G. M. Luke - Columbia University

G. M. Luke
Are you G. M. Luke?

Claim your profile, edit publications, add additional information:

Contact Details

Name
G. M. Luke
Affiliation
Columbia University
City
New York
Country
United States

Pubs By Year

Pub Categories

 
Physics - Strongly Correlated Electrons (46)
 
Physics - Superconductivity (14)
 
Physics - Materials Science (8)
 
Physics - Other (3)
 
Quantum Physics (1)
 
Physics - Statistical Mechanics (1)

Publications Authored By G. M. Luke

We report neutron scattering measurements on Er$_2$Pt$_2$O$_7$, a new addition to the XY family of frustrated pyrochlore magnets. Symmetry analysis of our elastic scattering data shows that Er$_2$Pt$_2$O$_7$ is the first XY pyrochlore to order into the $k=0$, $\Gamma_7$ magnetic structure (the Palmer-Chalker state), at $T_N = 0.38$ K. Read More

Neutron diffraction and muon spin relaxation ($\mu$SR) studies are presented for the newly characterized polymorph of NiNb$_2$O$_6$ ($\beta$-NiNb$_2$O$_6$) with space group P4$_2$/n and $\mu$SR data only for the previously known columbite structure polymorph with space group Pbcn. The magnetic structure of the P4$_2$/n form was determined from neutron diffraction using both powder and single crystal data. Powder neutron diffraction determined an ordering wave vector $\vec{k}$ = ($\frac{1}{2},\frac{1}{2},\frac{1}{2}$). Read More

We present muon spin rotation ($\mu$SR) measurements on the noncentrosymmetric superconductor PbTaSe$_2$. From measurements in an applied transverse field between $H_{c1}$ and $H_{c2}$, we extract the superfluid density as a function of temperature in the vortex state. This data can be fit with a fully gapped two-band model, consistent with previous evidence from ARPES, thermal conductivity, and resistivity. Read More

We use neutron diffraction and muon spin relaxation to study the effect of in-plane uniaxial pressure on the antiferromagnetic (AF) orthorhombic phase in BaFe$_2$As$_2$ and its Co- and Ni-substituted members near optimal superconductivity. In the low temperature AF ordered state, uniaxial pressure necessary to detwin the orthorhombic crystals also increases the magnetic ordered moment, reaching an 11$\%$ increase under 40 MPa for BaFe$_{1.9}$Co$_{0. Read More

Frustrated quantum magnets pose well-defined questions concerning quantum fluctuation effects and the nature of the many-body wavefunction, which challenge theory, numerics, experiment and materials synthesis. The S = 1/2 triangular-lattice antiferromagnet (TLAF) presents a case where classical order is strongly suppressed by quantum fluctuations, leading to extensive renormalization of physical properties at all energy scales. However, purely two-dimensional (2D) models are difficult to realise in the 3D world and their physics is controlled by the Mermin-Wagner theorem, which describes the dominant effects of additional thermal fluctuations. Read More

Ba$_3$Mn$_2$O$_8$ is a geometrically frustrated spin dimer compound. We investigate the effect of site disorder on the zero field phase diagram of this material by considering the solid solution Ba$_{3}$(Mn$_{1-x}$V$_{x}$)$_{2}$O$_{8}$, where nonmagnetic V$^{5+}$ ions partially substitute magnetic Mn$^{5+}$ ions. This substitution results in unpaired $S=1$ moments for half-substituted dimers, which are ungapped and therefore susceptible to types of magnetic order not present in the parent compound. Read More

Below $T_N = 1.1$K, the XY pyrochlore Er$_2$Ti$_2$O$_7$ orders into a $k=0$ non-collinear, antiferromagnetic structure referred to as the $\psi_2$ state. The magnetic order in Er$_2$Ti$_2$O$_7$ is known to obey conventional three dimensional (3D) percolation in the presence of magnetic dilution, and in that sense is robust to disorder. Read More

The gadolinium pyrochlores, Gd$_2B_2$O$_7$, are amongst the best realizations of antiferromagnetically coupled Heisenberg spins on a pyrochlore lattice. We present a magnetic characterization of Gd$_2$Pt$_2$O$_7$, a unique member of this family. Magnetic susceptibility, heat capacity, and muon spin relaxation measurements show that Gd$_2$Pt$_2$O$_7$ undergoes an antiferromagnetic ordering transition at $T_N = 1. Read More

We present a comprehensive set of elastic and inelastic neutron scattering measurements on a range of Fe-doped samples of U(Ru$_{1-x}$Fe$_x$)$_2$Si$_2$ with 0.01~$\le~x~\le$~0.15. Read More

