# G. Ferrera - Milan University and INFN, Milan

## Contact Details

NameG. Ferrera |
||

AffiliationMilan University and INFN, Milan |
||

CityMilan |
||

CountryItaly |
||

## Pubs By Year |
||

## External Links |
||

## Pub CategoriesHigh Energy Physics - Phenomenology (41) High Energy Physics - Experiment (14) |

## Publications Authored By G. Ferrera

**Authors:**D. de Florian

^{1}, C. Grojean

^{2}, F. Maltoni

^{3}, C. Mariotti

^{4}, A. Nikitenko

^{5}, M. Pieri

^{6}, P. Savard

^{7}, M. Schumacher

^{8}, R. Tanaka

^{9}, R. Aggleton

^{10}, M. Ahmad

^{11}, B. Allanach

^{12}, C. Anastasiou

^{13}, W. Astill

^{14}, S. Badger

^{15}, M. Badziak

^{16}, J. Baglio

^{17}, E. Bagnaschi

^{18}, A. Ballestrero

^{19}, A. Banfi

^{20}, D. Barducci

^{21}, M. Beckingham

^{22}, C. Becot

^{23}, G. Bélanger

^{24}, J. Bellm

^{25}, N. Belyaev

^{26}, F. U. Bernlochner

^{27}, C. Beskidt

^{28}, A. Biekötter

^{29}, F. Bishara

^{30}, W. Bizon

^{31}, N. E. Bomark

^{32}, M. Bonvini

^{33}, S. Borowka

^{34}, V. Bortolotto

^{35}, S. Boselli

^{36}, F. J. Botella

^{37}, R. Boughezal

^{38}, G. C. Branco

^{39}, J. Brehmer

^{40}, L. Brenner

^{41}, S. Bressler

^{42}, I. Brivio

^{43}, A. Broggio

^{44}, H. Brun

^{45}, G. Buchalla

^{46}, C. D. Burgard

^{47}, A. Calandri

^{48}, L. Caminada

^{49}, R. Caminal Armadans

^{50}, F. Campanario

^{51}, J. Campbell

^{52}, F. Caola

^{53}, C. M. Carloni Calame

^{54}, S. Carrazza

^{55}, A. Carvalho

^{56}, M. Casolino

^{57}, O. Cata

^{58}, A. Celis

^{59}, F. Cerutti

^{60}, N. Chanon

^{61}, M. Chen

^{62}, X. Chen

^{63}, B. Chokoufé Nejad

^{64}, N. Christensen

^{65}, M. Ciuchini

^{66}, R. Contino

^{67}, T. Corbett

^{68}, D. Curtin

^{69}, M. Dall'Osso

^{70}, A. David

^{71}, S. Dawson

^{72}, J. de Blas

^{73}, W. de Boer

^{74}, P. de Castro Manzano

^{75}, C. Degrande

^{76}, R. L. Delgado

^{77}, F. Demartin

^{78}, A. Denner

^{79}, B. Di Micco

^{80}, R. Di Nardo

^{81}, S. Dittmaier

^{82}, A. Dobado

^{83}, T. Dorigo

^{84}, F. A. Dreyer

^{85}, M. Dührssen

^{86}, C. Duhr

^{87}, F. Dulat

^{88}, K. Ecker

^{89}, K. Ellis

^{90}, U. Ellwanger

^{91}, C. Englert

^{92}, D. Espriu

^{93}, A. Falkowski

^{94}, L. Fayard

^{95}, R. Feger

^{96}, G. Ferrera

^{97}, A. Ferroglia

^{98}, N. Fidanza

^{99}, T. Figy

^{100}, M. Flechl

^{101}, D. Fontes

^{102}, S. Forte

^{103}, P. Francavilla

^{104}, E. Franco

^{105}, R. Frederix

^{106}, A. Freitas

^{107}, F. F. Freitas

^{108}, F. Frensch

^{109}, S. Frixione

^{110}, B. Fuks

^{111}, E. Furlan

^{112}, S. Gadatsch

^{113}, J. Gao

^{114}, Y. Gao

^{115}, M. V. Garzelli

^{116}, T. Gehrmann

^{117}, R. Gerosa

^{118}, M. Ghezzi

^{119}, D. Ghosh

^{120}, S. Gieseke

^{121}, D. Gillberg

^{122}, G. F. Giudice

^{123}, E. W. N. Glover

^{124}, F. Goertz

^{125}, D. Gonçalves

^{126}, J. Gonzalez-Fraile

^{127}, M. Gorbahn

^{128}, S. Gori

^{129}, C. A. Gottardo

^{130}, M. Gouzevitch

^{131}, P. Govoni

^{132}, D. Gray

^{133}, M. Grazzini

^{134}, N. Greiner

^{135}, A. Greljo

^{136}, J. Grigo

^{137}, A. V. Gritsan

^{138}, R. Gröber

^{139}, S. Guindon

^{140}, H. E. Haber

^{141}, C. Han

^{142}, T. Han

^{143}, R. Harlander

^{144}, M. A. Harrendorf

^{145}, H. B. Hartanto

^{146}, C. Hays

^{147}, S. Heinemeyer

^{148}, G. Heinrich

^{149}, M. Herrero

^{150}, F. Herzog

^{151}, B. Hespel

^{152}, V. Hirschi

^{153}, S. Hoeche

^{154}, S. Honeywell

^{155}, S. J. Huber

^{156}, C. Hugonie

^{157}, J. Huston

^{158}, A. Ilnicka

^{159}, G. Isidori

^{160}, B. Jäger

^{161}, M. Jaquier

^{162}, S. P. Jones

^{163}, A. Juste

^{164}, S. Kallweit

^{165}, A. Kaluza

^{166}, A. Kardos

^{167}, A. Karlberg

^{168}, Z. Kassabov

^{169}, N. Kauer

^{170}, D. I. Kazakov

^{171}, M. Kerner

^{172}, W. Kilian

^{173}, F. Kling

^{174}, K. Köneke

^{175}, R. Kogler

^{176}, R. Konoplich

^{177}, S. Kortner

^{178}, S. Kraml

^{179}, C. Krause

^{180}, F. Krauss

^{181}, M. Krawczyk

^{182}, A. Kulesza

^{183}, S. Kuttimalai

^{184}, R. Lane

^{185}, A. Lazopoulos

^{186}, G. Lee

^{187}, P. Lenzi

^{188}, I. M. Lewis

^{189}, Y. Li

^{190}, S. Liebler

^{191}, J. Lindert

^{192}, X. Liu

^{193}, Z. Liu

^{194}, F. J. Llanes-Estrada

^{195}, H. E. Logan

^{196}, D. Lopez-Val

^{197}, I. Low

^{198}, G. Luisoni

^{199}, P. Maierhöfer

^{200}, E. Maina

^{201}, B. Mansoulié

^{202}, H. Mantler

^{203}, M. Mantoani

^{204}, A. C. Marini

^{205}, V. I. Martinez Outschoorn

^{206}, S. Marzani

^{207}, D. Marzocca

^{208}, A. Massironi

^{209}, K. Mawatari

^{210}, J. Mazzitelli

^{211}, A. McCarn

^{212}, B. Mellado

^{213}, K. Melnikov

^{214}, S. B. Menari

^{215}, L. Merlo

^{216}, C. Meyer

^{217}, P. Milenovic

^{218}, K. Mimasu

^{219}, S. Mishima

^{220}, B. Mistlberger

^{221}, S. -O. Moch

^{222}, A. Mohammadi

^{223}, P. F. Monni

^{224}, G. Montagna

^{225}, M. Moreno Llácer

^{226}, N. Moretti

^{227}, S. Moretti

^{228}, L. Motyka

^{229}, A. Mück

^{230}, M. Mühlleitner

^{231}, S. Munir

^{232}, P. Musella

^{233}, P. Nadolsky

^{234}, D. Napoletano

^{235}, M. Nebot

^{236}, C. Neu

^{237}, M. Neubert

^{238}, R. Nevzorov

^{239}, O. Nicrosini

^{240}, J. Nielsen

^{241}, K. Nikolopoulos

^{242}, J. M. No

^{243}, C. O'Brien

^{244}, T. Ohl

^{245}, C. Oleari

^{246}, T. Orimoto

^{247}, D. Pagani

^{248}, C. E. Pandini

^{249}, A. Papaefstathiou

^{250}, A. S. Papanastasiou

^{251}, G. Passarino

^{252}, B. D. Pecjak

^{253}, M. Pelliccioni

^{254}, G. Perez

^{255}, L. Perrozzi

^{256}, F. Petriello

^{257}, G. Petrucciani

^{258}, E. Pianori

^{259}, F. Piccinini

^{260}, M. Pierini

^{261}, A. Pilkington

^{262}, S. Plätzer

^{263}, T. Plehn

^{264}, R. Podskubka

^{265}, C. T. Potter

^{266}, S. Pozzorini

^{267}, K. Prokofiev

^{268}, A. Pukhov

^{269}, I. Puljak

^{270}, M. Queitsch-Maitland

^{271}, J. Quevillon

^{272}, D. Rathlev

^{273}, M. Rauch

^{274}, E. Re

^{275}, M. N. Rebelo

^{276}, D. Rebuzzi

^{277}, L. Reina

^{278}, C. Reuschle

^{279}, J. Reuter

^{280}, M. Riembau

^{281}, F. Riva

^{282}, A. Rizzi

^{283}, T. Robens

^{284}, R. Röntsch

^{285}, J. Rojo

^{286}, J. C. Romão

^{287}, N. Rompotis

^{288}, J. Roskes

^{289}, R. Roth

^{290}, G. P. Salam

^{291}, R. Salerno

^{292}, R. Santos

^{293}, V. Sanz

^{294}, J. J. Sanz-Cillero

^{295}, H. Sargsyan

^{296}, U. Sarica

^{297}, P. Schichtel

^{298}, J. Schlenk

^{299}, T. Schmidt

^{300}, C. Schmitt

^{301}, M. Schönherr

^{302}, U. Schubert

^{303}, M. Schulze

^{304}, S. Sekula

^{305}, M. Sekulla

^{306}, E. Shabalina

^{307}, H. S. Shao

^{308}, J. Shelton

^{309}, C. H. Shepherd-Themistocleous

^{310}, S. Y. Shim

^{311}, F. Siegert

^{312}, A. Signer

^{313}, J. P. Silva

^{314}, L. Silvestrini

^{315}, M. Sjodahl

^{316}, P. Slavich

^{317}, M. Slawinska

^{318}, L. Soffi

^{319}, M. Spannowsky

^{320}, C. Speckner

^{321}, D. M. Sperka

^{322}, M. Spira

^{323}, O. Stål

^{324}, F. Staub

^{325}, T. Stebel

^{326}, T. Stefaniak

^{327}, M. Steinhauser

^{328}, I. W. Stewart

^{329}, M. J. Strassler

^{330}, J. Streicher

^{331}, D. M. Strom

^{332}, S. Su

^{333}, X. Sun

^{334}, F. J. Tackmann

^{335}, K. Tackmann

