G. F. Giudice - CERN

G. F. Giudice
Are you G. F. Giudice?

Claim your profile, edit publications, add additional information:

Contact Details

Name
G. F. Giudice
Affiliation
CERN
Location

Pubs By Year

Pub Categories

 
High Energy Physics - Phenomenology (49)
 
High Energy Physics - Experiment (17)
 
High Energy Physics - Theory (14)
 
Cosmology and Nongalactic Astrophysics (3)
 
Physics - Instrumentation and Detectors (1)
 
Physics - History of Physics (1)
 
Astrophysics (1)
 
Physics - Accelerator Physics (1)
 
High Energy Astrophysical Phenomena (1)
 
Physics - Strongly Correlated Electrons (1)
 
Quantum Physics (1)
 
General Relativity and Quantum Cosmology (1)

Publications Authored By G. F. Giudice

We study spin transport in a boundary driven XXZ spin chain. Driving at the chain boundaries is modeled by two additional spin chains prepared in oppositely polarized states. Emergent behavior, both in the transient dynamics and in the long-time quasi-steady state, is demonstrated. Read More

2016Oct
Authors: D. de Florian1, C. Grojean2, F. Maltoni3, C. Mariotti4, A. Nikitenko5, M. Pieri6, P. Savard7, M. Schumacher8, R. Tanaka9, R. Aggleton10, M. Ahmad11, B. Allanach12, C. Anastasiou13, W. Astill14, S. Badger15, M. Badziak16, J. Baglio17, E. Bagnaschi18, A. Ballestrero19, A. Banfi20, D. Barducci21, M. Beckingham22, C. Becot23, G. Bélanger24, J. Bellm25, N. Belyaev26, F. U. Bernlochner27, C. Beskidt28, A. Biekötter29, F. Bishara30, W. Bizon31, N. E. Bomark32, M. Bonvini33, S. Borowka34, V. Bortolotto35, S. Boselli36, F. J. Botella37, R. Boughezal38, G. C. Branco39, J. Brehmer40, L. Brenner41, S. Bressler42, I. Brivio43, A. Broggio44, H. Brun45, G. Buchalla46, C. D. Burgard47, A. Calandri48, L. Caminada49, R. Caminal Armadans50, F. Campanario51, J. Campbell52, F. Caola53, C. M. Carloni Calame54, S. Carrazza55, A. Carvalho56, M. Casolino57, O. Cata58, A. Celis59, F. Cerutti60, N. Chanon61, M. Chen62, X. Chen63, B. Chokoufé Nejad64, N. Christensen65, M. Ciuchini66, R. Contino67, T. Corbett68, D. Curtin69, M. Dall'Osso70, A. David71, S. Dawson72, J. de Blas73, W. de Boer74, P. de Castro Manzano75, C. Degrande76, R. L. Delgado77, F. Demartin78, A. Denner79, B. Di Micco80, R. Di Nardo81, S. Dittmaier82, A. Dobado83, T. Dorigo84, F. A. Dreyer85, M. Dührssen86, C. Duhr87, F. Dulat88, K. Ecker89, K. Ellis90, U. Ellwanger91, C. Englert92, D. Espriu93, A. Falkowski94, L. Fayard95, R. Feger96, G. Ferrera97, A. Ferroglia98, N. Fidanza99, T. Figy100, M. Flechl101, D. Fontes102, S. Forte103, P. Francavilla104, E. Franco105, R. Frederix106, A. Freitas107, F. F. Freitas108, F. Frensch109, S. Frixione110, B. Fuks111, E. Furlan112, S. Gadatsch113, J. Gao114, Y. Gao115, M. V. Garzelli116, T. Gehrmann117, R. Gerosa118, M. Ghezzi119, D. Ghosh120, S. Gieseke121, D. Gillberg122, G. F. Giudice123, E. W. N. Glover124, F. Goertz125, D. Gonçalves126, J. Gonzalez-Fraile127, M. Gorbahn128, S. Gori129, C. A. Gottardo130, M. Gouzevitch131, P. Govoni132, D. Gray133, M. Grazzini134, N. Greiner135, A. Greljo136, J. Grigo137, A. V. Gritsan138, R. Gröber139, S. Guindon140, H. E. Haber141, C. Han142, T. Han143, R. Harlander144, M. A. Harrendorf145, H. B. Hartanto146, C. Hays147, S. Heinemeyer148, G. Heinrich149, M. Herrero150, F. Herzog151, B. Hespel152, V. Hirschi153, S. Hoeche154, S. Honeywell155, S. J. Huber156, C. Hugonie157, J. Huston158, A. Ilnicka159, G. Isidori160, B. Jäger161, M. Jaquier162, S. P. Jones163, A. Juste164, S. Kallweit165, A. Kaluza166, A. Kardos167, A. Karlberg168, Z. Kassabov169, N. Kauer170, D. I. Kazakov171, M. Kerner172, W. Kilian173, F. Kling174, K. Köneke175, R. Kogler176, R. Konoplich177, S. Kortner178, S. Kraml179, C. Krause180, F. Krauss181, M. Krawczyk182, A. Kulesza183, S. Kuttimalai184, R. Lane185, A. Lazopoulos186, G. Lee187, P. Lenzi188, I. M. Lewis189, Y. Li190, S. Liebler191, J. Lindert192, X. Liu193, Z. Liu194, F. J. Llanes-Estrada195, H. E. Logan196, D. Lopez-Val197, I. Low198, G. Luisoni199, P. Maierhöfer200, E. Maina201, B. Mansoulié202, H. Mantler203, M. Mantoani204, A. C. Marini205, V. I. Martinez Outschoorn206, S. Marzani207, D. Marzocca208, A. Massironi209, K. Mawatari210, J. Mazzitelli211, A. McCarn212, B. Mellado213, K. Melnikov214, S. B. Menari215, L. Merlo216, C. Meyer217, P. Milenovic218, K. Mimasu219, S. Mishima220, B. Mistlberger221, S. -O. Moch222, A. Mohammadi223, P. F. Monni224, G. Montagna225, M. Moreno Llácer226, N. Moretti227, S. Moretti228, L. Motyka229, A. Mück230, M. Mühlleitner231, S. Munir232, P. Musella233, P. Nadolsky234, D. Napoletano235, M. Nebot236, C. Neu237, M. Neubert238, R. Nevzorov239, O. Nicrosini240, J. Nielsen241, K. Nikolopoulos242, J. M. No243, C. O'Brien244, T. Ohl245, C. Oleari246, T. Orimoto247, D. Pagani248, C. E. Pandini249, A. Papaefstathiou250, A. S. Papanastasiou251, G. Passarino252, B. D. Pecjak253, M. Pelliccioni254, G. Perez255, L. Perrozzi256, F. Petriello257, G. Petrucciani258, E. Pianori259, F. Piccinini260, M. Pierini261, A. Pilkington262, S. Plätzer263, T. Plehn264, R. Podskubka265, C. T. Potter266, S. Pozzorini267, K. Prokofiev268, A. Pukhov269, I. Puljak270, M. Queitsch-Maitland271, J. Quevillon272, D. Rathlev273, M. Rauch274, E. Re275, M. N. Rebelo276, D. Rebuzzi277, L. Reina278, C. Reuschle279, J. Reuter280, M. Riembau281, F. Riva282, A. Rizzi283, T. Robens284, R. Röntsch285, J. Rojo286, J. C. Romão287, N. Rompotis288, J. Roskes289, R. Roth290, G. P. Salam291, R. Salerno292, R. Santos293, V. Sanz294, J. J. Sanz-Cillero295, H. Sargsyan296, U. Sarica297, P. Schichtel298, J. Schlenk299, T. Schmidt300, C. Schmitt301, M. Schönherr302, U. Schubert303, M. Schulze304, S. Sekula305, M. Sekulla306, E. Shabalina307, H. S. Shao308, J. Shelton309, C. H. Shepherd-Themistocleous310, S. Y. Shim311, F. Siegert312, A. Signer313, J. P. Silva314, L. Silvestrini315, M. Sjodahl316, P. Slavich317, M. Slawinska318, L. Soffi319, M. Spannowsky320, C. Speckner321, D. M. Sperka322, M. Spira323, O. Stål324, F. Staub325, T. Stebel326, T. Stefaniak327, M. Steinhauser328, I. W. Stewart329, M. J. Strassler330, J. Streicher331, D. M. Strom332, S. Su333, X. Sun334, F. J. Tackmann335, K. Tackmann336, A. M. Teixeira337, R. Teixeira de Lima338, V. Theeuwes339, R. Thorne340, D. Tommasini341, P. Torrielli342, M. Tosi343, F. Tramontano344, Z. Trócsányi345, M. Trott346, I. Tsinikos347, M. Ubiali348, P. Vanlaer349, W. Verkerke350, A. Vicini351, L. Viliani352, E. Vryonidou353, D. Wackeroth354, C. E. M. Wagner355, J. Wang356, S. Wayand357, G. Weiglein358, C. Weiss359, M. Wiesemann360, C. Williams361, J. Winter362, D. Winterbottom363, R. Wolf364, M. Xiao365, L. L. Yang366, R. Yohay367, S. P. Y. Yuen368, G. Zanderighi369, M. Zaro370, D. Zeppenfeld371, R. Ziegler372, T. Zirke373, J. Zupan374