We report a neutron scattering study of the magnetic excitation spectrum in each of the three temperature and pressure driven phases of URu$_2$Si$_2$. We find qualitatively similar excitations throughout the (H0L) scattering plane in the hidden order and large moment phases, with no changes in the $\hbar\omega$-widths of the excitations at the $\Sigma$~=~(1.407,0,0) and $Z$~=~(1,0,0) points, within our experimental resolution. Read More

We present magnetometry and muon spin rotation ($\mu$SR) measurements of the superconducting dichalcogenide Ir$_{0.95}$Pt$_{0.05}$Te$_2$. Read More

The ytterbium pyrochlore magnets, Yb2B2O7 (B = Sn, Ti, Ge) are well described by S_eff = 1/2 quantum spins decorating a network of corner-sharing tetrahedra and interacting via anisotropic exchange. Structurally, only the non-magnetic B-site cation, and hence, primarily the lattice parameter, is changing across the series. Nonetheless, a range of magnetic behaviors are observed: the low temperature magnetism in Yb2Ti2O7 and Yb2Sn2O7 has ferromagnetic character, while Yb2Ge2O7 displays an antiferromagnetically ordered Neel state at low temperatures. Read More

We report neutron scattering and muon spin relaxation measurements (muSR) on the pyrochlore antiferromagnet Yb2Ge2O7. Inelastic neutron scattering was used to probe the transitions between crystal electric field levels, allowing us to determine the eigenvalues and eigenvectors appropriate to the J=7/2 Yb3+ ion in this environment. The crystal electric field ground state doublet in Yb2Ge2O7 corresponds primarily to m_J = +/- 1/2 with local XY anisotropy, consistent with an S_eff = 1/2 description for the Yb moments. Read More

We report high-resolution inelastic x ray scattering measurements of the acoustic phonons of URu2Si2. We observe minimal change in the phonon structure upon entering the Hidden Order phase. At all temperatures, the longitudinal acoustic phonons are anomalously broad at low q. Read More

We synthesized a quasi-two-dimensional distorted triangular lattice antiferromagnet Ca$_3$CoNb$_2$O$_9$, in which the effective spin of Co$^{2+}$ is 1/2 at low temperatures, whose magnetic properties were studied by dc susceptibility and magnetization techniques. The x-ray diffraction confirms the quality of our powder samples. The large Weiss constant $\theta_{CW}\sim$ $-55$ K and the low Neel temperature($T_N\sim$ 1. Read More

We present muon spin rotation ($\mu$SR) and susceptibility measurements on single crystals of isoelectronically doped URu$_{2-x}$T$_x$Si$_2$ (T = Fe, Os) for doping levels up to 50\%. Zero Field (ZF) $\mu$SR measurements show long-lived oscillations demonstrating that an antiferromagnetic state exists down to low doping levels for both Os and Fe dopants. The measurements further show an increase in the internal field with doping for both Fe and Os. Read More

We present data on the optical conductivity of URu$_{2-x}$(Fe,Os)$_{x}$Si$_{2}$. While the parent material URu$_2$Si$_2$ enters the enigmatic hidden order phase below 17.5 K, an antiferromagnetic phase is induced by the substitution of Fe or Os onto the Ru sites. Read More

A "supercooled" liquid develops when a fluid does not crystallize upon cooling below its ordering temperature. Instead, the microscopic relaxation times diverge so rapidly that, upon further cooling, equilibration eventually becomes impossible and glass formation occurs. Classic supercooled liquids exhibit specific identifiers including microscopic relaxation times diverging on a Vogel-Tammann-Fulcher (VTF) trajectory, a Havriliak-Negami (HN) form for the dielectric function, and a general Kohlrausch-Williams-Watts (KWW) form for time-domain relaxation. Read More

The rich phase diagrams of magnetically frustrated pyrochlores have maintained a high level of interest over the past 20 years. To experimentally explore these phase diagrams requires a means of tuning the relevant interactions. One approach to achieve this is chemical pressure, that is, varying the size of the non-magnetic cation. Read More

A new diluted ferromagnetic semiconductor (Sr,Na)(Zn,Mn)2As2 is reported, in which charge and spin doping are decoupled via Sr/Na and Zn/Mn substitutions, respectively, being distinguished from classic (Ga,Mn)As where charge & spin doping are simultaneously integrated. Different from the recently reported ferromagnetic (Ba,K)(Zn,Mn)2As2, this material crystallizes into the hexagonal CaAl2Si2-type structure. Ferromagnetism with a Curie temperature up to 20 K has been observed from magnetization. Read More

Here we report the successful synthesis of a spin- & charge-decoupled diluted magnetic semiconductor (Ca,Na)(Zn,Mn)2As2, crystallizing into the hexagonal CaAl2Si2 structure. The compound shows a ferromagnetic transition with a Curie temperature up to 33 K with 10% Na doping, which gives rise to carrier density of np~10^20 cm^-3. The new DMS is a soft magnetic material with HC<400 Oe. Read More