^{336}, A. M. Teixeira

^{337}, R. Teixeira de Lima

^{338}, V. Theeuwes

^{339}, R. Thorne

^{340}, D. Tommasini

^{341}, P. Torrielli

^{342}, M. Tosi

^{343}, F. Tramontano

^{344}, Z. Trócsányi

^{345}, M. Trott

^{346}, I. Tsinikos

^{347}, M. Ubiali

^{348}, P. Vanlaer

^{349}, W. Verkerke

^{350}, A. Vicini

^{351}, L. Viliani

^{352}, E. Vryonidou

^{353}, D. Wackeroth

^{354}, C. E. M. Wagner

^{355}, J. Wang

^{356}, S. Wayand

^{357}, G. Weiglein

^{358}, C. Weiss

^{359}, M. Wiesemann

^{360}, C. Williams

^{361}, J. Winter

^{362}, D. Winterbottom

^{363}, R. Wolf

^{364}, M. Xiao

^{365}, L. L. Yang

^{366}, R. Yohay

^{367}, S. P. Y. Yuen

^{368}, G. Zanderighi

^{369}, M. Zaro

^{370}, D. Zeppenfeld

^{371}, R. Ziegler

^{372}, T. Zirke

^{373}, J. Zupan

^{374}

**Affiliations:**

^{1}eds.,

^{2}eds.,

^{3}eds.,

^{4}eds.,

^{5}eds.,

^{6}eds.,

^{7}eds.,

^{8}eds.,

^{9}eds.,

^{10}The LHC Higgs Cross Section Working Group,

^{11}The LHC Higgs Cross Section Working Group,

^{12}The LHC Higgs Cross Section Working Group,

^{13}The LHC Higgs Cross Section Working Group,

^{14}The LHC Higgs Cross Section Working Group,

^{15}The LHC Higgs Cross Section Working Group,

^{16}The LHC Higgs Cross Section Working Group,

^{17}The LHC Higgs Cross Section Working Group,

^{18}The LHC Higgs Cross Section Working Group,

^{19}The LHC Higgs Cross Section Working Group,

^{20}The LHC Higgs Cross Section Working Group,

^{21}The LHC Higgs Cross Section Working Group,

^{22}The LHC Higgs Cross Section Working Group,

^{23}The LHC Higgs Cross Section Working Group,

^{24}The LHC Higgs Cross Section Working Group,

^{25}The LHC Higgs Cross Section Working Group,

^{26}The LHC Higgs Cross Section Working Group,

^{27}The LHC Higgs Cross Section Working Group,

^{28}The LHC Higgs Cross Section Working Group,

^{29}The LHC Higgs Cross Section Working Group,

^{30}The LHC Higgs Cross Section Working Group,

^{31}The LHC Higgs Cross Section Working Group,

^{32}The LHC Higgs Cross Section Working Group,

^{33}The LHC Higgs Cross Section Working Group,

^{34}The LHC Higgs Cross Section Working Group,

^{35}The LHC Higgs Cross Section Working Group,

^{36}The LHC Higgs Cross Section Working Group,

^{37}The LHC Higgs Cross Section Working Group,

^{38}The LHC Higgs Cross Section Working Group,

^{39}The LHC Higgs Cross Section Working Group,

^{40}The LHC Higgs Cross Section Working Group,

^{41}The LHC Higgs Cross Section Working Group,

^{42}The LHC Higgs Cross Section Working Group,

^{43}The LHC Higgs Cross Section Working Group,

^{44}The LHC Higgs Cross Section Working Group,

^{45}The LHC Higgs Cross Section Working Group,

^{46}The LHC Higgs Cross Section Working Group,

^{47}The LHC Higgs Cross Section Working Group,

^{48}The LHC Higgs Cross Section Working Group,

^{49}The LHC Higgs Cross Section Working Group,

^{50}The LHC Higgs Cross Section Working Group,

^{51}The LHC Higgs Cross Section Working Group,

^{52}The LHC Higgs Cross Section Working Group,

^{53}The LHC Higgs Cross Section Working Group,

^{54}The LHC Higgs Cross Section Working Group,

^{55}The LHC Higgs Cross Section Working Group,

^{56}The LHC Higgs Cross Section Working Group,

^{57}The LHC Higgs Cross Section Working Group,

^{58}The LHC Higgs Cross Section Working Group,

^{59}The LHC Higgs Cross Section Working Group,

^{60}The LHC Higgs Cross Section Working Group,

^{61}The LHC Higgs Cross Section Working Group,

^{62}The LHC Higgs Cross Section Working Group,

^{63}The LHC Higgs Cross Section Working Group,

^{64}The LHC Higgs Cross Section Working Group,

^{65}The LHC Higgs Cross Section Working Group,

^{66}The LHC Higgs Cross Section Working Group,

^{67}The LHC Higgs Cross Section Working Group,

^{68}The LHC Higgs Cross Section Working Group,

^{69}The LHC Higgs Cross Section Working Group,

^{70}The LHC Higgs Cross Section Working Group,

^{71}The LHC Higgs Cross Section Working Group,

^{72}The LHC Higgs Cross Section Working Group,

^{73}The LHC Higgs Cross Section Working Group,

^{74}The LHC Higgs Cross Section Working Group,

^{75}The LHC Higgs Cross Section Working Group,

^{76}The LHC Higgs Cross Section Working Group,

^{77}The LHC Higgs Cross Section Working Group,

^{78}The LHC Higgs Cross Section Working Group,

^{79}The LHC Higgs Cross Section Working Group,

^{80}The LHC Higgs Cross Section Working Group,

^{81}The LHC Higgs Cross Section Working Group,

^{82}The LHC Higgs Cross Section Working Group,

^{83}The LHC Higgs Cross Section Working Group,

^{84}The LHC Higgs Cross Section Working Group,

^{85}The LHC Higgs Cross Section Working Group,

^{86}The LHC Higgs Cross Section Working Group,

^{87}The LHC Higgs Cross Section Working Group,

^{88}The LHC Higgs Cross Section Working Group,

^{89}The LHC Higgs Cross Section Working Group,

^{90}The LHC Higgs Cross Section Working Group,

^{91}The LHC Higgs Cross Section Working Group,

^{92}The LHC Higgs Cross Section Working Group,

^{93}The LHC Higgs Cross Section Working Group,

^{94}The LHC Higgs Cross Section Working Group,

^{95}The LHC Higgs Cross Section Working Group,

^{96}The LHC Higgs Cross Section Working Group,

^{97}The LHC Higgs Cross Section Working Group,

^{98}The LHC Higgs Cross Section Working Group,

^{99}The LHC Higgs Cross Section Working Group,

^{100}The LHC Higgs Cross Section Working Group,

^{101}The LHC Higgs Cross Section Working Group,

^{102}The LHC Higgs Cross Section Working Group,

^{103}The LHC Higgs Cross Section Working Group,

^{104}The LHC Higgs Cross Section Working Group,

^{105}The LHC Higgs Cross Section Working Group,

^{106}The LHC Higgs Cross Section Working Group,

^{107}The LHC Higgs Cross Section Working Group,

^{108}The LHC Higgs Cross Section Working Group,

^{109}The LHC Higgs Cross Section Working Group,

^{110}The LHC Higgs Cross Section Working Group,

^{111}The LHC Higgs Cross Section Working Group,

^{112}The LHC Higgs Cross Section Working Group,

^{113}The LHC Higgs Cross Section Working Group,

^{114}The LHC Higgs Cross Section Working Group,

^{115}The LHC Higgs Cross Section Working Group,

^{116}The LHC Higgs Cross Section Working Group,

^{117}The LHC Higgs Cross Section Working Group,

^{118}The LHC Higgs Cross Section Working Group,

^{119}The LHC Higgs Cross Section Working Group,

^{120}The LHC Higgs Cross Section Working Group,

^{121}The LHC Higgs Cross Section Working Group,

^{122}The LHC Higgs Cross Section Working Group,

^{123}The LHC Higgs Cross Section Working Group,

^{124}The LHC Higgs Cross Section Working Group,

^{125}The LHC Higgs Cross Section Working Group,

^{126}The LHC Higgs Cross Section Working Group,

^{127}The LHC Higgs Cross Section Working Group,

^{128}The LHC Higgs Cross Section Working Group,

^{129}The LHC Higgs Cross Section Working Group,

^{130}The LHC Higgs Cross Section Working Group,

^{131}The LHC Higgs Cross Section Working Group,

^{132}The LHC Higgs Cross Section Working Group,

^{133}The LHC Higgs Cross Section Working Group,

^{134}The LHC Higgs Cross Section Working Group,

^{135}The LHC Higgs Cross Section Working Group,

^{136}The LHC Higgs Cross Section Working Group,