Affiliations: 1eds., 2eds., 3eds., 4eds., 5eds., 6eds., 7eds., 8eds., 9eds., 10The LHC Higgs Cross Section Working Group, 11The LHC Higgs Cross Section Working Group, 12The LHC Higgs Cross Section Working Group, 13The LHC Higgs Cross Section Working Group, 14The LHC Higgs Cross Section Working Group, 15The LHC Higgs Cross Section Working Group, 16The LHC Higgs Cross Section Working Group, 17The LHC Higgs Cross Section Working Group, 18The LHC Higgs Cross Section Working Group, 19The LHC Higgs Cross Section Working Group, 20The LHC Higgs Cross Section Working Group, 21The LHC Higgs Cross Section Working Group, 22The LHC Higgs Cross Section Working Group, 23The LHC Higgs Cross Section Working Group, 24The LHC Higgs Cross Section Working Group, 25The LHC Higgs Cross Section Working Group, 26The LHC Higgs Cross Section Working Group, 27The LHC Higgs Cross Section Working Group, 28The LHC Higgs Cross Section Working Group, 29The LHC Higgs Cross Section Working Group, 30The LHC Higgs Cross Section Working Group, 31The LHC Higgs Cross Section Working Group, 32The LHC Higgs Cross Section Working Group, 33The LHC Higgs Cross Section Working Group, 34The LHC Higgs Cross Section Working Group, 35The LHC Higgs Cross Section Working Group, 36The LHC Higgs Cross Section Working Group, 37The LHC Higgs Cross Section Working Group, 38The LHC Higgs Cross Section Working Group, 39The LHC Higgs Cross Section Working Group, 40The LHC Higgs Cross Section Working Group, 41The LHC Higgs Cross Section Working Group, 42The LHC Higgs Cross Section Working Group, 43The LHC Higgs Cross Section Working Group, 44The LHC Higgs Cross Section Working Group, 45The LHC Higgs Cross Section Working Group, 46The LHC Higgs Cross Section Working Group, 47The LHC Higgs Cross Section Working Group, 48The LHC Higgs Cross Section Working Group, 49The LHC Higgs Cross Section Working Group, 50The LHC Higgs Cross Section Working Group, 51The LHC Higgs Cross Section Working Group, 52The LHC Higgs Cross Section Working Group, 53The LHC Higgs Cross Section Working Group, 54The LHC Higgs Cross Section Working Group, 55The LHC Higgs Cross Section Working Group, 56The LHC Higgs Cross Section Working Group, 57The LHC Higgs Cross Section Working Group, 58The LHC Higgs Cross Section Working Group, 59The LHC Higgs Cross Section Working Group, 60The LHC Higgs Cross Section Working Group, 61The LHC Higgs Cross Section Working Group, 62The LHC Higgs Cross Section Working Group, 63The LHC Higgs Cross Section Working Group, 64The LHC Higgs Cross Section Working Group, 65The LHC Higgs Cross Section Working Group, 66The LHC Higgs Cross Section Working Group, 67The LHC Higgs Cross Section Working Group, 68The LHC Higgs Cross Section Working Group, 69The LHC Higgs Cross Section Working Group, 70The LHC Higgs Cross Section Working Group, 71The LHC Higgs Cross Section Working Group, 72The LHC Higgs Cross Section Working Group, 73The LHC Higgs Cross Section Working Group, 74The LHC Higgs Cross Section Working Group, 75The LHC Higgs Cross Section Working Group, 76The LHC Higgs Cross Section Working Group, 77The LHC Higgs Cross Section Working Group, 78The LHC Higgs Cross Section Working Group, 79The LHC Higgs Cross Section Working Group, 80The LHC Higgs Cross Section Working Group, 81The LHC Higgs Cross Section Working Group, 82The LHC Higgs Cross Section Working Group, 83The LHC Higgs Cross Section Working Group, 84The LHC Higgs Cross Section Working Group, 85The LHC Higgs Cross Section Working Group, 86The LHC Higgs Cross Section Working Group, 87The LHC Higgs Cross Section Working Group, 88The LHC Higgs Cross Section Working Group, 89The LHC Higgs Cross Section Working Group, 90The LHC Higgs Cross Section Working Group, 91The LHC Higgs Cross Section Working Group, 92The LHC Higgs Cross Section Working Group, 93The LHC Higgs Cross Section Working Group, 94The LHC Higgs Cross Section Working Group, 95The LHC Higgs Cross Section Working Group, 96The LHC Higgs Cross Section Working Group, 97The LHC Higgs Cross Section Working Group, 98The LHC Higgs Cross Section Working Group, 99The LHC Higgs Cross Section Working Group, 100The LHC Higgs Cross Section Working Group, 101The LHC Higgs Cross Section Working Group, 102The LHC Higgs Cross Section Working Group, 103The LHC Higgs Cross Section Working Group, 104The LHC Higgs Cross Section Working Group, 105The LHC Higgs Cross Section Working Group, 106The LHC Higgs Cross Section Working Group, 107The LHC Higgs Cross Section Working Group, 108The LHC Higgs Cross Section Working Group, 109The LHC Higgs Cross Section Working Group, 110The LHC Higgs Cross Section Working Group, 111The LHC Higgs Cross Section Working Group, 112The LHC Higgs Cross Section Working Group, 113The LHC Higgs Cross Section Working Group, 114The LHC Higgs Cross Section Working Group, 115The LHC Higgs Cross Section Working Group, 116The LHC Higgs Cross Section Working Group, 117The LHC Higgs Cross Section Working Group, 118The LHC Higgs Cross Section Working Group, 119The LHC Higgs