A quantum critical point (QCP) occurs upon chemical doping of the weak itinerant ferromagnet Sc_{3.1}In. Remarkable for a system with no local moments, the QCP is accompanied by non-Fermi liquid (NFL) behavior, manifested in the logarithmic divergence of the specific heat both in the ferro- and the paramagnetic states. Read More

The origin of the spin liquid state in Tb$_2$Ti$_2$O$_7$ has challenged experimentalists and theorists alike for nearly 20 years. To improve our understanding of the exotic magnetism in Tb$_2$Ti$_2$O$_7$, we have synthesized a chemical pressure analog, Tb$_2$Ge$_2$O$_7$. Germanium substitution results in a lattice contraction and enhanced exchange interactions. Read More

Magnetic excitations in the isostructural spin-dimer systems Sr3Cr2O8 and Ba3Cr2O8 are probed by means of high-field electron spin resonance at sub-terahertz frequencies. Three types of magnetic modes were observed. One mode is gapless and corresponds to transitions within excited states, while two other sets of modes are gapped and correspond to transitions from the ground to the first excited states. Read More

The transverse field Ising chain (TFIC) model is ideally suited for testing the fundamental ideas of quantum phase transitions, because its well-known $T=0$ ground state can be extrapolated to finite temperatures. Nonetheless, the lack of appropriate model materials hindered the past effort to test the theoretical predictions. Here we map the evolution of quantum fluctuations in the TFIC based on Nuclear Magnetic Resonance (NMR) measurements of CoNb$_2$O$_6$, and demonstrate the finite temperature effects on quantum criticality for the first time. Read More

We report the effect of applied pressures on magnetic and superconducting order in single crystals of the aliovalent La-doped iron pnictide material Ca$_{1-x}$La$_{x}$Fe$_{2}$As$_{2}$. Using electrical transport, elastic neutron scattering and resonant tunnel diode oscillator measurements on samples under both quasi-hydrostatic and hydrostatic pressure conditions, we report a series of phase diagrams spanning the range of substitution concentrations for both antiferromagnetic and superconducting ground states that include pressure-tuning through the antiferromagnetic (AFM) quantum critical point. Our results indicate that the observed superconducting phase with maximum transition temperature of $T_{c}$=47 K is intrinsic to these materials, appearing only upon suppression of magnetic order by pressure tuning through the AFM critical point. Read More

We report the synthesis and characterization of a bulk diluted magnetic semiconductor (La1-xBax)(Zn1-xMnx)AsO (0 <= x <= 0.2) with a layered crystal structure identical to that of the "1111" FeAs superconductors. No ferromagnetic order occurs for (Zn,Mn) substitution in the parent compound LaZnAsO without charge doping. Read More

Diluted magnetic semiconductors (DMS) have received much attention due to its potential applications to spintronics devices. A prototypical system (Ga,Mn)As has been widely studied since 1990s. The simultaneous spin and charge doping via hetero-valence (Ga3+,Mn2+) substitution, however, resulted in severely limited solubility without availability of bulk specimens. Read More

We report low temperature specific heat and muon spin relaxation/rotation ($\mu$SR) measurements on both polycrystalline and single crystal samples of the pyrochlore magnet Yb$_2$Ti$_2$O$_7$. This system is believed to possess a spin Hamiltonian supporting a Quantum Spin Ice (QSI) ground state and to display sample variation in its low temperature heat capacity. Our two samples exhibit extremes of this sample variation, yet our $\mu$SR measurements indicate a similar disordered low temperature state down to 16 mK in both. Read More

In this article we present high-resolution angle-resolved photoemission (ARPES) spectra of the heavy-fermion superconductor URu$_2$Si$_2$. Measurements as a function of both excitation energy and temperature allow us to disentangle a variety of spectral features, revealing the evolution of the low energy electronic structure across the hidden order transition. Already above the hidden order transition our measurements reveal the existence of weakly dispersive states below the Fermi level that exhibit a large scattering rate. Read More

We report inelastic neutron scattering measurements in the hidden order state of URu$_{2-x}$Re$_x$Si$_2$ with $x$ = 0.10. We observe that towards the ferromagnetic quantum critical point induced by the negative chemical pressure of Re-doping, the gapped incommensurate fluctuations are robust and comparable in intensity to the parent material. Read More

We have explored the spin liquid state in Tb2Ti2O7 with vibrating coil magnetometry down to 0.04 K under magnetic fields up to 5 T. We observe magnetic history dependence below $T < 0. Read More