^{137}The LHC Higgs Cross Section Working Group,

^{138}The LHC Higgs Cross Section Working Group,

^{139}The LHC Higgs Cross Section Working Group,

^{140}The LHC Higgs Cross Section Working Group,

^{141}The LHC Higgs Cross Section Working Group,

^{142}The LHC Higgs Cross Section Working Group,

^{143}The LHC Higgs Cross Section Working Group,

^{144}The LHC Higgs Cross Section Working Group,

^{145}The LHC Higgs Cross Section Working Group,

^{146}The LHC Higgs Cross Section Working Group,

^{147}The LHC Higgs Cross Section Working Group,

^{148}The LHC Higgs Cross Section Working Group,

^{149}The LHC Higgs Cross Section Working Group,

^{150}The LHC Higgs Cross Section Working Group,

^{151}The LHC Higgs Cross Section Working Group,

^{152}The LHC Higgs Cross Section Working Group,

^{153}The LHC Higgs Cross Section Working Group,

^{154}The LHC Higgs Cross Section Working Group,

^{155}The LHC Higgs Cross Section Working Group,

^{156}The LHC Higgs Cross Section Working Group,

^{157}The LHC Higgs Cross Section Working Group,

^{158}The LHC Higgs Cross Section Working Group,

^{159}The LHC Higgs Cross Section Working Group,

^{160}The LHC Higgs Cross Section Working Group,

^{161}The LHC Higgs Cross Section Working Group,

^{162}The LHC Higgs Cross Section Working Group,

^{163}The LHC Higgs Cross Section Working Group,

^{164}The LHC Higgs Cross Section Working Group,

^{165}The LHC Higgs Cross Section Working Group,

^{166}The LHC Higgs Cross Section Working Group,

^{167}The LHC Higgs Cross Section Working Group,

^{168}The LHC Higgs Cross Section Working Group,

^{169}The LHC Higgs Cross Section Working Group,

^{170}The LHC Higgs Cross Section Working Group,

^{171}The LHC Higgs Cross Section Working Group,

^{172}The LHC Higgs Cross Section Working Group,

^{173}The LHC Higgs Cross Section Working Group,

^{174}The LHC Higgs Cross Section Working Group,

^{175}The LHC Higgs Cross Section Working Group,

^{176}The LHC Higgs Cross Section Working Group,

^{177}The LHC Higgs Cross Section Working Group,

^{178}The LHC Higgs Cross Section Working Group,

^{179}The LHC Higgs Cross Section Working Group,

^{180}The LHC Higgs Cross Section Working Group,

^{181}The LHC Higgs Cross Section Working Group,

^{182}The LHC Higgs Cross Section Working Group,

^{183}The LHC Higgs Cross Section Working Group,

^{184}The LHC Higgs Cross Section Working Group,

^{185}The LHC Higgs Cross Section Working Group,

^{186}The LHC Higgs Cross Section Working Group,

^{187}The LHC Higgs Cross Section Working Group,

^{188}The LHC Higgs Cross Section Working Group,

^{189}The LHC Higgs Cross Section Working Group,

^{190}The LHC Higgs Cross Section Working Group,

^{191}The LHC Higgs Cross Section Working Group,

^{192}The LHC Higgs Cross Section Working Group,

^{193}The LHC Higgs Cross Section Working Group,

^{194}The LHC Higgs Cross Section Working Group,

^{195}The LHC Higgs Cross Section Working Group,

^{196}The LHC Higgs Cross Section Working Group,

^{197}The LHC Higgs Cross Section Working Group,

^{198}The LHC Higgs Cross Section Working Group,

^{199}The LHC Higgs Cross Section Working Group,

^{200}The LHC Higgs Cross Section Working Group,

^{201}The LHC Higgs Cross Section Working Group,

^{202}The LHC Higgs Cross Section Working Group,

^{203}The LHC Higgs Cross Section Working Group,

^{204}The LHC Higgs Cross Section Working Group,

^{205}The LHC Higgs Cross Section Working Group,

^{206}The LHC Higgs Cross Section Working Group,

^{207}The LHC Higgs Cross Section Working Group,

^{208}The LHC Higgs Cross Section Working Group,

^{209}The LHC Higgs Cross Section Working Group,

^{210}The LHC Higgs Cross Section Working Group,

^{211}The LHC Higgs Cross Section Working Group,

^{212}The LHC Higgs Cross Section Working Group,

^{213}The LHC Higgs Cross Section Working Group,

^{214}The LHC Higgs Cross Section Working Group,

^{215}The LHC Higgs Cross Section Working Group,

^{216}The LHC Higgs Cross Section Working Group,

^{217}The LHC Higgs Cross Section Working Group,

^{218}The LHC Higgs Cross Section Working Group,

^{219}The LHC Higgs Cross Section Working Group,

^{220}The LHC Higgs Cross Section Working Group,

^{221}The LHC Higgs Cross Section Working Group,

^{222}The LHC Higgs Cross Section Working Group,

^{223}The LHC Higgs Cross Section Working Group,

^{224}The LHC Higgs Cross Section Working Group,

^{225}The LHC Higgs Cross Section Working Group,

^{226}The LHC Higgs Cross Section Working Group,

^{227}The LHC Higgs Cross Section Working Group,

^{228}The LHC Higgs Cross Section Working Group,

^{229}The LHC Higgs Cross Section Working Group,

^{230}The LHC Higgs Cross Section Working Group,

^{231}The LHC Higgs Cross Section Working Group,

^{232}The LHC Higgs Cross Section Working Group,

^{233}The LHC Higgs Cross Section Working Group,

^{234}The LHC Higgs Cross Section Working Group,

^{235}The LHC Higgs Cross Section Working Group,

^{236}The LHC Higgs Cross Section Working Group,

^{237}The LHC Higgs Cross Section Working Group,

^{238}The LHC Higgs Cross Section Working Group,

^{239}The LHC Higgs Cross Section Working Group,

^{240}The LHC Higgs Cross Section Working Group,

^{241}The LHC Higgs Cross Section Working Group,

^{242}The LHC Higgs Cross Section Working Group,

^{243}The LHC Higgs Cross Section Working Group,

^{244}The LHC Higgs Cross Section Working Group,

^{245}The LHC Higgs Cross Section Working Group,

^{246}The LHC Higgs Cross Section Working Group,

^{247}The LHC Higgs Cross Section Working Group,

^{248}The LHC Higgs Cross Section Working Group,

^{249}The LHC Higgs Cross Section Working Group,

^{250}The LHC Higgs Cross Section Working Group,

^{251}The LHC Higgs Cross Section Working Group,

^{252}The LHC Higgs Cross Section Working Group,

^{253}The LHC Higgs Cross Section Working Group,

^{254}The LHC Higgs Cross Section Working Group,

^{255}The LHC Higgs Cross Section Working Group,

^{256}The LHC Higgs Cross Section Working Group,

^{257}The LHC Higgs Cross Section Working Group,

^{258}The LHC Higgs Cross Section Working Group,

^{259}The LHC Higgs Cross Section Working Group,

^{260}The LHC Higgs Cross Section Working Group,

^{261}The LHC Higgs Cross Section Working Group,

^{262}The LHC Higgs Cross Section Working Group,

^{263}The LHC Higgs Cross Section Working Group,

^{264}The LHC Higgs Cross Section Working Group,

^{265}The LHC Higgs Cross Section Working Group,

^{266}The LHC Higgs Cross Section Working Group,

^{267}The LHC Higgs Cross Section Working Group,

^{268}The LHC Higgs Cross Section Working Group,

^{269}The LHC Higgs Cross Section Working Group,

^{270}The LHC Higgs Cross Section Working Group,

^{271}The LHC Higgs Cross Section Working Group,

^{272}The LHC Higgs Cross Section Working Group,

^{273}The LHC Higgs Cross Section Working Group,

^{274}The LHC Higgs Cross Section Working Group,

^{275}The LHC Higgs Cross Section Working Group,

^{276}The LHC Higgs Cross Section Working Group,

^{277}The LHC Higgs Cross Section Working Group,

^{278}The LHC Higgs Cross Section Working Group,

^{279}The LHC Higgs Cross Section Working Group,