Cross Section Working Group, 120The LHC Higgs Cross Section Working Group, 121The LHC Higgs Cross Section Working Group, 122The LHC Higgs Cross Section Working Group, 123The LHC Higgs Cross Section Working Group, 124The LHC Higgs Cross Section Working Group, 125The LHC Higgs Cross Section Working Group, 126The LHC Higgs Cross Section Working Group, 127The LHC Higgs Cross Section Working Group, 128The LHC Higgs Cross Section Working Group, 129The LHC Higgs Cross Section Working Group, 130The LHC Higgs Cross Section Working Group, 131The LHC Higgs Cross Section Working Group, 132The LHC Higgs Cross Section Working Group, 133The LHC Higgs Cross Section Working Group, 134The LHC Higgs Cross Section Working Group, 135The LHC Higgs Cross Section Working Group, 136The LHC Higgs Cross Section Working Group, 137The LHC Higgs Cross Section Working Group, 138The LHC Higgs Cross Section Working Group, 139The LHC Higgs Cross Section Working Group, 140The LHC Higgs Cross Section Working Group, 141The LHC Higgs Cross Section Working Group, 142The LHC Higgs Cross Section Working Group, 143The LHC Higgs Cross Section Working Group, 144The LHC Higgs Cross Section Working Group, 145The LHC Higgs Cross Section Working Group, 146The LHC Higgs Cross Section Working Group, 147The LHC Higgs Cross Section Working Group, 148The LHC Higgs Cross Section Working Group, 149The LHC Higgs Cross Section Working Group, 150The LHC Higgs Cross Section Working Group, 151The LHC Higgs Cross Section Working Group, 152The LHC Higgs Cross Section Working Group, 153The LHC Higgs Cross Section Working Group, 154The LHC Higgs Cross Section Working Group, 155The LHC Higgs Cross Section Working Group, 156The LHC Higgs Cross Section Working Group, 157The LHC Higgs Cross Section Working Group, 158The LHC Higgs Cross Section Working Group, 159The LHC Higgs Cross Section Working Group, 160The LHC Higgs Cross Section Working Group, 161The LHC Higgs Cross Section Working Group, 162The LHC Higgs Cross Section Working Group, 163The LHC Higgs Cross Section Working Group, 164The LHC Higgs Cross Section Working Group, 165The LHC Higgs Cross Section Working Group, 166The LHC Higgs Cross Section Working Group, 167The LHC Higgs Cross Section Working Group, 168The LHC Higgs Cross Section Working Group, 169The LHC Higgs Cross Section Working Group, 170The LHC Higgs Cross Section Working Group, 171The LHC Higgs Cross Section Working Group, 172The LHC Higgs Cross Section Working Group, 173The LHC Higgs Cross Section Working Group, 174The LHC Higgs Cross Section Working Group, 175The LHC Higgs Cross Section Working Group, 176The LHC Higgs Cross Section Working Group, 177The LHC Higgs Cross Section Working Group, 178The LHC Higgs Cross Section Working Group, 179The LHC Higgs Cross Section Working Group, 180The LHC Higgs Cross Section Working Group, 181The LHC Higgs Cross Section Working Group, 182The LHC Higgs Cross Section Working Group, 183The LHC Higgs Cross Section Working Group, 184The LHC Higgs Cross Section Working Group, 185The LHC Higgs Cross Section Working Group, 186The LHC Higgs Cross Section Working Group, 187The LHC Higgs Cross Section Working Group, 188The LHC Higgs Cross Section Working Group, 189The LHC Higgs Cross Section Working Group, 190The LHC Higgs Cross Section Working Group, 191The LHC Higgs Cross Section Working Group, 192The LHC Higgs Cross Section Working Group, 193The LHC Higgs Cross Section Working Group, 194The LHC Higgs Cross Section Working Group, 195The LHC Higgs Cross Section Working Group, 196The LHC Higgs Cross Section Working Group, 197The LHC Higgs Cross Section Working Group, 198The LHC Higgs Cross Section Working Group, 199The LHC Higgs Cross Section Working Group, 200The LHC Higgs Cross Section Working Group, 201The LHC Higgs Cross Section Working Group, 202The LHC Higgs Cross Section Working Group, 203The LHC Higgs Cross Section Working Group, 204The LHC Higgs Cross Section Working Group, 205The LHC Higgs Cross Section Working Group, 206The LHC Higgs Cross Section Working Group, 207The LHC Higgs Cross Section Working Group, 208The LHC Higgs Cross Section Working Group, 209The LHC Higgs Cross Section Working Group, 210The LHC Higgs Cross Section Working Group, 211The LHC Higgs Cross Section Working Group, 212The LHC Higgs Cross Section Working Group, 213The LHC Higgs Cross Section Working Group, 214The LHC Higgs Cross Section Working Group, 215The LHC Higgs Cross Section Working Group, 216The LHC Higgs Cross Section Working Group, 217The LHC Higgs Cross Section Working Group, 218The LHC Higgs Cross Section Working Group, 219The LHC Higgs Cross Section Working Group, 220The LHC Higgs Cross Section Working Group, 221The LHC Higgs Cross Section Working Group, 222The LHC Higgs Cross Section Working Group, 223The LHC Higgs Cross Section Working Group, 224The LHC Higgs Cross Section Working Group, 225The LHC Higgs Cross Section Working Group, 226The LHC Higgs Cross Section Working Group, 227The LHC Higgs Cross Section Working Group, 228The LHC Higgs Cross Section Working Group, 229The LHC Higgs Cross Section Working Group, 230The LHC Higgs Cross Section Working Group, 231The LHC Higgs Cross Section Working Group, 232The LHC Higgs Cross Section Working Group, 233The LHC Higgs Cross Section Working Group, 234The LHC Higgs Cross Section Working Group, 235The LHC Higgs Cross Section Working Group, 236The LHC Higgs Cross Section Working Group, 237The LHC Higgs Cross Section Working Group, 238The LHC Higgs Cross Section Working Group, 239The LHC Higgs Cross Section Working Group, 240The LHC Higgs Cross Section Working Group, 241The LHC Higgs Cross Section Working Group, 242The LHC Higgs Cross Section Working Group, 243The LHC Higgs Cross Section Working Group, 244The LHC Higgs Cross Section Working Group, 245The LHC Higgs Cross Section Working Group, 246The LHC Higgs Cross Section Working Group, 247The LHC