G. Drexlin - Karlsruhe Institute of Technology, Karlsruhe, Germany

G. Drexlin
Are you G. Drexlin?

Claim your profile, edit publications, add additional information:

Contact Details

G. Drexlin
Karlsruhe Institute of Technology, Karlsruhe, Germany

Pubs By Year

External Links

Pub Categories

Physics - Instrumentation and Detectors (14)
High Energy Physics - Experiment (7)
Nuclear Experiment (2)
Instrumentation and Methods for Astrophysics (2)
High Energy Physics - Phenomenology (2)
Physics - Fluid Dynamics (1)
Nuclear Theory (1)
Cosmology and Nongalactic Astrophysics (1)
Astrophysics of Galaxies (1)
Physics - Optics (1)

Publications Authored By G. Drexlin


DARk matter WImp search with liquid xenoN (DARWIN) will be an experiment for the direct detection of dark matter using a multi-ton liquid xenon time projection chamber at its core. Its primary goal will be to explore the experimentally accessible parameter space for Weakly Interacting Massive Particles (WIMPs) in a wide mass-range, until neutrino interactions with the target become an irreducible background. The prompt scintillation light and the charge signals induced by particle interactions in the xenon will be observed by VUV sensitive, ultra-low background photosensors. Read More

Authors: M. Arenz, M. Babutzka, M. Bahr, J. P. Barrett, S. Bauer, M. Beck, A. Beglarian, J. Behrens, T. Bergmann, U. Besserer, J. Blümer, L. I. Bodine, K. Bokeloh, J. Bonn, B. Bornschein, L. Bornschein, S. Büsch, T. H. Burritt, S. Chilingaryan, T. J. Corona, L. De Viveiros, P. J. Doe, O. Dragoun, G. Drexlin, S. Dyba, S. Ebenhöch, K. Eitel, E. Ellinger, S. Enomoto, M. Erhard, D. Eversheim, M. Fedkevych, A. Felden, S. Fischer, J. A. Formaggio, F. Fränkle, D. Furse, M. Ghilea, W. Gil, F. Glück, A. Gonzalez Urena, S. Görhardt, S. Groh, S. Grohmann, R. Grössle, R. Gumbsheimer, M. Hackenjos, V. Hannen, F. Harms, N. Hauÿmann, F. Heizmann, K. Helbing, W. Herz, S. Hickford, D. Hilk, B. Hillen, T. Höhn, B. Holzapfel, M. Hötzel, M. A. Howe, A. Huber, A. Jansen, N. Kernert, L. Kippenbrock, M. Kleesiek, M. Klein, A. Kopmann, A. Kosmider, A. Kovalík, B. Krasch, M. Kraus, H. Krause, M. Krause, L. Kuckert, B. Kuffner, L. La Cascio, O. Lebeda, B. Leiber, J. Letnev, V. M. Lobashev, A. Lokhov, E. Malcherek, M. Mark, E. L. Martin, S. Mertens, S. Mirz, B. Monreal, K. Müller, M. Neuberger, H. Neumann, S. Niemes, M. Noe, N. S. Oblath, A. Off, H. -W. Ortjohann, A. Osipowicz, E. Otten, D. S. Parno, P. Plischke, A. W. P. Poon, M. Prall, F. Priester, P. C. -O. Ranitzsch, J. Reich, O. Rest, R. G. H. Robertson, M. Röllig, S. Rosendahl, S. Rupp, M. Rysavy, K. Schlösser, M. Schlösser, K. Schönung, M. Schrank, J. Schwarz, W. Seiler, H. Seitz-Moskaliuk, J. Sentkerestiova, A. Skasyrskaya, M. Slezak, A. Spalek, M. Steidl, N. Steinbrink, M. Sturm, M. Suesser, H. H. Telle, T. Thümmler, N. Titov, I. Tkachev, N. Trost, A. Unru, K. Valerius, D. Venos, R. Vianden, S. Vöcking, B. L. Wall, N. Wandkowsky, M. Weber, C. Weinheimer, C. Weiss, S. Welte, J. Wendel, K. L. Wierman, J. F. Wilkerson, D. Winzen, J. Wolf, S. Wüstling, M. Zacher, S. Zadoroghny, M. Zboril

The KATRIN experiment will probe the neutrino mass by measuring the beta-electron energy spectrum near the endpoint of tritium beta-decay. An integral energy analysis will be performed by an electro-static spectrometer (Main Spectrometer), an ultra-high vacuum vessel with a length of 23.2 m, a volume of 1240 m^3, and a complex inner electrode system with about 120000 individual parts. Read More