^{280}The LHC Higgs Cross Section Working Group,

^{281}The LHC Higgs Cross Section Working Group,

^{282}The LHC Higgs Cross Section Working Group,

^{283}The LHC Higgs Cross Section Working Group,

^{284}The LHC Higgs Cross Section Working Group,

^{285}The LHC Higgs Cross Section Working Group,

^{286}The LHC Higgs Cross Section Working Group,

^{287}The LHC Higgs Cross Section Working Group,

^{288}The LHC Higgs Cross Section Working Group,

^{289}The LHC Higgs Cross Section Working Group,

^{290}The LHC Higgs Cross Section Working Group,

^{291}The LHC Higgs Cross Section Working Group,

^{292}The LHC Higgs Cross Section Working Group,

^{293}The LHC Higgs Cross Section Working Group,

^{294}The LHC Higgs Cross Section Working Group,

^{295}The LHC Higgs Cross Section Working Group,

^{296}The LHC Higgs Cross Section Working Group,

^{297}The LHC Higgs Cross Section Working Group,

^{298}The LHC Higgs Cross Section Working Group,

^{299}The LHC Higgs Cross Section Working Group,

^{300}The LHC Higgs Cross Section Working Group,

^{301}The LHC Higgs Cross Section Working Group,

^{302}The LHC Higgs Cross Section Working Group,

^{303}The LHC Higgs Cross Section Working Group,

^{304}The LHC Higgs Cross Section Working Group,

^{305}The LHC Higgs Cross Section Working Group,

^{306}The LHC Higgs Cross Section Working Group,

^{307}The LHC Higgs Cross Section Working Group,

^{308}The LHC Higgs Cross Section Working Group,

^{309}The LHC Higgs Cross Section Working Group,

^{310}The LHC Higgs Cross Section Working Group,

^{311}The LHC Higgs Cross Section Working Group,

^{312}The LHC Higgs Cross Section Working Group,

^{313}The LHC Higgs Cross Section Working Group,

^{314}The LHC Higgs Cross Section Working Group,

^{315}The LHC Higgs Cross Section Working Group,

^{316}The LHC Higgs Cross Section Working Group,

^{317}The LHC Higgs Cross Section Working Group,

^{318}The LHC Higgs Cross Section Working Group,

^{319}The LHC Higgs Cross Section Working Group,

^{320}The LHC Higgs Cross Section Working Group,

^{321}The LHC Higgs Cross Section Working Group,

^{322}The LHC Higgs Cross Section Working Group,

^{323}The LHC Higgs Cross Section Working Group,

^{324}The LHC Higgs Cross Section Working Group,

^{325}The LHC Higgs Cross Section Working Group,

^{326}The LHC Higgs Cross Section Working Group,

^{327}The LHC Higgs Cross Section Working Group,

^{328}The LHC Higgs Cross Section Working Group,

^{329}The LHC Higgs Cross Section Working Group,

^{330}The LHC Higgs Cross Section Working Group,

^{331}The LHC Higgs Cross Section Working Group,

^{332}The LHC Higgs Cross Section Working Group,

^{333}The LHC Higgs Cross Section Working Group,

^{334}The LHC Higgs Cross Section Working Group,

^{335}The LHC Higgs Cross Section Working Group,

^{336}The LHC Higgs Cross Section Working Group,

^{337}The LHC Higgs Cross Section Working Group,

^{338}The LHC Higgs Cross Section Working Group,

^{339}The LHC Higgs Cross Section Working Group,

^{340}The LHC Higgs Cross Section Working Group,

^{341}The LHC Higgs Cross Section Working Group,

^{342}The LHC Higgs Cross Section Working Group,

^{343}The LHC Higgs Cross Section Working Group,

^{344}The LHC Higgs Cross Section Working Group,

^{345}The LHC Higgs Cross Section Working Group,

^{346}The LHC Higgs Cross Section Working Group,

^{347}The LHC Higgs Cross Section Working Group,

^{348}The LHC Higgs Cross Section Working Group,

^{349}The LHC Higgs Cross Section Working Group,

^{350}The LHC Higgs Cross Section Working Group,

^{351}The LHC Higgs Cross Section Working Group,

^{352}The LHC Higgs Cross Section Working Group,

^{353}The LHC Higgs Cross Section Working Group,

^{354}The LHC Higgs Cross Section Working Group,

^{355}The LHC Higgs Cross Section Working Group,

^{356}The LHC Higgs Cross Section Working Group,

^{357}The LHC Higgs Cross Section Working Group,

^{358}The LHC Higgs Cross Section Working Group,

^{359}The LHC Higgs Cross Section Working Group,

^{360}The LHC Higgs Cross Section Working Group,

^{361}The LHC Higgs Cross Section Working Group,

^{362}The LHC Higgs Cross Section Working Group,

^{363}The LHC Higgs Cross Section Working Group,

^{364}The LHC Higgs Cross Section Working Group,

^{365}The LHC Higgs Cross Section Working Group,

^{366}The LHC Higgs Cross Section Working Group,

^{367}The LHC Higgs Cross Section Working Group,

^{368}The LHC Higgs Cross Section Working Group,

^{369}The LHC Higgs Cross Section Working Group,

^{370}The LHC Higgs Cross Section Working Group,

^{371}The LHC Higgs Cross Section Working Group,

^{372}The LHC Higgs Cross Section Working Group,

^{373}The LHC Higgs Cross Section Working Group,

^{374}The LHC Higgs Cross Section Working Group

This Report summarizes the results of the activities of the LHC Higgs Cross Section Working Group in the period 2014-2016. The main goal of the working group was to present the state-of-the-art of Higgs physics at the LHC, integrating all new results that have appeared in the last few years. The first part compiles the most up-to-date predictions of Higgs boson production cross sections and decay branching ratios, parton distribution functions, and off-shell Higgs boson production and interference effects. Read More

We consider Higgs boson pair production via gluon fusion in hadronic collisions. We report the calculation of the transverse-momentum ($q_T$) distribution of the Higgs boson pair with top-quark mass ($M_t$) effects fully taken into account. At small values of $q_T$ we resum the logarithmically-enhanced perturbative QCD contributions up to next-to-leading logarithmic (NLL) accuracy. Read More

**Authors:**M. L. Mangano, G. Zanderighi, J. A. Aguilar Saavedra, S. Alekhin, S. Badger, C. W. Bauer, T. Becher, V. Bertone, M. Bonvini, S. Boselli, E. Bothmann, R. Boughezal, M. Cacciari, C. M. Carloni Calame, F. Caola, J. M. Campbell, S. Carrazza, M. Chiesa, L. Cieri, F. Cimaglia, F. Febres Cordero, P. Ferrarese, D. D'Enterria, G. Ferrera, X. Garcia i Tormo, M. V. Garzelli, E. Germann, V. Hirschi, T. Han, H. Ita, B. Jäger, S. Kallweit, A. Karlberg, S. Kuttimalai, F. Krauss, A. J. Larkoski, J. Lindert, G. Luisoni, P. Maierhöfer, O. Mattelaer, H. Martinez, S. Moch, G. Montagna, M. Moretti, P. Nason, O. Nicrosini, C. Oleari, D. Pagani, A. Papaefstathiou, F. Petriello, F. Piccinini, M. Pierini, T. Pierog, S. Pozzorini, E. Re, T. Robens, J. Rojo, R. Ruiz, K. Sakurai, G. P. Salam, L. Salfelder, M. Schönherr, M. Schulze, S. Schumann, M. Selvaggi, A. Shivaji, A. Siodmok, P. Skands, P. Torrielli, F. Tramontano, I. Tsinikos, B. Tweedie, A. Vicini, S. Westhoff, M. Zaro, D. Zeppenfeld

This report summarises the properties of Standard Model processes at the 100 TeV pp collider. We document the production rates and typical distributions for a number of benchmark Standard Model processes, and discuss new dynamical phenomena arising at the highest energies available at this collider. We discuss the intrinsic physics interest in the measurement of these Standard Model processes, as well as their role as backgrounds for New Physics searches. Read More