Higgs Cross Section Working Group, 248The LHC Higgs Cross Section Working Group, 249The LHC Higgs Cross Section Working Group, 250The LHC Higgs Cross Section Working Group, 251The LHC Higgs Cross Section Working Group, 252The LHC Higgs Cross Section Working Group, 253The LHC Higgs Cross Section Working Group, 254The LHC Higgs Cross Section Working Group, 255The LHC Higgs Cross Section Working Group, 256The LHC Higgs Cross Section Working Group, 257The LHC Higgs Cross Section Working Group, 258The LHC Higgs Cross Section Working Group, 259The LHC Higgs Cross Section Working Group, 260The LHC Higgs Cross Section Working Group, 261The LHC Higgs Cross Section Working Group, 262The LHC Higgs Cross Section Working Group, 263The LHC Higgs Cross Section Working Group, 264The LHC Higgs Cross Section Working Group, 265The LHC Higgs Cross Section Working Group, 266The LHC Higgs Cross Section Working Group, 267The LHC Higgs Cross Section Working Group, 268The LHC Higgs Cross Section Working Group, 269The LHC Higgs Cross Section Working Group, 270The LHC Higgs Cross Section Working Group, 271The LHC Higgs Cross Section Working Group, 272The LHC Higgs Cross Section Working Group, 273The LHC Higgs Cross Section Working Group, 274The LHC Higgs Cross Section Working Group, 275The LHC Higgs Cross Section Working Group, 276The LHC Higgs Cross Section Working Group, 277The LHC Higgs Cross Section Working Group, 278The LHC Higgs Cross Section Working Group, 279The LHC Higgs Cross Section Working Group, 280The LHC Higgs Cross Section Working Group, 281The LHC Higgs Cross Section Working Group, 282The LHC Higgs Cross Section Working Group, 283The LHC Higgs Cross Section Working Group, 284The LHC Higgs Cross Section Working Group, 285The LHC Higgs Cross Section Working Group, 286The LHC Higgs Cross Section Working Group, 287The LHC Higgs Cross Section Working Group, 288The LHC Higgs Cross Section Working Group, 289The LHC Higgs Cross Section Working Group, 290The LHC Higgs Cross Section Working Group, 291The LHC Higgs Cross Section Working Group, 292The LHC Higgs Cross Section Working Group, 293The LHC Higgs Cross Section Working Group, 294The LHC Higgs Cross Section Working Group, 295The LHC Higgs Cross Section Working Group, 296The LHC Higgs Cross Section Working Group, 297The LHC Higgs Cross Section Working Group, 298The LHC Higgs Cross Section Working Group, 299The LHC Higgs Cross Section Working Group, 300The LHC Higgs Cross Section Working Group, 301The LHC Higgs Cross Section Working Group, 302The LHC Higgs Cross Section Working Group, 303The LHC Higgs Cross Section Working Group, 304The LHC Higgs Cross Section Working Group, 305The LHC Higgs Cross Section Working Group, 306The LHC Higgs Cross Section Working Group, 307The LHC Higgs Cross Section Working Group, 308The LHC Higgs Cross Section Working Group, 309The LHC Higgs Cross Section Working Group, 310The LHC Higgs Cross Section Working Group, 311The LHC Higgs Cross Section Working Group, 312The LHC Higgs Cross Section Working Group, 313The LHC Higgs Cross Section Working Group, 314The LHC Higgs Cross Section Working Group, 315The LHC Higgs Cross Section Working Group, 316The LHC Higgs Cross Section Working Group, 317The LHC Higgs Cross Section Working Group, 318The LHC Higgs Cross Section Working Group, 319The LHC Higgs Cross Section Working Group, 320The LHC Higgs Cross Section Working Group, 321The LHC Higgs Cross Section Working Group, 322The LHC Higgs Cross Section Working Group, 323The LHC Higgs Cross Section Working Group, 324The LHC Higgs Cross Section Working Group, 325The LHC Higgs Cross Section Working Group, 326The LHC Higgs Cross Section Working Group, 327The LHC Higgs Cross Section Working Group, 328The LHC Higgs Cross Section Working Group, 329The LHC Higgs Cross Section Working Group, 330The LHC Higgs Cross Section Working Group, 331The LHC Higgs Cross Section Working Group, 332The LHC Higgs Cross Section Working Group, 333The LHC Higgs Cross Section Working Group, 334The LHC Higgs Cross Section Working Group, 335The LHC Higgs Cross Section Working Group, 336The LHC Higgs Cross Section Working Group, 337The LHC Higgs Cross Section Working Group, 338The LHC Higgs Cross Section Working Group, 339The LHC Higgs Cross Section Working Group, 340The LHC Higgs Cross Section Working Group, 341The LHC Higgs Cross Section Working Group, 342The LHC Higgs Cross Section Working Group, 343The LHC Higgs Cross Section Working Group, 344The LHC Higgs Cross Section Working Group, 345The LHC Higgs Cross Section Working Group, 346The LHC Higgs Cross Section Working Group, 347The LHC Higgs Cross Section Working Group, 348The LHC Higgs Cross Section Working Group, 349The LHC Higgs Cross Section Working Group, 350The LHC Higgs Cross Section Working Group, 351The LHC Higgs Cross Section Working Group, 352The LHC Higgs Cross Section Working Group, 353The LHC Higgs Cross Section Working Group, 354The LHC Higgs Cross Section Working Group, 355The LHC Higgs Cross Section Working Group, 356The LHC Higgs Cross Section Working Group, 357The LHC Higgs Cross Section Working Group, 358The LHC Higgs Cross Section Working Group, 359The LHC Higgs Cross Section Working Group, 360The LHC Higgs Cross Section Working Group, 361The LHC Higgs Cross Section Working Group, 362The LHC Higgs Cross Section Working Group, 363The LHC Higgs Cross Section Working Group, 364The LHC Higgs Cross Section Working Group, 365The LHC Higgs Cross Section Working Group, 366The LHC Higgs Cross Section Working Group, 367The LHC Higgs Cross Section Working Group, 368The LHC Higgs Cross Section Working Group, 369The LHC Higgs Cross Section Working Group, 370The LHC Higgs Cross Section Working Group, 371The LHC Higgs Cross Section Working Group, 372The LHC Higgs Cross Section Working Group, 373The LHC Higgs Cross Section Working Group, 374The LHC Higgs Cross Section Working Group

