G. Laskaris

G. Laskaris
Are you G. Laskaris?

Claim your profile, edit publications, add additional information:

Contact Details

Name
G. Laskaris
Affiliation
Location

Pubs By Year

Pub Categories

 
Nuclear Experiment (6)
 
High Energy Physics - Experiment (2)
 
High Energy Physics - Phenomenology (1)
 
Physics - Atomic Physics (1)
 
Physics - Atomic and Molecular Clusters (1)

Publications Authored By G. Laskaris

We report new measurements of the doubly-polarized photodisintegration of $^3$He at an incident photon energy of 16.5 MeV, carried out at the High Intensity $\gamma$-ray Source (HI$\gamma$S) facility located at Triangle Universities Nuclear Laboratory (TUNL). The spin-dependent double-differential cross sections and the contribution from the three--body channel to the Gerasimov-Drell-Hearn (GDH) integrand were extracted and compared with the state-of-the-art three--body calculations. Read More

The first measurement of the three-body photodisintegration of longitudinally-polarized ^3He with a circularly-polarized \gamma-ray beam was carried out at the High Intensity \gamma-ray Source (HI\gamma S) facility located at Triangle Universities Nuclear Laboratory (TUNL). The spin-dependent double-differential cross sections and the contributions from the three-body photodisintegration to the ^3He GDH integrand are presented and compared with state-of-the-art three-body calculations at the incident photon energies of 12.8 and 14. Read More

The possible existence of short-range forces between unpolarized and polarized spin-1/2 particles has attracted the attention of physicists for decades. These forces are predicted in various theories and provide a possible new source for parity (P) and time reversal (T) symmetry violation. We use an ensemble of polarized 3He gas in a cell with a 250 um thickness glass window to search for a force from scalar boson exchange over a sub-millimeter ranges. Read More

We propose a new method to detect short-range \textit{P-} and \textit{T-} violating interactions between nucleons, based on measuring the precession frequency shift of polarized $^3$He nuclei in the presence of an unpolarized mass. To maximize the sensitivity, a high-pressure $^3$He cell with thin glass windows (250 $\rm\mu m$) is used to minimize the distance between the mass and $^3$He. The magnetic field fluctuation is suppressed by using the $^3$He gas in a different region of the cell as a magnetometer. Read More

We present a summary of a recent workshop held at Duke University on Partonic Transverse Momentum in Hadrons: Quark Spin-Orbit Correlations and Quark-Gluon Interactions. The transverse momentum dependent parton distribution functions (TMDs), parton-to-hadron fragmentation functions, and multi-parton correlation functions, were discussed extensively at the Duke workshop. In this paper, we summarize first the theoretical issues concerning the study of partonic structure of hadrons at a future electron-ion collider (EIC) with emphasis on the TMDs. Read More

Following the first experiment on three-body photodisintegration of polarized $^3$He utilizing circularly polarized photons from High Intensity Gamma Source (HI$\gamma$S) at Duke Free Electron Laser Laboratory (DFELL), a new high-pressure polarized $^3$He target cell made of pyrex glass coated with a thin layer of sol-gel doped with aluminum nitrate nonahydrate has been built in order to reduce the photon beam induced background. The target is based on the technique of spin-exchange optical pumping of hybrid rubidium and potassium and the highest polarization achieved is $\sim$62% determined from both NMR-AFP and EPR polarimetry. The $X$ parameter is estimated to be $\sim0. Read More