**Authors:**S. Alioli, A. B. Arbuzov, D. Yu. Bardin, L. Barze, C. Bernaciak, S. G. Bondarenko, C. Carloni Calame, M. Chiesa, S. Dittmaier, G. Ferrera, D. de Florian, M. Grazzini, S. Hoeche, A. Huss, S. Jadach, L. V. Kalinovskaya, A. Karlberg, F. Krauss, Y. Li, H. Martinez, G. Montagna, A. Mueck, P. Nason, O. Nicrosini, F. Petriello, F. Piccinini, W. Placzek, S. Prestel, E. Re, A. A. Sapronov, M. Schoenherr, C. Schwinn, A. Vicini, D. Wackeroth, Z. Was, G. Zanderighi

This report was prepared in the context of the LPCC "Electroweak Precision Measurements at the LHC WG" and summarizes the activity of a subgroup dedicated to the systematic comparison of public Monte Carlo codes, which describe the Drell-Yan processes at hadron colliders, in particular at the CERN Large Hadron Collider (LHC). This work represents an important step towards the definition of an accurate simulation framework necessary for very high-precision measurements of electroweak (EW) observables such as the $W$ boson mass and the weak mixing angle. All the codes considered in this report share at least next-to-leading-order (NLO) accuracy in the prediction of the total cross sections in an expansion either in the strong or in the EW coupling constant. Read More

We consider the transverse-momentum ($q_T$) distribution of Drell-Yan lepton pairs produced, via $W$ and $Z/\gamma^*$ decay, in hadronic collisions. At small values of $q_T$, we resum the logarithmically-enhanced perturbative QCD contributions up to next-to-next-to-leading logarithmic accuracy. Resummed results are consistently combined with the known ${\mathcal O}(\alpha_S^2)$ fixed-order results at intermediate and large values of $q_T$. Read More

**Authors:**R. Angeles-Martinez, A. Bacchetta, I. I. Balitsky, D. Boer, M. Boglione, R. Boussarie, F. A. Ceccopieri, I. O. Cherednikov, P. Connor, M. G. Echevarria, G. Ferrera, J. Grados Luyando, F. Hautmann, H. Jung, T. Kasemets, K. Kutak, J. P. Lansberg, A. Lelek, G. Lykasov, J. D. Madrigal Martinez, P. J. Mulders, E. R. Nocera, E. Petreska, C. Pisano, R. Placakyte, V. Radescu, M. Radici, G. Schnell, I. Scimemi, A. Signori, L. Szymanowski, S. Taheri Monfared, F. F. Van der Veken, H. J. van Haevermaet, P. Van Mechelen, A. A. Vladimirov, S. Wallon

**Category:**High Energy Physics - Phenomenology

We provide a concise overview on transverse momentum dependent (TMD) parton distribution functions, their application to topical issues in high-energy physics phenomenology, and their theoretical connections with QCD resummation, evolution and factorization theorems. We illustrate the use of TMDs via examples of multi-scale problems in hadronic collisions. These include transverse momentum q_T spectra of Higgs and vector bosons for low q_T, and azimuthal correlations in the production of multiple jets associated with heavy bosons at large jet masses. Read More

This Report summarizes the results of the activities in 2014 of the Standard Model Working Group within the workshop "What Next" of INFN. We present a framework, general questions, and some indications of possible answers on the main issue for Standard Model physics in the LHC era and in view of possible future accelerators. Read More

**Affiliations:**

^{1}Milan U. and INFN, Milan,

^{2}Zurich U.,

^{3}Naples U. and INFN, Naples

**Category:**High Energy Physics - Phenomenology

We consider Standard Model Higgs boson production in association with a Z boson in hadron collisions. We present a fully exclusive computation of QCD radiative corrections up to next-to-next-to-leading order (NNLO). Our calculation includes the Higgs boson decay to bottom quarks (b) in next-to-leading order QCD and the leptonic decay of the Z boson with finite-width effects and spin correlations. Read More

We consider QCD radiative corrections to the production of colourless high-mass systems in hadron collisions. We show that the recent computation of the soft-virtual corrections to Higgs boson production at N$^3$LO [1] together with the universality structure of soft-gluon emission can be exploited to extract the general expression of the hard-virtual coefficient that contributes to threshold resummation at N$^3$LL accuracy. The hard-virtual coefficient is directly related to the process-dependent virtual amplitude through a universal (process-independent) factorization formula that we explicitly evaluate up to three-loop order. Read More

**Affiliations:**

^{1}Milan U. and INFN, Milan,

^{2}Zurich U.,

^{3}Naples U. and INFN, Naples

We consider Standard Model Higgs boson production in association with a W boson in hadron collisions. We supplement the fully exclusive perturbative computation of QCD radiative effects up to next-to-next-to-leading order (NNLO) with the computation of the decay of the Higgs boson into a bb pair at next-to-leading order (NLO). We consider the selection cuts that are typically applied in the LHC experimental analysis, and we compare our fixed-order predictions with the results obtained with the MC@NLO event generator. Read More

We consider QCD radiative corrections to the production of colourless high-mass systems in hadron collisions. The logarithmically-enhanced contributions at small transverse momentum are treated to all perturbative orders by a universal resummation formula that depends on a single process-dependent hard factor. We show that the hard factor is directly related to the all-order virtual amplitude of the corresponding partonic process. Read More

**Authors:**J. M. Campbell, K. Hatakeyama, J. Huston, F. Petriello, J. Andersen, L. Barze, H. Beauchemin, T. Becher, M. Begel, A. Blondel, G. Bodwin, R. Boughezal, S. Carrazza, M. Chiesa, G. Dissertori, S. Dittmaier, G. Ferrera, S. Forte, N. Glover, T. Hapola, A. Huss, X. Garcia i Tormo, M. Grazzini, S. Hoche, P. Janot, T. Kasprzik, M. Klein, U. Klein, D. Kosower, Y. Li, X. Liu, P. Mackenzie, D. Maitre, E. Meoni, K. Mishra, G. Montagna, M. Moretti, P. Nadolsky, O. Nicrosini, F. Piccinini, L. Reina, V. Radescu, J. Rojo, J. Russ, S. Sapeta, A. Schwartzman, P. Skands, J. Smillie, I. W. Stewart, F. J. Tackmann, F. Tramontano, R. Van de Water, J. R. Walsh, S. Zuberi

**Category:**High Energy Physics - Phenomenology

This is the summary report of the energy frontier QCD working group prepared for Snowmass 2013. We review the status of tools, both theoretical and experimental, for understanding the strong interactions at colliders. We attempt to prioritize important directions that future developments should take. Read More

**Authors:**The LHC Higgs Cross Section Working Group, S. Heinemeyer

^{1}, C. Mariotti

^{2}, G. Passarino

^{3}, R. Tanaka

^{4}, J. R. Andersen, P. Artoisenet, E. A. Bagnaschi, A. Banfi, T. Becher, F. U. Bernlochner, S. Bolognesi, P. Bolzoni, R. Boughezal, D. Buarque, J. Campbell, F. Caola, M. Carena, F. Cascioli, N. Chanon, T. Cheng, S. Y. Choi, A. David, P. de Aquino, G. Degrassi, D. Del Re, A. Denner, H. van Deurzen, S. Diglio, B. Di Micco, R. Di Nardo, S. Dittmaier, M. Duhrssen, R. K. Ellis, G. Ferrera, N. Fidanza, M. Flechl, D. de Florian, S. Forte, R. Frederix, S. Frixione, S. Gangal, Y. Gao, M. V. Garzelli, D. Gillberg, P. Govoni, M. Grazzini, N. Greiner, J. Griffiths, A . V. Gritsan, C. Grojean, D. C. Hall, C. Hays, R. Harlander, R. Hernandez-Pinto, S. Hoche, J. Huston, T. Jubb, M. Kadastik, S. Kallweit, A. Kardos, L. Kashif, N. Kauer, H. Kim, R. Klees, M. Kramer, F. Krauss, A. Laureys, S. Laurila, S. Lehti, Q. Li, S. Liebler, X. Liu, H. E. Logan, G. Luisoni, M. Malberti, F. Maltoni, K. Mawatari, F. Maierhofer, H. Mantler, S. Martin, P. Mastrolia, O. Mattelaer, J. Mazzitelli, B. Mellado, K. Melnikov, P. Meridiani, D. J. Miller, E. Mirabella, S. O. Moch, P. Monni, N. Moretti, A. Muck, M. Muhlleitner, P. Musella, P. Nason, C. Neu, M. Neubert, C. Oleari, J. Olsen, G. Ossola, T. Peraro, K. Peters, F. Petriello, G. Piacquadio, C. T. Potter, S. Pozzorini, K. Prokofiev, I. Puljak, M. Rauch, D. Rebuzzi, L. Reina, R. Rietkerk, A. Rizzi, Y. Rotstein-Habarnau, G. P. Salam, G. Sborlini, F. Schissler, M. Schonherr, M. Schulze, M. Schumacher, F. Siegert, P. Slavich, J. M. Smillie, O. Stal, J. F. von Soden-Fraunhofen, M. Spira, I. W. Stewart, F. J. Tackmann, P. T. E. Taylor, D. Tommasini, J. Thompson, R. S. Thorne, P. Torrielli, F. Tramontano, N. V. Tran, Z. Trocsanyi, M. Ubiali, P. Vanlaer, M. Vazquez Acosta, T. Vickey, A. Vicini, W. J. Waalewijn, D. Wackeroth, C. Wagner, J. R. Walsh, J. Wang, G. Weiglein, A. Whitbeck, C. Williams, J. Yu, G. Zanderighi, M. Zanetti, M. Zaro, P. M. Zerwas, C. Zhang, T. J . E. Zirke, S. Zuberi

**Affiliations:**

^{1}eds.,

^{2}eds.,

^{3}eds.,

^{4}eds.