This Report summarizes the results of the activities of the LHC Higgs Cross Section Working Group in the period 2014-2016. The main goal of the working group was to present the state-of-the-art of Higgs physics at the LHC, integrating all new results that have appeared in the last few years. The first part compiles the most up-to-date predictions of Higgs boson production cross sections and decay branching ratios, parton distribution functions, and off-shell Higgs boson production and interference effects. Read More

The clockwork is a mechanism for generating light particles with exponentially suppressed interactions in theories which contain no small parameters at the fundamental level. We develop a general description of the clockwork mechanism valid for scalars, fermions, gauge bosons, and gravitons. This mechanism can be implemented with a discrete set of new fields or, in its continuum version, through an extra spatial dimension. Read More

2016Jun

This report summarises the physics opportunities in the search and study of physics beyond the Standard Model at a 100 TeV pp collider. Read More

The LIGO observation of gravitational waves from a binary black hole merger has begun a new era in fundamental physics. If new dark sector particles, be they bosons or fermions, can coalesce into exotic compact objects (ECOs) of astronomical size, then the first evidence for such objects, and their underlying microphysical description, may arise in gravitational wave observations. In this work we study how the macroscopic properties of ECOs are related to their microscopic properties, such as dark particle mass and couplings. Read More

If the 750 GeV resonance in the diphoton channel is confirmed, what are the measurements necessary to infer the properties of the new particle and understand its nature? We address this question in the framework of a single new scalar particle, called digamma ($\digamma$). We describe it by an effective field theory, which allows us to obtain general and model-independent results, and to identify the most useful observables, whose relevance will remain also in model-by-model analyses. We derive full expressions for the leading-order processes and compute rates for higher-order decays, digamma production in association with jets, gauge or Higgs bosons, and digamma pair production. Read More

Run 2 LHC data show hints of a new resonance in the diphoton distribution at an invariant mass of 750 GeV. We analyse the data in terms of a new boson, extracting information on its properties and exploring theoretical interpretations. Scenarios covered include a narrow resonance and, as preliminary indications suggest, a wider resonance. Read More

We study how, as a result of the scanning of supersymmetry breaking during the cosmological evolution, a relaxation mechanism can naturally determine a hierarchy between the weak scale and the masses of supersymmetric particles. Supersymmetry breaking is determined by QCD instanton effects, in an extremely minimal setup in which a single field drives the relaxation and breaks supersymmetry. Since gauginos are lighter than the other supersymmetric particles by a one-loop factor, the theory is a realisation of Split Supersymmetry free from the naturalness problem. Read More

We give a complete analysis of indirect determinations of the top quark mass in the Standard Model by introducing a systematic procedure to identify observables that receive quantum corrections enhanced by powers of $M_t$. We propose to use flavour physics as a tool to extract the top quark mass. Although present data give only a poor determination, we show how future theoretical and experimental progress in flavour physics can lead to an accuracy in $M_t$ well below 2 GeV. Read More

The Standard Model Higgs potential becomes unstable at large field values. After clarifying the issue of gauge dependence of the effective potential, we study the cosmological evolution of the Higgs field in presence of this instability throughout inflation, reheating and the present epoch. We conclude that anti-de Sitter patches in which the Higgs field lies at its true vacuum are lethal for our universe. Read More

2015Apr

This paper describes the physics case for a new fixed target facility at CERN SPS. The SHiP (Search for Hidden Particles) experiment is intended to hunt for new physics in the largely unexplored domain of very weakly interacting particles with masses below the Fermi scale, inaccessible to the LHC experiments, and to study tau neutrino physics. The same proton beam setup can be used later to look for decays of tau-leptons with lepton flavour number non-conservation, $\tau\to 3\mu$ and to search for weakly-interacting sub-GeV dark matter candidates. Read More

Attempts to solve naturalness by having the weak scale as the only breaking of classical scale invariance have to deal with two severe difficulties: gravity and the absence of Landau poles. We show that solutions to the first problem require premature modifications of gravity at scales no larger than $10^{11}$ GeV, while the second problem calls for many new particles at the weak scale. To build models that fulfil these properties, we classify 4-dimensional Quantum Field Theories that satisfy Total Asymptotic Freedom (TAF): the theory holds up to infinite energy, where all coupling constants flow to zero. Read More

Assuming that supersymmetry exists well above the weak scale, we derive the full one-loop matching conditions between the SM and the supersymmetric theory, allowing for the possibility of an intermediate Split-SUSY scale. We also compute two-loop QCD corrections to the matching condition of the Higgs quartic coupling. These results are used to improve the calculation of the Higgs mass in models with high-scale supersymmetry or split supersymmetry, reducing the theoretical uncertainty. Read More

We propose some scenarios to pursue dark matter searches at the LHC in a fairly model-independent way. The first benchmark case is dark matter co-annihilations with coloured particles (gluinos or squarks being special examples). We determine the masses that lead to the correct thermal relic density including, for the first time, strong Sommerfeld corrections taking into account colour decomposition. Read More

We derive a general criterion that defines all single-field models leading to Starobinsky-like inflation and to universal predictions for the spectral index and tensor-to-scalar ratio, which are in agreement with Planck data. Out of all the theories that satisfy this criterion, we single out a special class of models with the interesting property of retaining perturbative unitarity up to the Planck scale. These models are based on induced gravity, with the Planck mass determined by the vacuum expectation value of the inflaton. Read More

