. Read More

Alignment of the main energy fluxes along a straight line in a target plane has been observed in families of cosmic ray particles detected in the Pamir mountains. The fraction of events with alignment is statistically significant for families with superhigh energies and large numbers of hadrons. This can be interpreted as evidence for coplanar hard-scattering of secondary hadrons produced in the early stages of the atmospheric cascade development. Read More

We present a benchmark in the parameter space of the Next-to-Minimal Supersymmetric Standard Model (NMSSM) that provides for a dramatic multi-lepton signal and no jets containing 5 or more leptons resulting from the cascade decays of the third lightest neutralino, $\chi^{0}_{3}$, and the lightest chargino, $\chi^{\pm}_{1}$, via light charged sleptons. This is a very clean signal with almost no Standard Model (SM) background. In some cases, a total signal of $\ge 3 $leptons + 0 jets can be detected at the $5 \sigma$ level at the LHC running at $\sqrt{s}=7$ TeV with approximately 3 fb$^{-1}$ of data and with less than 1 fb$^{-1}$ when running at $\sqrt{s}=14$ TeV. Read More

If the excess events from the CoGeNT experiment arise from elastic scatterings of a light dark matter off the nuclei, crossing symmetry implies non-vanishing annihilation cross-sections of the light dark matter into hadronic final states inside the galactic halo, which we confront with the anti-proton spectrum measured by the PAMELA collaboration. We consider two types of effective interactions between the dark matter and the quarks: 1) contact interactions from integrating out heavy particles and 2) long-range interactions due to the electromagnetic properties of the dark matter. The lack of excess in the anti-proton spectrum results in tensions for a scalar and, to a less extent, a vector dark matter interacting with the quarks through the Higgs portal. Read More

We investigate the production of beyond-the-standard-model color-sextet vector bosons at the Large Hadron Collider and their decay into a pair of same-sign top quarks. We demonstrate that the energy of the charged lepton from the top quark semi-leptonic decay serves as a good measure of the top-quark polarization, which, in turn determines the quantum numbers of the boson and distinguishes vector bosons from scalars. Read More

Indirect Dark Matter searches are based on the observation of secondary particles produced by the annihilation or decay of Dark Matter. Among them, gamma-rays are perhaps the most promising messengers, as they do not suffer deflection or absorption on Galactic scales, so their observation would directly reveal the position and the energy spectrum of the emitting source. Here, we study the detailed gamma-ray energy spectrum of Kaluza--Klein Dark Matter in a theory with 5 Universal Extra Dimensions. Read More

A light Higgs boson is preferred by $M_W$ and $m_t$ measurements. A complex scalar singlet addition to the Standard Model allows a better fit to these measurements through a new light singlet dominated state. It then predicts a light Dark Matter (DM) particle that can explain the signals of DM scattering from nuclei in the CoGeNT and DAMA/LIBRA experiments. Read More

The CoGeNT and DAMA/LIBRA experiments have found evidence for the spin-independent scattering from nuclei of a light dark matter (DM) particle, 7-12 GeV, which is not excluded by the XENON DM experiments. We show that this putative DM signal can be explained by a complex scalar singlet extension of the standard model (CSM), with a thermal cosmological DM density, and a Higgs sector that is consistent with LEP constraints. We make predictions for the masses, production, and decays of the two Higgs mass eigenstates and describe how the Higgs and DM particles can be discovered at the LHC. Read More

We explore the potential for discovery of an exotic color sextet scalar in same-sign top quark pair production in early running at the LHC. We present the first phenomenological analysis at colliders of color sextet scalars with full top quark spin correlations included. We demonstrate that one can measure the scalar mass, the top quark polarization, and confirm the scalar resonance with 1 inverse fb of integrated luminosity. Read More

Prospects for discovery of the standard model Higgs boson are examined at center of mass energies of $7$ and $10$ TeV at the CERN Large Hadron Collider. We perform a simulation of the signal and principal backgrounds for Higgs boson production and decay in the $W^+ W^-$ dilepton mode, finding good agreement with the ATLAS and CMS collaboration estimates of signal significance at 14 TeV for Higgs boson masses near $m_H = 160$~GeV. At the lower energy of $7$~TeV, using the same analysis cuts as these collaborations, we compute expected signal sensitivities of about $2$ standard deviations ($\sigma$'s) at $m_H = 160$~GeV in the ATLAS case, and about 3. Read More