This Report summarizes the results of the activities in 2012 and the first half of 2013 of the LHC Higgs Cross Section Working Group. The main goal of the working group was to present the state of the art of Higgs Physics at the LHC, integrating all new results that have appeared in the last few years. This report follows the first working group report Handbook of LHC Higgs Cross Sections: 1. Read More

We consider QCD radiative corrections to vector-boson production in hadron collisions. We present the next-to-next-to-leading order (NNLO) result of the hard-collinear coefficient function for the all-order resummation of logarithmically-enhanced contributions at small transverse momenta. The coefficient function controls NNLO contributions in resummed calculations at full next-to-next-to-leading logarithmic accuracy. Read More

We consider Standard Model Higgs boson production through gluon--gluon fusion in hadron collisions. We combine the calculation of the next-to-next-to-leading order QCD corrections to the inclusive cross section with the resummation of multiple soft-gluon emissions at small transverse momenta up to next-to-next-to-leading logarithmic accuracy. The calculation is implemented in the numerical program HRes and allows us to retain the full kinematics of the Higgs boson and of its decay products. Read More

**Authors:**LHC Higgs Cross Section Working Group, S. Dittmaier

^{1}, C. Mariotti

^{2}, G. Passarino

^{3}, R. Tanaka

^{4}, S. Alekhin, J. Alwall, E. A. Bagnaschi, A. Banfi, J. Blumlein, S. Bolognesi, N. Chanon, T. Cheng, L. Cieri, A. M. Cooper-Sarkar, M. Cutajar, S. Dawson, G. Davies, N. De Filippis, G. Degrassi, A. Denner, D. D'Enterria, S. Diglio, B. Di Micco, R. Di Nardo, R. K. Ellis, A. Farilla, S. Farrington, M. Felcini, G. Ferrera, M. Flechl, D. de Florian, S. Forte, S. Ganjour, M. V. Garzelli, S. Gascon-Shotkin, S. Glazov, S. Goria, M. Grazzini, J. -Ph. Guillet, C. Hackstein, K. Hamilton, R. Harlander, M. Hauru, S. Heinemeyer, S. Hoche, J. Huston, C. Jackson, P. Jimenez-Delgado, M. D. Jorgensen, M. Kado, S. Kallweit, A. Kardos, N. Kauer, H. Kim, M. Kovac, M. Kramer, F. Krauss, C. -M. Kuo, S. Lehti, Q. Li, N. Lorenzo, F. Maltoni, B. Mellado, S. O. Moch, A. Muck, M. Muhlleitner, P. Nadolsky, P. Nason, C. Neu, A. Nikitenko, C. Oleari, J. Olsen, S. Palmer, S. Paganis, C. G. Papadopoulos, T . C. Petersen, F. Petriello, F. Petrucci, G. Piacquadio, E. Pilon, C. T. Potter, J. Price, I. Puljak, W. Quayle, V. Radescu, D. Rebuzzi, L. Reina, J. Rojo, D. Rosco, G. P. Salam, A. Sapronov, J. Schaarschmidt, M. Schonherr, M. Schumacher, F. Siegert, P. Slavich, M. Spira, I. W. Stewart, W. J. Stirling, F. Stockli, C. Sturm, F. J. Tackmann, R. S. Thorne, D. Tommasini, P. Torrielli, F. Tramontano, Z. Trocsanyi, M. Ubiali, S. Uccirati, M. Vazquez Acosta, T. Vickey, A. Vicini, W. J. Waalewijn, D. Wackeroth, M. Warsinsky, M. Weber, M. Wiesemann, G. Weiglein, J. Yu, G. Zanderighi

**Affiliations:**

^{1}eds.,

^{2}eds.,

^{3}eds.,

^{4}eds.

This Report summarises the results of the second year's activities of the LHC Higgs Cross Section Working Group. The main goal of the working group was to present the state of the art of Higgs Physics at the LHC, integrating all new results that have appeared in the last few years. The first working group report Handbook of LHC Higgs Cross Sections: 1. Read More

We consider direct diphoton production in hadron collisions, and we compute the next-to-next-to-leading order (NNLO) QCD radiative corrections at the fully-differential level. Our calculation uses the $q_T$ subtraction formalism and it is implemented in a parton level Monte Carlo program. The program allows the user to apply arbitrary kinematical cuts on the final-state photons and the associated jet activity, and to compute the corresponding distributions in the form of bin histograms. Read More

We consider the transverse-momentum (q_T) distribution of Standard Model
Higgs bosons produced by gluon fusion in hadron collisions. At small q_T
(q_T<

We consider QCD radiative corrections to Standard Model Higgs boson production in association with a W boson in hadron collisions. We present a fully exclusive calculation up to next-to-next-to-leading order (NNLO) in QCD perturbation theory. To perform this NNLO computation, we use a recently proposed version of the subtraction formalism. Read More

We consider the transverse-momentum (q_T) distribution of Drell--Yan lepton pairs produced in hadron collisions. At small values of q_T, we resum the logarithmically-enhanced perturbative QCD contributions up to next-to-next-to-leading logarithmic accuracy. At intermediate and large values of q_T, we consistently combine resummation with the known next-to-leading order perturbative result. Read More

We consider the production of W bosons in hadron collisions, and the subsequent leptonic decay W->lnu_l. We study the asymmetry between the rapidity distributions of the charged leptons, and we present its computation up to the next-to-next-to-leading order (NNLO) in QCD perturbation theory. Our calculation includes the dependence on the lepton kinematical cuts that are necessarily applied to select W-> lnu_l events in actual experimental analyses at hadron colliders. Read More

**Affiliations:**

^{1}Florence University & INFN Florence

**Category:**High Energy Physics - Phenomenology

We present a fully-exclusive next-to-next-to-leading order (NNLO) QCD calculation for vector boson production in hadron-hadron collisions. The calculation is implemented in a parton level Monte Carlo program, which includes the gamma-Z interference, finite-width effects, the leptonic decay of the vector bosons and the corresponding spin correlations. The code allows the user to apply arbitrary (though infrared safe) kinematical cuts on the final-states and to compute distributions in the form of bin histograms. Read More

**Affiliations:**

^{1}Florence University & INFN, Florence

**Category:**High Energy Physics - Phenomenology

We consider higher-order QCD corrections for vector boson production at hadron colliders. We present recent results on transverse-momentum resummation for Z production. Moreover we show numerical results from a new fully exclusive next-to-next-to-leading order (NNLO) calculation. Read More