2013Aug
Authors: M. Bicer, H. Duran Yildiz, I. Yildiz, G. Coignet, M. Delmastro, T. Alexopoulos, C. Grojean, S. Antusch, T. Sen, H. -J. He, K. Potamianos, S. Haug, A. Moreno, A. Heister, V. Sanz, G. Gomez-Ceballos, M. Klute, M. Zanetti, L. -T. Wang, M. Dam, C. Boehm, N. Glover, F. Krauss, A. Lenz, M. Syphers, C. Leonidopoulos, V. Ciulli, P. Lenzi, G. Sguazzoni, M. Antonelli, M. Boscolo, U. Dosselli, O. Frasciello, C. Milardi, G. Venanzoni, M. Zobov, J. van der Bij, M. de Gruttola, D. -W. Kim, M. Bachtis, A. Butterworth, C. Bernet, C. Botta, F. Carminati, A. David, D. d'Enterria, L. Deniau, G. Ganis, B. Goddard, G. Giudice, P. Janot, J. M. Jowett, C. Lourenco, L. Malgeri, E. Meschi, F. Moortgat, P. Musella, J. A. Osborne, L. Perrozzi, M. Pierini, L. Rinolfi, A. de Roeck, J. Rojo, G. Roy, A. Sciaba, A. Valassi, C. S. Waaijer, J. Wenninger, H. Woehri, F. Zimmermann, A. Blondel, M. Koratzinos, P. Mermod, Y. Onel, R. Talman, E. Castaneda Miranda, E. Bulyak, D. Porsuk, D. Kovalskyi, S. Padhi, P. Faccioli, J. R. Ellis, M. Campanelli, Y. Bai, M. Chamizo, R. B. Appleby, H. Owen, H. Maury Cuna, C. Gracios, G. A. Munoz-Hernandez, L. Trentadue, E. Torrente-Lujan, S. Wang, D. Bertsche, A. Gramolin, V. Telnov, M. Kado, P. Petroff, P. Azzi, O. Nicrosini, F. Piccinini, G. Montagna, F. Kapusta, S. Laplace, W. da Silva, N. Gizani, N. Craig, T. Han, C. Luci, B. Mele, L. Silvestrini, M. Ciuchini, R. Cakir, R. Aleksan, F. Couderc, S. Ganjour, E. Lancon, E. Locci, P. Schwemling, M. Spiro, C. Tanguy, J. Zinn-Justin, S. Moretti, M. Kikuchi, H. Koiso, K. Ohmi, K. Oide, G. Pauletta, R. Ruiz de Austri, M. Gouzevitch, S. Chattopadhyay

The discovery by the ATLAS and CMS experiments of a new boson with mass around 125 GeV and with measured properties compatible with those of a Standard-Model Higgs boson, coupled with the absence of discoveries of phenomena beyond the Standard Model at the TeV scale, has triggered interest in ideas for future Higgs factories. A new circular e+e- collider hosted in a 80 to 100 km tunnel, TLEP, is among the most attractive solutions proposed so far. It has a clean experimental environment, produces high luminosity for top-quark, Higgs boson, W and Z studies, accommodates multiple detectors, and can reach energies up to the t-tbar threshold and beyond. Read More

I review the status of naturalness of the weak scale after the results from the LHC operating at an energy of 8 TeV. Talk delivered at the 2013 Europhysics Conference on High Energy Physics (EPS), Stockholm, Sweden, 18-24 July 2013. Read More

2013Jul
Authors: Halina Abramowicz, Angel Abusleme, Konstatin Afanaciev, Gideon Alexander, Niloufar Alipour Tehrani, Oscar Alonso, Kristoffer K. Andersen, Samir Arfaoui, Csaba Balazs, Tim Barklow, Marco Battaglia, Mathieu Benoit, Burak Bilki, Jean-Jacques Blaising, Mark Boland, Marça Boronat, Ivanka Božović Jelisavčić, Philip Burrows, Maximilien Chefdeville, Roberto Contino, Dominik Dannheim, Marcel Demarteau, Marco Aurelio Diaz Gutierrez, Angel Diéguez, Jorge Duarte Campderros, Gerald Eigen, Konrad Elsener, Dan Feldman, Uli Felzmann, Mirosław Firlej, Elena Firu, Tomasz Fiutowski, Kurt Francis, Frank Gaede, Ignacio García García, Veta Ghenescu, Gian Giudice, Norman Graf, Christian Grefe, Christophe Grojean, Rick S. Gupta, Michael Hauschild, Helga Holmestad, Marek Idzik, Christian Joram, Sergey Kananov, Yannis Karyotakis, Martin Killenberg, Wolfgang Klempt, Sabine Kraml, Beata Krupa, Szymon Kulis, Tomáš Laštovička, Greg LeBlanc, Aharon Levy, Itamar Levy, Lucie Linssen, Angela Lucaci Timoce, Strahinja Lukić, Vladimir Makarenko, John Marshall, Victoria Martin, Rune E. Mikkelsen, Gordana Milutinović-Dumbelović, Akiya Miyamoto, Klaus Mönig, Gudrid Moortgat-Pick, Jakub Moroń, Astrid Münnich, Alina Neagu, Mila Pandurović, Duccio Pappadopulo, Bogdan Pawlik, Werner Porod, Stéphane Poss, Titi Preda, Roger Rassool, Ricardo Rattazzi, Sophie Redford, Jose Repond, Sabine Riemann, Aidan Robson, Philipp Roloff, Eduardo Ros, Jonatan Rosten, Alberto Ruiz-Jimeno, Heidi Rzehak, André Sailer, Dieter Schlatter, Daniel Schulte, Felix Sefkow, Katja Seidel, Nikolai Shumeiko, Eva Sicking, Frank Simon, Jacob Smith, Christian Soldner, Steinar Stapnes, Jan Strube, Taikan Suehara, Krzysztof Świentek, Marco Szalay, Tomohiko Tanabe, Michal Tesař, Andrea Thamm, Mark Thomson, Juan Trenado Garcia, Ulrik I. Uggerhøj, Erik van der Kraaij, Iván Vila, Eva Vilella, Miguel Angel Villarejo, Marcelo Alonso Vogel Gonzalez, Marcel Vos, Nigel Watson, Harry Weerts, James D. Wells, Lars Weuste, Tobias N. Wistisen, Kent Wootton, Lei Xia, Leszek Zawiejski, Ion-Sorin Zgura

This paper summarizes the physics potential of the CLIC high-energy e+e- linear collider. It provides input to the Snowmass 2013 process for the energy-frontier working groups on The Higgs Boson (HE1), Precision Study of Electroweak Interactions (HE2), Fully Understanding the Top Quark (HE3), as well as The Path Beyond the Standard Model -- New Particles, Forces, and Dimensions (HE4). It is accompanied by a paper describing the CLIC accelerator study, submitted to the Frontier Capabilities group of the Snowmass process. Read More