We adopt a Markov Chain Monte Carlo method to examine various new physics models which can generate the forward-backward asymmetry in top quark pair production observed at the Tevatron by the CDF Collaboration. We study the following new physics models: (1) exotic gluon $G^\prime$, (2) extra $Z^\prime$ boson with flavor-conserving interaction, (3) extra $Z^\prime$ with flavor-violating $u$-$t$-$Z^\prime$ interaction, (4) extra $W^\prime$ with flavor-violating $d$-$t$-$W^\prime$ interaction, and (5) extra scalars $S$ and $S^\pm$ with flavor-violating $u$-$t$-$S$ and $d$-$t$-$S^\pm$ interactions. After combining the forward-backward asymmetry with the measurement of the top pair production cross section and the $t\bar{t}$ invariant mass distribution at the Tevatron, we find that an axial vector exotic gluon $G^\prime$ of mass about $1 {\rm TeV}$ or $2 {\rm TeV}$ or a $W^\prime$ of mass about $2 {\rm TeV}$ offer an improvement over the Standard Model. Read More

We take the recent result from the CDMS collaboration as a hint that the dark matter has an elastic scattering cross section with the nucleon in the vicinity of 10^-7 pb. By crossing symmetry such a cross section implies annihilation of dark matter into hadrons inside the halo, resulting in an anti-proton flux that could be constrained by data from the PAMELA collaboration if one includes a large boost factor necessary to explain the PAMELA excess in the positron fraction. As an illustration, we present a model-independent analysis for a fermionic dark matter and study the upper bound on the boost factor using the PAMELA anti-proton flux. Read More

We consider the possibility that the Higgs can be produced in dark matter annihilations, appearing as a line in the spectrum of gamma rays at an energy determined by the masses of the WIMP and the Higgs itself. We argue that this phenomenon occurs generally in models in which the the dark sector has large couplings to the most massive states of the SM and provide a simple example inspired by the Randall-Sundrum vision of dark matter, whose 4d dual corresponds to electroweak symmetry-breaking by strong dynamics which respect global symmetries that guarantee a stable WIMP. The dark matter is a Dirac fermion that couples to a Z' acting as a portal to the Standard Model through its strong coupling to top quarks. Read More

We evaluate the kinematic distributions in phase space of 4-parton final-state subprocesses produced by double parton scattering, and we contrast these with the final-state distributions that originate from conventional single parton scattering. Our goal is to establish the distinct topologies of events that arise from these two sources and to provide a methodology for experimental determination of the relative magnitude of the double parton and single parton contributions at Large Hadron Collider energies. We examine two cases in detail, the $b \bar{b} \rm{jet jet}$ and the 4 jet final states. Read More

We study the production of a Standard Model (SM) Higgs boson in association with a single top quark and either a light jet or $W$-boson at the LHC with a center of mass energy of 14 TeV. Due to the destructive interference of the contributing SM diagrams, the value of the top Yukawa coupling and the sign of the $WWh$ coupling may be probed for Higgs masses above 150 GeV where $WW$ and $ZZ$ are the dominant Higgs decays. We consider Higgs masses of $m_{h}=120$, 150, 180, and 200 GeV and devise experimental cuts to extract the signal from SM backgrounds and measure the top Yukawa coupling. Read More

We analyze new diffuse gamma-ray data from the Fermi Gamma-ray Space Telescope, which do not confirm an excess in the EGRET data at galactic mid-latitudes, in combination with measurements of electron and positron fuxes from PAMELA, Fermi and HESS within the context of three possible sources: dark matter (DM) annihilation or decay into charged leptons, and a continuum distribution of pulsars. We allow for variations in the backgrounds, consider several DM halo profiles, and account for systematic uncertainties in data where possible. We find that all three scenarios represent the data well. Read More

The spectrum of photons arising from WIMP annihilation carries a detailed imprint of the structure of the dark sector. In particular, loop-level annihilations into a photon and another boson can in principle lead to a series of lines (a WIMP forest) at energies up to the WIMP mass. A specific model which illustrates this feature nicely is a theory of two universal extra dimensions compactified on a chiral square. Read More

We make a complete catalog of extended Higgs sectors involving SU(2)_L doublets and singlets, subject to natural flavor conservation. In each case we present the couplings of a light neutral CP-even Higgs state h in terms of the model parameters, and identify which models are distinguishable in principle based on this information. We also give explicit expressions for the model parameters in terms of h couplings and exhibit the behaviors of the couplings in the limit where the deviations from the Standard Model Higgs couplings are small. Read More

Recent observatons of high-energy positrons and electrons by the PAMELA and ATIC experiments may be an indication of the annihilation of dark matter into leptons and not quarks. This leptonic connection was foreseen already some years ago in two different models of radiative neutrino mass. We discuss here the generic interactions (nu eta^0 - l eta^+) chi and l^c zeta^- chi^c which allow this to happen, where chi and/or chi^c are fermionic dark-matter candidates. Read More