We have measured the far infrared reflectance of the heavy fermion compound URu$_2$Si$_2$ through the phase transition at T$_{HO}$=17.5 K dubbed 'hidden order' with light polarized along both the a- and c-axes of the tetragonal structure. The optical conductivity allows the formation of the hidden order gap to be investigated in detail. Read More

We present the in-plane optical reflectance measurement on single crystals of URu$_2$As$_2$. The study revealed a strong temperature-dependent spectral evolution. Above 50 K, the low frequency optical conductivity is rather flat without a clear Drude-like response, indicating a very short transport life time of the free carriers. Read More

Replacing a magnetic atom by a spinless atom in a heavy fermion compound generates a quantum state often referred to as a 'Kondo-hole'. No experimental imaging has been achieved of the atomic-scale electronic structure of a Kondo-hole, or of their destructive impact (Lawrence JM, et al. (1996) Kondo hole behavior in Ce0. Read More

Theory predicts the low-temperature magnetic excitations in spin ices consist of deconfined magnetic charges, or monopoles. A recent transverse-field (TF) muon spin rotation (muSR) experiment [S T Bramwell et al, Nature 461, 956 (2009)] reports results claiming to be consistent with the temperature and magnetic field dependence anticipated for monopole nucleation - the so-called second Wien effect. We demonstrate via a new series of muSR experiments in Dy_2Ti_2O_7 that such an effect is not observable in a TF muSR experiment. Read More

Fermi showed that electrons, as a result of their quantum nature, form a gas of particles where the temperature and density follow the so called Fermi distribution. In a metal, as shown by Landau, that despite their strong Coulomb interaction with each other and the positive background ions, the electrons continue to act like free quantum mechanical particles but with enhanced masses. This state of matter, the Landau-Fermi liquid, is recognized experimentally by an electrical resistivity that is proportional to the square of the absolute temperature plus a term proportional to the square of the frequency of the applied field. Read More

We have studied the magnetism in superconducting single crystals of EuFe2 As1.4 P0.6 by using the local probe techniques of zero-field muon spin rotation/relaxation and 151 Eu/57 Fe M\"ossbauer spec- troscopy. Read More

Impurity-induced magnetic order has been observed in many quasi-1D systems including doped variants of the spin-Peierls system CuGeO3. TiOCl is another quasi-1D quantum magnet with a spin-Peierls ground state, and the magnetic Ti sites of this system can be doped with non-magnetic Sc. To investigate the role of non-magnetic impurities in this system, we have performed both zero field and longitudinal field muSR experiments on polycrystalline Ti1-xScxOCl samples with x = 0, 0. Read More

Static magnetic order of quasi two-dimensional FeAs compounds Sr4A2O6-xFe2As2, with A = Sc and V, has been detected by 57Fe Moessbauer and muon spin relaxation ({\mu}SR) spectroscopies. The non-superconducting stoichiometric (x = 0) A = Sc system exhibits a static internal/hyperfine magnetic field both at the 57Fe and {\mu}+ sites, indicating antiferromagnetic order of Fe moments below TN = 35 K with ~ 0.1 Bohr magneton per Fe at T = 2 K. Read More

V2O3 nanocrystals can be synthesized through hydrothermal reduction of VO(OH)2 using hydrazine as a reducing agent. Addition of different ligands to the reaction produces nanoparticles, nanorods and nanoplatelets of different sizes. Small nanoparticles synthesized in this manner show suppression of the magnetic phase transition to lower temperatures. Read More

Within a Kondo lattice, the strong hybridization between electrons localized in real space (r-space) and those delocalized in momentum-space (k-space) generates exotic electronic states called 'heavy fermions'. In URu2Si2 these effects begin at temperatures around 55K but they are suddenly altered by an unidentified electronic phase transition at To = 17.5 K. Read More

We report muon spin rotation ($\mu$SR) measurements of single crystal Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ and Sr(Fe$_{1-x}$Co$_x$)$_2$As$_2$. From measurements of the magnetic field penetration depth $\lambda$ we find that for optimally- and over-doped samples, $1/\lambda(T\to 0)^2$ varies monotonically with the superconducting transition temperature T$_{\rm C}$. Within the superconducting state we observe a positive shift in the muon precession signal, likely indicating that the applied field induces an internal magnetic field. Read More

We have searched for time-reversal symmetry breaking fields in the non-centrosymmetric superconductor Mg$_{10}$Ir$_{19}$B$_{16}$ via muon spin relaxation in zero applied field, and we measured the temperature dependence of the superfluid density by muon spin rotation in transverse field to investigate the superconducting pairing symmetry in two polycrystalline samples of signficantly different purities. In the high purity sample, we detected no time-reversal symmetry breaking fields greater than 0.05 G. Read More