We extract from data the parameters of the Higgs potential, the top Yukawa coupling and the electroweak gauge couplings with full 2-loop NNLO precision, and we extrapolate the SM parameters up to large energies with full 3-loop NNLO RGE precision. Then we study the phase diagram of the Standard Model in terms of high-energy parameters, finding that the measured Higgs mass roughly corresponds to the minimum values of the Higgs quartic and top Yukawa and the maximum value of the gauge couplings allowed by vacuum metastability. We discuss various theoretical interpretations of the near-criticality of the Higgs mass. Read More

We show that a large mixing between the right-handed charm and top squarks (i) is allowed by low-energy flavour constraints; (ii) reduces the experimental bound on the stop mass; (iii) has a mild, but beneficial, effect on fine-tuning; (iv) leads to interesting signatures at the LHC not presently investigated by experiments. We estimate the current bound on the stop mass, in presence of flavour mixing, and discuss the new collider signatures. The signal in the t anti-c (c anti-t) + missing E_T channel is large enough that it can be immediately searched for experimentally, while the signature with same-sign tops and missing E_T requires a luminosity upgrade of the LHC. Read More

We show that a right-handed stop in the 200-400 GeV mass range, together with a nearly degenerate neutralino and, possibly, a gluino below 1.5 TeV, follows from reasonable assumptions, is consistent with present data, and offers interesting discovery prospects at the LHC. Triggering on an extra jet produced in association with stops allows the experimental search for stops even when their mass difference with neutralinos is very small and the decay products are too soft for direct observation. Read More

We argue that the anomalous magnetic moment of the electron (a_e) can be used to probe new physics. We show that the present bound on new-physics contributions to a_e is 8*10^-13, but the sensitivity can be improved by about an order of magnitude with new measurements of a_e and more refined determinations of alpha in atomic-physics experiments. Tests on new-physics effects in a_e can play a crucial role in the interpretation of the observed discrepancy in the anomalous magnetic moment of the muon (a_mu). Read More

In the context of minimal supersymmetry with slepton mass universality we find that an enhancement in h \rightarrow gamma gamma by at least 40%, as hinted by present data, implies a deviation of the muon anomalous magnetic moment by exactly the right amount to explain the observed anomaly. The enhancement in h \rightarrow gamma gamma selects a light stau with large left-right mixing, a light Bino, and heavy higgsinos. The corresponding parameters are compatible with thermal dark matter, predict small deviations in h \rightarrow Z gamma and h \rightarrow tau tau, and measurable violations of lepton universality. Read More

We explore the possibility that the observed pattern of quark masses is the consequence of a statistical distribution of Yukawa couplings within the multiverse. We employ the anthropic condition that only two ultra light quarks exist, justifying the observed richness of organic chemistry. Moreover, the mass of the recently discovered Higgs boson suggests that the top Yukawa coupling lies near the critical condition where the electroweak vacuum becomes unstable, leading to a new kind of flavor puzzle and to a new anthropic condition. Read More

We present the first complete next-to-next-to-leading order analysis of the Standard Model Higgs potential. We computed the two-loop QCD and Yukawa corrections to the relation between the Higgs quartic coupling (lambda) and the Higgs mass (Mh), reducing the theoretical uncertainty in the determination of the critical value of Mh for vacuum stability to 1 GeV. While lambda at the Planck scale is remarkably close to zero, absolute stability of the Higgs potential is excluded at 98% C. Read More

Dark matter, gauge coupling unification, and the strong CP problem find a common and simple solution (in the absence of naturalness) within axion models. We show that such solution, even without specifying the details of the model implementation, makes testable predictions for the experimentally measurable axion parameters: the axion mass and its coupling to photons. Read More

We show how a heavy scalar singlet with a large vacuum expectation value can evade the potential instability of the Standard Model electroweak vacuum. The quartic interaction between the heavy scalar singlet and the Higgs doublet leads to a positive tree-level threshold correction for the Higgs quartic coupling, which is very effective in stabilizing the potential. We provide examples, such as the see-saw, invisible axion and unitarized Higgs inflation, where the proposed mechanism is automatically implemented in well-defined ranges of Higgs masses. Read More

We analyze possible interpretations of the recent LHCb evidence for CP violation in D meson decays in terms of physics beyond the Standard Model. On general grounds, models in which the primary source of flavor violation is linked to the breaking of chiral symmetry (left-right flavor mixing) are natural candidates to explain this effect, via enhanced chromomagnetic operators. In the case of supersymmetric models, we identify two motivated scenarios: disoriented A-terms and split families. Read More

We update instability and metastability bounds of the Standard Model electroweak vacuum in view of the recent ATLAS and CMS Higgs results. For a Higgs mass in the range 124--126 GeV, and for the current central values of the top mass and strong coupling constant, the Higgs potential develops an instability around $10^{11}$ GeV, with a lifetime much longer than the age of the Universe. However, taking into account theoretical and experimental errors, stability up to the Planck scale cannot be excluded. Read More

OPERA has claimed the discovery of superluminal propagation of neutrinos. We analyze the consistency of this claim with previous tests of special relativity. We find that reconciling the OPERA measurement with information from SN1987a and from neutrino oscillations requires stringent conditions. Read More

We study the range of Higgs masses predicted by High-Scale Supersymmetry and by Split Supersymmetry, using the matching condition for the Higgs quartic coupling determined by the minimal field content. In the case of Split Supersymmetry, we compute for the first time the complete next-to-leading order corrections, including two-loop renormalization group equations and one loop threshold effects. These corrections reduce the predicted Higgs mass by a few GeV. Read More

We suggest trying to count the number of invisible particles produced in missing energy events at the LHC, arguing that multiple production of such particles provides evidence that they constitute stable Dark Matter and that counting them could yield further insights into the nature of Dark Matter. We propose a method to count invisible particles, based on fitting the shapes of certain transverse- or invariant-mass distributions, discuss various effects that may affect the measurement, and simulate the use of the method to count neutrinos in Standard Model processes and Dark Matter candidates in new physics processes. Read More

The Large Hadron Collider (LHC), the particle accelerator operating at CERN, is probably the most complex and ambitious scientific project ever accomplished by humanity. The sheer size of the enterprise, in terms of financial and human resources, naturally raises the question whether society should support such costly basic-research programs. I address this question here by first reviewing the process that led to the emergence of Big Science and the role of large projects in the development of science and technology. Read More