Authors: R. Adhikari, M. Agostini, N. Anh Ky, T. Araki, M. Archidiacono, M. Bahr, J. Baur, J. Behrens, F. Bezrukov, P. S. Bhupal Dev, D. Borah, A. Boyarsky, A. de Gouvea, C. A. de S. Pires, H. J. de Vega, A. G. Dias, P. Di Bari, Z. Djurcic, K. Dolde, H. Dorrer, M. Durero, O. Dragoun, M. Drewes, G. Drexlin, Ch. E. Düllmann, K. Eberhardt, S. Eliseev, C. Enss, N. W. Evans, A. Faessler, P. Filianin, V. Fischer, A. Fleischmann, J. A. Formaggio, J. Franse, F. M. Fraenkle, C. S. Frenk, G. Fuller, L. Gastaldo, A. Garzilli, C. Giunti, F. Glück, M. C. Goodman, M. C. Gonzalez-Garcia, D. Gorbunov, J. Hamann, V. Hannen, S. Hannestad, S. H. Hansen, C. Hassel, J. Heeck, F. Hofmann, T. Houdy, A. Huber, D. Iakubovskyi, A. Ianni, A. Ibarra, R. Jacobsson, T. Jeltema, J. Jochum, S. Kempf, T. Kieck, M. Korzeczek, V. Kornoukhov, T. Lachenmaier, M. Laine, P. Langacker, T. Lasserre, J. Lesgourgues, D. Lhuillier, Y. F. Li, W. Liao, A. W. Long, M. Maltoni, G. Mangano, N. E. Mavromatos, N. Menci, A. Merle, S. Mertens, A. Mirizzi, B. Monreal, A. Nozik, A. Neronov, V. Niro, Y. Novikov, L. Oberauer, E. Otten, N. Palanque-Delabrouille, M. Pallavicini, V. S. Pantuev, E. Papastergis, S. Parke, S. Pascoli, S. Pastor, A. Patwardhan, A. Pilaftsis, D. C. Radford, P. C. -O. Ranitzsch, O. Rest, D. J. Robinson, P. S. Rodrigues da Silva, O. Ruchayskiy, N. G. Sanchez, M. Sasaki, N. Saviano, A. Schneider, F. Schneider, T. Schwetz, S. Schönert, S. Scholl, F. Shankar, R. Shrock, N. Steinbrink, L. Strigari, F. Suekane, B. Suerfu, R. Takahashi, N. Thi Hong Van, I. Tkachev, M. Totzauer, Y. Tsai, C. G. Tully, K. Valerius, J. W. F. Valle, D. Venos, M. Viel, M. Vivier, M. Y. Wang, C. Weinheimer, K. Wendt, L. Winslow, J. Wolf, M. Wurm, Z. Xing, S. Zhou, K. Zuber

We present a comprehensive review of keV-scale sterile neutrino Dark Matter, collecting views and insights from all disciplines involved - cosmology, astrophysics, nuclear, and particle physics - in each case viewed from both theoretical and experimental/observational perspectives. After reviewing the role of active neutrinos in particle physics, astrophysics, and cosmology, we focus on sterile neutrinos in the context of the Dark Matter puzzle. Here, we first review the physics motivation for sterile neutrino Dark Matter, based on challenges and tensions in purely cold Dark Matter scenarios. Read More

In this contribution we review the status and perspectives of direct neutrino mass experiments. These experiments investigate the kinematics of $\beta$-decays of specific isotopes ($^3$H, $^{187}$Re, $^{163}$Ho) to derive model-independent information on the averaged electron (anti-) neutrino mass, which is formed by the incoherent sum of the neutrino mass eigenstates contributing to the electron neutrino. We first review the kinematics of $\beta$-decay and the determination of the neutrino mass, before giving a brief overview of past neutrino mass measurements (SN1987a-ToF studies, Mainz and Troitsk experiments for $^3$H, cryo-bolometers for $^{187}$Re). Read More

The KATRIN experiment is designed to determine the absolute neutrino mass scale with a sensitivity of 200 meV (90 % CL) by measuring the electron energy spectrum close to the endpoint of molecular tritium beta decay. Electrons from a high-intensity gaseous tritium source are guided by a strong magnetic field of a few T to the analyzing plane of the main spectrometer where an integral energy analysis takes place in a low field region (B<0.5 mT). Read More

Electrostatic spectrometers utilized in high-resolution beta-spectroscopy studies such as in the Karlsruhe Tritium Neutrino (KATRIN) experiment have to operate with a background level of less than 10^(-2) counts per second. This limit can be exceeded by even a small number of Rn-219 or Rn-220 atoms being emanated into the volume and undergoing alpha-decay there. In this paper we present a detailed model of the underlying background-generating processes via electron emission by internal conversion, shake-off and relaxation processes in the atomic shells of the Po-215 and Po-216 daughters. Read More

The Karlsruhe Tritium Neutrino (KATRIN) experiment investigating tritium beta-decay close to the endpoint with unprecedented precision has stringent requirements on the background level of less than 10^(-2) counts per second. Electron emission during the alpha-decay of Rn-219 and Rn-220 atoms in the electrostatic spectrometers of KATRIN is a serious source of background exceeding this limit. In this paper we compare extensive simulations of Rn-induced background to specific measurements with the KATRIN pre-spectrometer to fully characterize the observed Rn-background rates and signatures and determine generic Rn emanation rates from the pre-spectrometer bulk material and its vacuum components. Read More