**Authors:**H. Jung

^{1}, A. De Roeck

^{2}, Z. J. Ajaltouni

^{3}, S. Albino

^{4}, G. Altarelli

^{5}, F. Ambroglini

^{6}, J. Anderson

^{7}, G. Antchev

^{8}, M. Arneodo

^{9}, P. Aspell

^{10}, V. Avati

^{11}, M. Bahr

^{12}, A. Bacchetta

^{13}, M. G. Bagliesi

^{14}, R. D. Ball

^{15}, A. Banfi

^{16}, S. Baranov

^{17}, P. Bartalini

^{18}, J. Bartels

^{19}, F. Bechtel

^{20}, V. Berardi

^{21}, M. Berretti

^{22}, G. Beuf

^{23}, M. Biasini

^{24}, I. Bierenbaum

^{25}, J. Blumlein

^{26}, R. E. Blair

^{27}, C. Bombonati

^{28}, M. Boonekamp

^{29}, U. Bottigli

^{30}, S. Boutle

^{31}, M. Bozzo

^{32}, E. Brucken

^{33}, J. Bracinik

^{34}, A. Bruni

^{35}, G. E. Bruno

^{36}, A. Buckley

^{37}, A. Bunyatyan

^{38}, H. Burkhardt

^{39}, P. Bussey

^{40}, A. Buzzo

^{41}, M. Cacciari

^{42}, F. Cafagna

^{43}, M. Calicchio

^{44}, F. Caola

^{45}, M. G. Catanesi

^{46}, P. L. Catastini

^{47}, R. Cecchi

^{48}, F. A. Ceccopieri

^{49}, S. Cerci

^{50}, S. Chekanov

^{51}, R. Chierici

^{52}, M. Ciafaloni

^{53}, M. A. Ciocci

^{54}, V. Coco

^{55}, D. Colferai

^{56}, A. Cooper-Sarkar

^{57}, G. Corcella

^{58}, M. Czakon

^{59}, A. Dainese

^{60}, M. Dasgupta

^{61}, M. Deak

^{62}, M. Deile

^{63}, P. A. Delsart

^{64}, L. Del Debbio

^{65}, A. de Roeck

^{66}, C. Diaconu

^{67}, M. Diehl

^{68}, E. Dimovasili

^{69}, M. Dittmar

^{70}, I. M. Dremin

^{71}, K. Eggert

^{72}, R. Engel

^{73}, V. Eremin

^{74}, S. Erhan

^{75}, C. Ewerz

^{76}, L. Fano

^{77}, J. Feltesse

^{78}, G. Ferrera

^{79}, F. Ferro

^{80}, R. Field

^{81}, S. Forte

^{82}, F. Garcia

^{83}, A. Geiser

^{84}, F. Gelis

^{85}, S. Giani

^{86}, S. Gieseke

^{87}, M. A. Gigg

^{88}, A. Glazov

^{89}, K. Golec-Biernat

^{90}, K. Goulianos

^{91}, J. Grebenyuk

^{92}, V. Greco

^{93}, D. Grellscheid

^{94}, G. Grindhammer

^{95}, M. Grothe

^{96}, A. Guffanti

^{97}, C. Gwenlan

^{98}, V. Halyo

^{99}, K. Hamilton

^{100}, F. Hautmann

^{101}, J. Heino

^{102}, G. Heinrich

^{103}, T. Hilden

^{104}, K. Hiller

^{105}, J. Hollar

^{106}, X. Janssen

^{107}, S. Joseph

^{108}, A. W. Jung

^{109}, H. Jung

^{110}, V. Juranek, J. Kaspar, O. Kepka, V. A. Khoze, Ch. Kiesling, M. Klasen, S. Klein, B. A. Kniehl, A. Knutsson, J. Kopal, G. Kramer, F. Krauss, V. Kundrat, K. Kurvinen, K. Kutak, L. Lonnblad, S. Lami, G. Latino, J. I. Latorre, O. Latunde-Dada, R. Lauhakangas, V. Lendermann, P. Lenzi, G. Li, A. Likhoded, A. Lipatov, E. Lippmaa, M. Lokajicek, M. Lo Vetere, F. Lucas Rodriguez, G. Luisoni, E. Lytken, K. Muller, M. Macri, G. Magazzu, A. Majhi, S. Majhi, P. Marage, L. Marti, A. D. Martin, M. Meucci, D. A. Milstead, S. Minutoli, A. Nischke, A. Moares, S. Moch, L. Motyka, T. Namsoo, P. Newman, H. Niewiadomski, C. Nockles, E. Noschis, G. Notarnicola, J. Nystrand, E. Oliveri, F. Oljemark, K. Osterberg, R. Orava, M. Oriunno, S. Osman, S. Ostapchenko, P. Palazzi, E. Pedreschi, A. V. Pereira, H. Perrey, J. Petajajarvi, T. Petersen, A. Piccione, T. Pierog, J. L. Pinfold, O. I. Piskounova, S. Platzer, M. Quinto, Z. Rurikova, E. Radermacher, V. Radescu, E. Radicioni, F. Ravotti, G. Rella, P. Richardson, E. Robutti, G. Rodrigo, E. Rodrigues, M. Rogal, T. C. Rogers, J. Rojo, P. Roloff, L. Ropelewski, C. Rosemann, Ch. Royon, G. Ruggiero, A. Rummel, M. Ruspa, M. G. Ryskin, D. Salek, W. Slominski, H. Saarikko, A. Sabio Vera, T. Sako, G. P. Salam, V. A. Saleev, C. Sander, G. Sanguinetti, A. Santroni, Th. Schorner-Sadenius, R. Schicker, I. Schienbein, W. B. Schmidke, F. Schwennsen, A. Scribano, G. Sette, M. H. Seymour, A. Sherstnev, T. Sjostrand, W. Snoeys, G. Somogyi, L. Sonnenschein, G. Soyez, H. Spiesberger, F. Spinella, P. Squillacioti, A. M. Stasto, A. Starodumov, H. Stenzel, Ph. Stephens, A. Ster, D. Stocco, M. Strikman, C. Taylor, T. Teubner, R. S. Thorne, Z. Trocsanyi, M. Treccani, D. Treleani, L. Trentadue, A. Trummal, J. Tully, W. K. Tung, M. Turcato, N. Turini, M. Ubiali, A. Valkarova, A. van Hameren, P. Van Mechelen, J. A. M. Vermaseren, A. Vogt, B. F. L. Ward, G. Watt, B. R. Webber, Ch. Weiss, Ch. White, J. Whitmore, R. Wolf, J. Wu, A. Yagues-Molina, S. A. Yost, G. Zanderighi, N. Zotov, M. zur Nedden

**Affiliations:**

^{1}DESY, U. Antwerp,

^{2}CERN, U. Antwerp,

^{3}DESY, U. Antwerp,

^{4}DESY, U. Antwerp,

^{5}DESY, U. Antwerp,

^{6}DESY, U. Antwerp,

^{7}DESY, U. Antwerp,

^{8}DESY, U. Antwerp,

^{9}DESY, U. Antwerp,

^{10}DESY, U. Antwerp,

^{11}DESY, U. Antwerp,

^{12}DESY, U. Antwerp,

^{13}DESY, U. Antwerp,

^{14}DESY, U. Antwerp,

^{15}DESY, U. Antwerp,

^{16}DESY, U. Antwerp,

^{17}DESY, U. Antwerp,

^{18}DESY, U. Antwerp,

^{19}DESY, U. Antwerp,

^{20}DESY, U. Antwerp,

^{21}DESY, U. Antwerp,

^{22}DESY, U. Antwerp,

^{23}DESY, U. Antwerp,

^{24}DESY, U. Antwerp,

^{25}DESY, U. Antwerp,

^{26}DESY, U. Antwerp,

^{27}DESY, U. Antwerp,

^{28}DESY, U. Antwerp,

^{29}DESY, U. Antwerp,

^{30}DESY, U. Antwerp,

^{31}DESY, U. Antwerp,

^{32}DESY, U. Antwerp,

^{33}DESY, U. Antwerp,

^{34}DESY, U. Antwerp,

^{35}DESY, U. Antwerp,

^{36}DESY, U. Antwerp,

^{37}DESY, U. Antwerp,

^{38}DESY, U. Antwerp,

^{39}DESY, U. Antwerp,

^{40}DESY, U. Antwerp,

^{41}DESY, U. Antwerp,

^{42}DESY, U. Antwerp,

^{43}DESY, U. Antwerp,

^{44}DESY, U. Antwerp,

^{45}DESY, U. Antwerp,

^{46}DESY, U. Antwerp,

^{47}DESY, U. Antwerp,

^{48}DESY, U. Antwerp,

^{49}DESY, U. Antwerp,

^{50}DESY, U. Antwerp,

^{51}DESY, U. Antwerp,

^{52}DESY, U. Antwerp,

^{53}DESY, U. Antwerp,

^{54}DESY, U. Antwerp,

^{55}DESY, U. Antwerp,

^{56}DESY, U. Antwerp,

^{57}DESY, U. Antwerp,

^{58}DESY, U. Antwerp,

^{59}DESY, U. Antwerp,

^{60}DESY, U. Antwerp,

^{61}DESY, U. Antwerp,

^{62}DESY, U. Antwerp,

^{63}DESY, U. Antwerp,

^{64}DESY, U. Antwerp,

^{65}DESY, U. Antwerp,

^{66}DESY, U. Antwerp,

^{67}DESY, U. Antwerp,

^{68}DESY, U. Antwerp,

^{69}DESY, U. Antwerp,

^{70}DESY, U. Antwerp,

^{71}DESY, U. Antwerp,

^{72}DESY, U. Antwerp,

^{73}DESY, U. Antwerp,

^{74}DESY, U. Antwerp,

^{75}DESY, U. Antwerp,

^{76}DESY, U. Antwerp,

^{77}DESY, U. Antwerp,

^{78}DESY, U. Antwerp,

^{79}DESY, U. Antwerp,

^{80}DESY, U. Antwerp,

^{81}DESY, U. Antwerp,

^{82}DESY, U. Antwerp,

^{83}DESY, U. Antwerp,

^{84}DESY, U. Antwerp,

^{85}DESY, U. Antwerp,

^{86}DESY, U. Antwerp,

^{87}DESY, U. Antwerp,

^{88}DESY, U. Antwerp,

^{89}DESY, U. Antwerp,

^{90}DESY, U. Antwerp,

^{91}DESY, U. Antwerp,

^{92}DESY, U. Antwerp,

^{93}DESY, U. Antwerp,

^{94}DESY, U. Antwerp,

^{95}DESY, U. Antwerp,

^{96}DESY, U. Antwerp,

^{97}DESY, U. Antwerp,

^{98}DESY, U. Antwerp,

^{99}DESY, U. Antwerp,

^{100}DESY, U. Antwerp,

^{101}DESY, U. Antwerp,

^{102}DESY, U. Antwerp,

^{103}DESY, U. Antwerp,

^{104}DESY, U. Antwerp,

^{105}DESY, U. Antwerp,

^{106}DESY, U. Antwerp,

^{107}DESY, U. Antwerp,

^{108}DESY, U. Antwerp,

^{109}DESY, U. Antwerp,

^{110}DESY, U. Antwerp

**Category:**High Energy Physics - Phenomenology

2nd workshop on the implications of HERA for LHC physics. Working groups: Parton Density Functions Multi-jet final states and energy flows Heavy quarks (charm and beauty) Diffraction Cosmic Rays Monte Carlos and Tools Read More