We ask what new states may lie at or below the TeV scale, with sizable flavour-dependent couplings to light quarks, putting them within reach of hadron colliders via resonant production, or in association with Standard Model states. In particular, we focus on the compatibility of such states with stringent flavour-changing neutral current and electric-dipole moment constraints. We argue that the broadest and most theoretically plausible flavour structure of the new couplings is that they are hierarchical, as are Standard Model Yukawa couplings, although the hierarchical pattern may well be different. Read More

It has been recently pointed out that the unavoidable tuning among supersymmetric parameters required to raise the Higgs boson mass beyond its experimental limit opens up new avenues for dealing with the so called $\mu$-$B_\mu$ problem of gauge mediation. In fact, it allows for accommodating, with no further parameter tuning, large values of $B_\mu$ and of the other Higgs-sector soft masses, as predicted in models where both $\mu$ and $B_\mu$ are generated at one-loop order. This class of models, called Lopsided Gauge Mediation, offers an interesting alternative to conventional gauge mediation and is characterized by a strikingly different phenomenology, with light higgsinos, very large Higgs pseudoscalar mass, and moderately light sleptons. Read More

We derive new dominant bounds on the coefficient of the effective operator generated by tree-level graviton exchange in large extra dimensions from pp \rightarrow jj data at LHC: M_T > 2.1TeV (ATLAS after 3.1/pb of integrated luminosity), M_T > 3. Read More

We suggest a novel approach to UV-completion of a class of non-renormalizable theories, according to which the high-energy scattering amplitudes get unitarized by production of extended classical objects (classicalons), playing a role analogous to black holes, in the case of non-gravitational theories. The key property of classicalization is the existence of a classicalizer field that couples to energy-momentum sources. Such localized sources are excited in high-energy scattering processes and lead to the formation of classicalons. Read More

We consider a simple extension of the Standard Model Higgs inflation with one new real scalar field which preserves unitarity up to the Planck scale. The new scalar field (called sigma) completes in the ultraviolet the theory of Higgs inflation by linearizing the Higgs kinetic term in the Einstein frame, just as the non-linear sigma model is unitarized into its linear version. The unitarity cutoff of the effective theory, obtained by integrating out the sigma field, varies with the background value of the Higgs field. Read More

Motivated by dark-matter considerations in supersymmetric theories, we investigate in a fairly model-independent way the detection at the LHC of nearly degenerate gauginos with mass differences between a few GeV and about 30 GeV. Due to the degeneracy of gaugino states, the conventional leptonic signals are likely lost. We first consider the leading signal from gluino production and decay. Read More

We study bounds and signatures of models where the Higgs doublet has an inhomo- geneous mass or vacuum expectation value, being coupled to a hidden sector that breaks Lorentz invariance. This physics is best described by a low-energy effective Lagrangian in which the Higgs speed-of-light is smaller than c; such effect is naturally small because it is suppressed by four powers of the inhomogeneity scale. The Lorentz violation in the Higgs sector is communicated at tree level to fermions (via Yukawa interactions) and to massive gauge bosons, although the most important effect comes from one-loop dia- grams for photons and from two-loop diagrams for fermions. Read More

We consider the corrections that arise at one loop when integrating out heavy fields in supersymmetric models. We show that, in type-I see-saw models, complex A and B terms of the heavy right-handed neutrino give radiative contributions to the neutron EDM, as well as new dominant contributions to the electron EDM. Type-II and type-III see-saw also predict a pure gauge correction that makes complex the masses of the weak gauginos. Read More

Extrapolating the Standard Model to high scales using the renormalisation group, three possibilities arise, depending on the mass of the Higgs boson: if the Higgs mass is large enough the Higgs self-coupling may blow up, entailing some new non-perturbative dynamics; if the Higgs mass is small the effective potential of the Standard Model may reveal an instability; or the Standard Model may survive all the way to the Planck scale for an intermediate range of Higgs masses. This latter case does not necessarily require stability at all times, but includes the possibility of a metastable vacuum which has not yet decayed. We evaluate the relative likelihoods of these possibilities, on the basis of a global fit to the Standard Model made using the Gfitter package. Read More

We study the framework of hierarchical soft terms, in which the first two generations of squarks and sleptons are heavier than the rest of the supersymmetric spectrum. This scheme gives distinctive predictions for the pattern of flavor violations, which we compare to the case of nearly degenerate squarks. Experiments in flavor physics have started to probe the most interesting parameter region, especially in $b\leftrightarrow s$ transitions, where hierarchical soft terms can predict a phase of $B_s$ mixing much larger than in the Standard Model. Read More

The safety of collisions at the Large Hadron Collider (LHC) was studied in 2003 by the LHC Safety Study Group, who concluded that they presented no danger. Here we review their 2003 analysis in light of additional experimental results and theoretical understanding, which enable us to confirm, update and extend the conclusions of the LHC Safety Study Group. The LHC reproduces in the laboratory, under controlled conditions, collisions at centre-of-mass energies less than those reached in the atmosphere by some of the cosmic rays that have been bombarding the Earth for billions of years. Read More

We consider the possibility that the Yukawa couplings depend on the Higgs field, with the motivation of generating the fermion mass hierarchy through appropriate powers of the Higgs vacuum expectation value. This leads to drastic modifications of the Higgs branching ratios, new Higgs contributions to various flavor-violating processes, and observable rates for the top quark decay t-> hc. The underlying flavor dynamics must necessarily appear at the TeV scale and is within the reach of the LHC. Read More

Supersymmetric thermal leptogenesis with a hierarchical right-handed neutrino mass spectrum requires the mass of the lightest right-handed neutrino to be heavier than about 10^9 GeV. This is in conflict with the upper bound on the reheating temperature which is found by imposing that the gravitinos generated during the reheating stage after inflation do not jeopardize successful nucleosynthesis. In this paper we show that a solution to this tension is actually already incorporated in the framework, because of the presence of flat directions in the supersymmetric scalar potential. Read More

A non-technical discussion of the naturalness criterion and its implications for new physics searches at the LHC. To be published in the book "LHC Perspectives", edited by G. Kane and A. Read More

This chapter of the report of the ``Flavour in the era of the LHC'' Workshop discusses the theoretical, phenomenological and experimental issues related to flavour phenomena in the charged lepton sector and in flavour-conserving CP-violating processes. We review the current experimental limits and the main theoretical models for the flavour structure of fundamental particles. We analyze the phenomenological consequences of the available data, setting constraints on explicit models beyond the Standard Model, presenting benchmarks for the discovery potential of forthcoming measurements both at the LHC and at low energy, and exploring options for possible future experiments. Read More

We propose a natural solution to the mu problem in gauge mediation. It relies on the logarithmic dependence of the effective Kahler potential on the messenger threshold superfield X. Thus, mu and Bmu naturally arise at one and two loops, respectively. Read More