We analyze a simple extension of the Standard Model (SM) obtained by adding a complex singlet to the scalar sector (cxSM). We show that the cxSM can contain one or two viable cold dark matter candidates and analyze the conditions on the parameters of the scalar potential that yield the observed relic density. When the cxSM potential contains a global U(1) symmetry that is both softly and spontaneously broken, it contains both a viable dark matter candidate and the ingredients necessary for a strong first order electroweak phase transition as needed for electroweak baryogenesis. Read More

Assuming that the positron excess in PAMELA satellite data is a consequence of annihilations of cold dark matter, we consider from a model-independent perspective if the data show a preference for the spin of dark matter. We then perform a general analysis of annihilations into two-body final states to determine what weighted combination of channels best describes the data. Read More

One of the first orders of business for LHC experiments after beam turn-on will be to calibrate the detectors using well understood Standard Model (SM) processes such as W and Z production and ttbar production. These familiar SM processes can be used to calibrate the electromagnetic and hadronic calorimeters, and also to calibrate the associated missing transverse energy signal. However, the presence of new physics may already affect the results coming from these standard benchmark processes. Read More

New experiments designed to discover a weakly interacting dark matter (DM) particle via spin dependent scattering can distinguish models of electroweak symmetry breaking. The plane of spin dependent versus spin independent DM scattering cross sections is a powerful model diagnostic. We detail representative predictions of mSUGRA, singlet extended SM and MSSM, a new Dirac neutrino, Littlest Higgs with T-parity (LHT) and Minimal Universal Extra Dimensions (mUED) models. Read More

Dark matter annihilations in the Sun to neutrino-antineutrino pairs have striking signatures in neutrino detectors such as IceCube and KM3. We make a model independent study of the signals after propagation of the neutrinos from the center of the Sun to the Earth. A large spin-dependent DM capture cross section in the Sun make the discovery prospects robust. Read More

Neutralino annihilations in the Sun to weak boson and top quark pairs lead to high-energy neutrinos that can be detected by the IceCube and KM3 experiments in the search for neutralino dark matter. We calculate the neutrino signals from real and virtual WW, ZZ, Zh, and $t \bar t$ production and decays, accounting for the spin-dependences of the matrix elements, which can have important influences on the neutrino energy spectra. We take into account neutrino propagation including neutrino oscillations, matter-resonance, absorption, and nu_tau regeneration effects in the Sun and evaluate the neutrino flux at the Earth. Read More

Gauge singlet extensions of the Standard Model (SM) scalar sector may help remedy its theoretical and phenomenological shortcomings while solving outstanding problems in cosmology. Depending on the symmetries of the scalar potential, such extensions may provide a viable candidate for the observed relic density of cold dark matter or a strong first order electroweak phase transition needed for electroweak baryogenesis. Using the simplest extension of the SM scalar sector with one real singlet field, we analyze the generic implications of a singlet-extended scalar sector for Higgs boson phenomenology at the Large Hadron Collider (LHC). Read More

We study the phenomenology of gauge singlet extensions of the Standard Model scalar sector and their implications for the electroweak phase transition. We determine the conditions on the scalar potential parameters that lead to a strong first order phase transition as needed to produce the observed baryon asymmetry of the universe. We analyze the constraints on the potential parameters derived from Higgs boson searches at LEP and electroweak precision observables. Read More

One way to ameliorate the SUSY flavor and CP problems is to postulate that scalar masses lie in the TeV or beyond regime. For example, the focus point (FP) region of the minimal supergravity (mSUGRA) model is especially compelling in that heavy scalar masses can co-exist with low fine-tuning while yielding the required relic abundance of cold dark matter (via a mixed higgsino-bino neutralino). We examine many of the characteristics of collider events expected to arise at the CERN LHC in models with multi-TeV scalars, taking the mSUGRA FP region as a case study. Read More

We investigate the correlated predictions of singlet extended MSSM models for direct detection of the lightest neutralino with its cosmological relic density. To illustrate the general effects of the singlet, we take heavy sleptons and squarks. We apply LEP, $(g-2)_\mu$ and perturbativity constraints. Read More

Supersymmetry is one of the best motivated possibilities for new physics at the TeV scale. However, both concrete string constructions and phenomenological considerations suggest the possibility that the physics at the TeV scale could be more complicated than the Minimal Supersymmetric Standard Model (MSSM), e.g. Read More

We explore the collider signatures of the Higgs sectors in singlet-extended MSSM models. We find that even with reduced couplings due to singlet mixing, a significant portion of the parameter spaces have a discoverable Higgs via traditional decay modes or via invisible decays (directly to neutralinos or through cascade decays to neutralinos and neutrinos). For illustrative points in parameter space we give the likelihood of Higgs discovery. Read More