We consider QCD radiative corrections to the production of W and Z bosons in hadron collisions. We present a fully exclusive calculation up to next-to-next-to-leading order (NNLO) in QCD perturbation theory. To perform this NNLO computation, we use a recently proposed version of the subtraction formalism. Read More

We consider transverse-momentum (q_T) resummation for Drell--Yan lepton pair production in hadron collisions. At small values of q_T, the logarithmically-enhanced QCD contributions are resummed up to next-to-leading logarithmic accuracy. At intermediate and large values of q_T, resummation is consistently combined with the fixed-order perturbative result. Read More

We summarize the main characteristics and recent results on B->Xulnu decays of a model based on soft-gluon resummation and an analytic time-like QCD coupling. Read More

**Affiliations:**

^{1}Rome U. & INFN, Rome,

^{2}Parma U. & INFN, Parma,

^{3}Florence U. & INFN, Florence,

^{4}Parma U. & INFN, Parma

**Category:**High Energy Physics - Phenomenology

We compute in the heavy quark effective theory the soft coefficient D_2 entering the resummation of next-to-next-to-leading threshold logarithms for jets initiated by a quark with a small mass compared to the hard scale of the process. We find complete agreement with a previous computation in full QCD. Contrary to our previous guess, this coefficient turns out to be different from that one entering heavy flavor decay or heavy flavor fragmentation. Read More

**Affiliations:**

^{1}Florence U. and INFN Florence,

^{2}Barcelona U., DFF and ICC Barcelona U.,

^{3}Barcelona U., ECM,

^{4}Barcelona U., ECM and ICC Barcelona U.

**Category:**High Energy Physics - Phenomenology

We present a study of triple Higgs boson (3H) production at the International Linear Collider (ILC) within the general Two-Higgs-Doublet Model (2HDM). We compute the production cross-sections at the leading-order for the 3H final states and find values up to sigma ~ 0.1 pb. Read More

**Affiliations:**

^{1}Rome U. and INFN, Rome,

^{2}Queen Mary, U. of London,

^{3}Florence U. and INFN, Florence,

^{4}Naples U. and INFN, Naples

By analyzing B -> X_u l nu_l spectra with a model based on soft-gluon resummation and an analytic time-like QCD coupling, we obtain |V_ub| = (3.76 +-0.13 +- 0. Read More

Triple Higgs boson production (3H) may provide essential information to reconstruct the Higgs potential. We consider 3H-production in the International Linear Collider (ILC) both in the Minimal Supersymmetric Standard Model (MSSM) and in the general Two-Higgs-doublet Model (2HDM). We compute the total cross-section for the various 3H final states, such as H^+ H^- h^0, H^0 A^0 h^0, etc. Read More

**Authors:**Ugo Aglietti

^{1}, Leonardo Di Giustino

^{2}, Giancarlo Ferrera

^{3}, Alessandro Renzaglia

^{4}, Giulia Ricciardi

^{5}, Luca Trentadue

^{6}

**Affiliations:**

^{1}Rome U. & INFN, Rome,

^{2}Parma U. & INFN, Parma,

^{3}Barcelona U. & Florence U.,

^{4}Rome U. & INFN, Rome,

^{5}Naples U. & INFN, Naples,

^{6}Parma U. & INFN, Parma

**Category:**High Energy Physics - Phenomenology

We compute the QCD form factor resumming threshold logarithms in B --> X_c + l + nu_l decays to next-to-leading logarithmic approximation. We present an interpolation formula including soft as well as collinear effects softened by the non-vanishing charm mass. Read More

**Affiliations:**

^{1}Rome U.,

^{2}Barcelona U., ECM

**Category:**High Energy Physics - Phenomenology

We use a recently proposed non-perturbative model, based on an effective strong coupling constant and free from tunable parameters, to study c-flavoured hadron production in e+e- annihilation. Charm-quark production is described in the framework of perturbative fragmentation functions, with NLO coefficient functions, NLL non-singlet DGLAP evolution and NNLL large-x resummation. We model hadronization effects by means of the effective coupling constant in the NNLO approximation and compare our results with experimental data taken at the Z0 pole and at the Upsilon(4S) resonance. Read More

We discuss threshold resummation in radiative and charmless semileptonic B decays. To deal with the large non perturbative effects, we introduce a model for NNLL resummed form factors based on the analytic QCD coupling. By means of this model we can reproduce with good accuracy the experimental data. Read More

**Affiliations:**

^{1}Rome U. & INFN, Rome,

^{2}Parma U. & INFN, Parma,

^{3}Rome U. & INFN, Rome,

^{4}Parma U. & INFN, Parma

**Category:**High Energy Physics - Phenomenology

We resum the invariant mass distribution of jets initiated by massive quarks in next-to-leading logarithmic approximation and beyond in heuristic way. We find that the inclusion of mass terms, in the N-moment space, results in the universal factor delta_N(Q^2;m^2), taking into account dead-cone effects and soft radiation characteristic of massive charges. This factor multiplies the massless jet distribution function J_N(Q^2). Read More

**Affiliations:**

^{1}Rome U. and INFN, Rome,

^{2}Rome U.,

^{3}Rome U. and INFN, Rome

**Category:**High Energy Physics - Phenomenology

We describe B-hadron production in e+e- annihilation at the Z pole by means of a model including non-perturbative corrections to b-quark fragmentation as originating, via multiple soft emissions, from an effective QCD coupling constant, which does not exhibit the Landau pole any longer and includes absorbitive effects due to parton branching. We work in the framework of perturbative fragmentation functions at NLO, with NLL DGLAP evolution and NNLL large-x resummation in both coefficient function and initial condition of the perturbative fragmentation function. We include hadronization corrections via the effective coupling constant in the NNLO approximation and do not add any further non-perturbative fragmentation function. Read More

We compare experimental spectra of radiative and semileptonic B decays with the predictions of a model based on soft-gluon resummation to next-to-next-to leading order and on a ghost-less time-like coupling. We find a good agreement with photon spectra in the radiative decay and with hadron mass distributions in the semileptonic one: the extracted values for alpha_S(m_Z) are in agreement with the current PDG average within at most two standard deviations. The agreement is instead less good for the electron spectra measured by BaBar and Belle in semileptonic decays for small electron energies (< 2. Read More

We resum to next-to-leading order (NLO) the distribution in the light-cone momentum p+ = EX - |pX| and the spectrum in the electron energy, in the semileptonic decays B-> Xu l nu, where EX and pX are the total energy and three-momentum of the final hadron state Xu respectively. By expanding our formulas, we obtain the coefficients of all the infrared logarithms alpha^n L^k at order alpha^2 and at order alpha^3, with the exception of the alpha^3 L coefficient. We explicitly show that the relation between these semileptonic spectra and the hadron mass distribution in the radiative decay B -> Xs gamma is not a purely short distance one. Read More

We resum to next-to-leading order the distribution in the ratio of the invariant hadron mass mX to the total hadron energy EX and the distribution in mX in the semileptonic decays B -> Xu l nu. By expanding our formulas, we obtain the coefficients of all the infrared logarithms at O(alphaS^2) and of the leading ones at O(alphaS^3). We explicitly show that the relation between these semileptonic spectra and the photon spectrum in the radiative decay B -> Xs gamma is not a purely short-distance one. Read More

We evaluate thresholds resummed spectra in B -> Xu l nu decays in next-to-leading order. We present results for the distribution in E_X and in m_X^2/E_X^2, for the distribution in E_X and E_l and for the distribution in E_X, where E_X and m_X are the energy and the invariant mass of the final hadronic state Xu respectively and E_l is the energy of the charged lepton. We explicitly show that all these spectra (where there is no integration over the hadronic energy) can be directly related to the photon spectrum in B -> Xs gamma via short-distance coefficient functions. Read More

We discuss the associated production of a light Higgs boson and a light chargino pair in the process e+e- -> h chi+ chi- in the Minimal Supersymmetric Standard Model (MSSM) at linear colliders (LC) with \sqrt s=500 GeV. This process gives direct informations about the Higgs-boson coupling to light charginos, that cannot be analyzed in decay processes due to phase-space restrictions. We compute total cross sections in the regions of the MSSM parameter space where the process cannot proceed via on-shell production and subsequent decay of either heavier charginos or pseudoscalar Higgs bosons A. Read More

In the Minimal Supersymmetric Standard Model (MSSM), we study the light Higgs-boson radiation off a light-chargino pair in the process e+e- -> h chi^+ chi^- at linear colliders with \sqs=500 GeV. We analyze cross sections in the regions of the MSSM parameter space where the process can not proceed via on-shell production and subsequent decay of either heavier charginos or the pseudoscalar Higgs boson A. Cross sections up to a few fb's are allowed, according to present experimental limits on the Higgs-boson, chargino and sneutrino masses. Read More