The gas circulation loop LOOPINO has been set up and commissioned at Tritium Laboratory Karlsruhe (TLK) to perform Raman measurements of circulating tritium mixtures under conditions similar to the inner loop system of the neutrino-mass experiment KATRIN, which is currently under construction. A custom-made interface is used to connect the tritium containing measurement cell, located inside a glove box, with the Raman setup standing on the outside. A tritium sample (purity > 95%, 20 kPa total pressure) was circulated in LOOPINO for more than three weeks with a total throughput of 770 g of tritium. Read More

The Karlsruhe Tritium Neutrino (KATRIN) experiment will measure the absolute mass scale of neutrinos with a sensitivity of $\m_{\nu}$ = 200 meV/c$^2$ by high-precision spectroscopy close to the tritium beta-decay endpoint at 18.6 keV. Its Windowless Gaseous Tritium Source (WGTS) is a beta-decay source of high intensity ($10^{11}$/s) and stability, where high-purity molecular tritium at 30 K is circulated in a closed loop with a yearly throughput of 10 kg. Read More

The primary objective of the KATRIN experiment is to probe the absolute neutrino mass scale with a sensitivity of 200 meV (90% C.L.) by precision spectroscopy of tritium beta-decay. Read More

Affiliations: 1Karlsruhe Institute of Technology, Karlsruhe, Germany, 2Karlsruhe Institute of Technology, Karlsruhe, Germany, 3Karlsruhe Institute of Technology, Karlsruhe, Germany, 4Karlsruhe Institute of Technology, Karlsruhe, Germany, 5Karlsruhe Institute of Technology, Karlsruhe, Germany, 6Karlsruhe Institute of Technology, Karlsruhe, Germany, 7Karlsruhe Institute of Technology, Karlsruhe, Germany

The gas-flow reduction factor of the second forward Differential Pumping Section (DPS2-F) for the KATRIN experiment was determined using a dedicated vacuum-measurement setup and by detailed molecular-flow simulation of the DPS2-F beam tube and of the measurement apparatus. In the measurement, non-radioactive test gases deuterium, helium, neon, argon and krypton were used, the input gas flow was provided by a commercial mass-flow controller, and the output flow was measured using a residual gas analyzer, in order to distinguish it from the outgassing background. The measured reduction factor with the empty beam tube at room temperature for gases with mass 4 is 1. Read More

The KArlsruhe TRItium Neutrino (KATRIN) experiment is a next generation, model independent, large scale tritium beta-decay experiment to determine the effective electron anti-neutrino mass by investigating the kinematics of tritium beta-decay with a sensitivity of 200 meV/c2 using the MAC-E filter technique. In order to reach this sensitivity, a low background level of 0.01 counts per second (cps) is required. Read More

An electron-impact ion source based on photoelectron emission was developed for ionization of gases at pressures below 1e-4 mbar in an axial magnetic field in the order of 5 T. The ion source applies only DC fields, which makes it suitable for use in the presence of equipment sensitive to radio-frequency (RF) fields. The ion source was succesfully tested under varying conditions regarding pressure, magnetic field and magnetic-field gradient, and the results were studied with the help of simulations. Read More

Workshop RPSCINT'2008 was organized in Kyiv (Ukraine) on 9th and 10th September 2008. The idea was to bring together physicists, chemists, crystal scintillator experts and manufacturers to discuss the requirements of low-count rate experiments, in particular the required radiopurity and scintillation properties; selection and screening of input materials; purification of materials; raw compound preparation; crystal growing, annealing and handling; test of crystals; search for and development of new scintillating materials. Some contributions to the RPSCINT 2008 workshop are presented in these proceedings. Read More

Study of the neutrinoless double beta decay and searches for the manifestation of the neutrino mass in ordinary beta decay are the main sources of information about the absolute neutrino mass scale, and the only practical source of information about the charge conjugation properties of the neutrinos. Thus, these studies have a unique role in the plans for better understanding of the whole fast expanding field of neutrino physics. Read More

We investigated mu+ decays at rest produced at the ISIS beam stop target. Lepton flavor (LF) conservation has been tested by searching for \nueb via the detection reaction p(\nueb,e+)n. No \nueb signal from LF violating mu+ decays was identified. Read More

The KARMEN experiment at the spallation neutron source ISIS used \numub from \mup--decay at rest in the search for neutrino oscillations \numubnueb in the appearance mode, with p(\nueb,e+)n as detection reaction of \nueb. In total, 15 candidates fulfill all conditions for the \nueb signature, in agreement with the background expectation of 15.8+-0. Read More

The KARMEN experiment uses the reaction 12C(\nu_e,e-)12N to measure the energy distribution of \nu_e emitted in muon decay at rest. The \nu_e analog \omega_l of the famous Michel parameter \rho has been derived from a maximum-likelihood analysis of events near the kinematic end point, E_max. The result, \omega_l = (2. Read More

The 56 tonne high resolution liquid scintillation calorimeter KARMEN at the beam stop neutrino source ISIS has been used to search for neutrino oscillations in the disappearance channel nu_e->x. The nu_e emitted in mu+ decay at rest are detected with spectroscopic quality via the exclusive charged current reaction 12-C(nu_e,e-)12-N_g.s. Read More